A GENDER COMPARISON OF ECONOMISTS’ PUBLICATIONS

E. Bruce Hutchinson, Marc A. Loizeaux, Leila J. Pratt, and Stephanie Smullen ${ }^{1}$

Abstract

An ordered probit model is used to examine the impact of gender and the quality of the PhD granting institution on the publication record of male and female economists who received t heir doctorate in 1985. This analysis indicates th at men an d women have different publication patterns regardless of where they received their PhD and that the quality of the PhD granting institution has n om easurable effect on an individual's publication record.

Key Words: Gender, ordered probit model, journal publications
JEL Classification: J16

Introduction

Numerous s tudies (Davis, H uston a nd Patterson [2001], G oodwin a nd S auer [1995], H utchinson a nd Z ivney [1995], a nd Laband a nd P iette [1994]) e xamine t he journal-publication be havior of i ndividuals w ith a doctorate in e conomics. A subcategory of this literature is a continuing professional interest in the comparative journalpublication records of male and female economists. B ased on a 1966 National Science Foundation survey, H ansen, W eisbrod a nd S trauss report that w omen e conomists ha ve "higher av erage job quality" yet "lower research productivity (1978, p.737)." Fish and Gibbons whose research focused on journal publication between 1969 and 1986 conclude "...that men significantly out-publish w omen ...w hether the s amples [are] regarded as matched pairs or as two independent samples (p. 97)." McDowell and Smith, using data from 1968 t o 1975 f or an equal num ber of m ale a nd female e conomists from top 20 institutions, c onclude that on a verage, w omen produced fewer publ ications e ven after adjusting for the number of coauthors (1992, p. 75). Ginther and Kahn, relying upon National Science Foundation data for doctorates earned from 1974 through 2000, w rite that "notably, men publish more than women, particularly in non-top-10 journals (2004, p. 199)."

In a 2006 a rticle, McDowell , S ingell a nd S tater, using data from the A merican Economics Association (AEA) Directories for the years 1964, 1974, 1985, 1989, 1993, and 1997, conclude that by 1993 the conclusion of earlier studies that male economists

[^0]were m ore likely to publish m ore than their female counterparts (p. 166-67) was no longer applicable. Their analysis of post-1993 data indicates that males and females had substantively equal publication records.

The present study uses statistical analysis to compare male and female publication records a djusted b y the quality of t he PhD granting i nstitution. Quality here is determined by school tier as established by the National Research Council. We, as other authors excepting McDowell, Singell and Stater, find a continuing statistical difference in journal publication records when we simultaneously consider gender and the quality of the PhD granting institution.

Data and Results

Our data are drawn from the 1985 and 1986 listing of "Doctoral Dissertations in Political Economy in American Universities and C olleges" p ublished in the D ecember 1985 a nd 1986 e ditions of t he American Economic Review. Th ese lists id entify individuals and the year in which the PhD is conferred. Our data set includes all listed individuals who received a PhD in $1985 .^{2}$ The Economic Literature Database (Heck, 2001), which contains 250 -plus j ournals, was u sed to i dentify economics a nd related journal articles (hereafter "journal article") published by these individuals between 1985 and 1999. Counted were articles and notes; omitted were comments, replies, discussions, and book reviews, which is the general treatment followed in the literature. If articles were co-authored, even if both authors were from the 1985 PhD class, each was given credit for one publication. The gender of an individual was determined based on name and where necessary and possible by contacting the individual. ${ }^{3}$

The original data set contained 720 i ndividuals; however, we were unable to determine t he gender of 50 individuals. Thus our w orking da ta s et c ontains 670 individuals. Of these 115 or 17.2% were females and 555 were males. Three-hundred and twenty-seven (48.8%) of these individuals published at least one journal article.

A larger percentage (see Table 1) of women (58%) failed to publish at least one article be tween 1985 and 1999 t han di dmen (50\%). However a slightly 1 arger percentage of women (13\%) than men (12\%) published exactly one article. Likewise the percentage of w omen (8%) w ho publ ished t hree a rticles du ring t his p eriod w as a lso somewhat 1 arger t han t he p ercentage of m en (5\%). However a s ubstantially l arger percentage of m en (7%) than women (3%) publ ished exactly two a rticles and an even higher pe rcentage of m en (26%) t han w omen (18%) publ ished four or m ore a rticles during this period.
${ }^{2}$ The lis ts in clude individuals who e arn t he P hD from C anadian U niversities. T hese individuals are omitted from our sample because their PhD is from a non-U.S. university and the tier rankings used include only U.S. universities.
${ }^{3}$ Many faculty and students with knowledge of foreign languages and cultures assisted in this d etermination. E-mails w ere a lso sent in a n e ffort to d etermine the g ender of individual economists.

Table 1					
Number of Publications by Gender					
Publications	0	1	2	3	$4+$
Female	67	15	3	9	21
	58%	13%	3%	8%	18%
Males	276	66	40	29	144
	50%	12%	7%	5%	26%
Total	343	81	43	38	165
	51%	12%	6%	6%	25%

Universities were p laced into school tiers a ccording to the 1982 r anking of economics departments as reported inthe a ppendices of t he 1995 N ational R esearch Council update to the 1982 assessment of research-doctorate programs. Essentially, we used Hansen's first (highest or be st) to f ifth (lowest) tier designations to g roup the schools. ${ }^{4}$ Table 2 shows this stratification.

As can be s een, 40% of our sample received their PhD from a tier 1 or tier 2 institutions while 32% r eceived t heir de gree from a t ier 5 s chool. 14% of t he m ales received t heir de grees from a t ier 1 s chool compared to onl y 8% of the females. In addition, a hi gher p ercentage of w omen t han m en g raduated f rom t ier 4 or t ier 5 institutions.

[^1]Tier 5: All other Colleges and Universities.

Table 2					
	Tier 1	Tier 2	Tier 3	Tier 4	Tier 5
Publications	1	2	3	4	5
Females	9	28	16	21	41
	8%	24%	14%	18%	36%
Males	76	156	90	62	171
	14%	28%	16%	11%	31%
Total	85	184	106	83	212
	13%	27%	16%	12%	32%

Table 3 s hows publishing records s tratified b y gender a nd s chool tier. Giving consideration t ot he s ensitivity of pe rcentages ba sed on s mall num bers, no pa ttern differences ar e r eadily observed. An or dered probit m odel is us ed to determine the impact of these variables on the probability that an individual will publish $1,2,3$ or 4 or more articles between 1985 and 1999. In general, this model takes the form:

$$
\mathrm{y}^{*}=\boldsymbol{\beta}, \mathbf{x}+\varepsilon .
$$

y^{*} is not observed but we do observe

$$
\begin{array}{ll}
\mathrm{y}=0 & \text { if } \mathrm{y}^{*} \leq 0 \\
\mathrm{y}=1 & \text { if } 0 \leq \mathrm{y}^{*} \leq \mu_{1} \\
\mathrm{y}=2 & \text { if } \mu_{1} \leq \mathrm{y}^{*} \leq \mu_{2} \\
& \cdot \\
\mathrm{y}=\mathrm{j} & \cdot \\
& \\
& \text { if } \mu_{\mathrm{j}-1} \leq \mathrm{y}^{*}
\end{array}
$$

The μ 's are unknown parameters and are estimated with the $\boldsymbol{\beta}$'s. The values of both these parameters depend on the set of measurable factors, \mathbf{x}, and the unobservable factors ε. The error term, ε, is assumed to be normally distributed across observations. It is standardized to a mean of zero and a variance of one. The resulting normal distribution gives us the following probabilities:

$$
\begin{aligned}
& \operatorname{Prob}(\mathrm{y}=0)=\Phi(-\boldsymbol{\beta} \mathbf{x}), \\
& \operatorname{Prob}(\mathrm{y}=1)=\Phi\left(\mu_{1}-\boldsymbol{\beta}, \mathbf{x}\right)-\Phi(-\boldsymbol{\beta}, \mathbf{x}), \\
& \operatorname{Prob}(\mathrm{y}=2)=\Phi\left(\mu_{2}-\boldsymbol{\beta}, \mathbf{x}\right)-\Phi\left(\mu_{1}-\boldsymbol{\beta} \mathbf{x}\right), \\
& \operatorname{Prob}(\mathrm{y}=3)=\Phi\left(\mu_{3}-\boldsymbol{\beta}, \mathbf{x}\right)-\Phi\left(\mu_{2}-\boldsymbol{\beta} \mathbf{x}\right), \\
& \operatorname{Prob}(\mathrm{y}=4)=1-\Phi\left(\mu_{3}-\boldsymbol{\beta}, \mathbf{x}\right) .
\end{aligned}
$$

For all the probabilities to be positive:

$$
0<\mu_{1}<\mu_{2}<\mu_{3}
$$

Table 3					
Number of Publications by School Tier and Gender					
Publications	0	1	2	3	$4+$
Tier 1					
Females	4	2	1	1	1
	44%	22%	11%	11%	11%
Males	34	10	10	3	19
	45%	13%	13%	4%	25%
Tier 2					
Females	18	3	0	1	6
	64%	11%	0%	4%	21%
Males	85	13	13	10	35
	54%	8%	8%	6%	22%
Tier 3					
Females	6	2	1	1	6
	38%	13%	6%	6%	38%
Males	47	11	6	5	21
	52%	12%	7%	6%	23%
Tier 4					
Females	12	0	0	4	5
	57%	0%	0%	19%	24%
Males	31	8	3	5	6
	58%	15%	6%	9%	11%
Tier 5					
Females	27	8	1	2	3
	66%	20%	2%	5%	7%
Males	79	24	8	6	54
	46%	14%	5%	4%	32%

The e xplanatory va riables or t he regressors, \mathbf{x}, a re G ENDER which e quals 1 i ft he individual is male, a nd a s et of dum my v ariables that de signate t he t ier of t he P HD granting institution. Table 4 reports the results of the ordered probit. None of the school tier dummies are significant indicating that the quality of the PhD granting institution is unimportant in explaining an individual's probability of publishing. However, gender is positive and significant indicating that males have a significantly hi gher probability of publishing than females.

Table 4 Ordered Probit Regression Results			
Variable	Coefficient	Error	t-Statistic
Constant	-0.1858	0.1277	-1.455
Gender	0.2313	0.1211	1.910
Tier 1	0.0310	0.1465	0.212
Tier 2	-0.1349	0.1175	-1.149
Tier 3	-0.0106	0.1371	-0.077
Tier 4	-0.1367	0.1498	-0.913
μ_{1}	0.3112	0.0326	9.546 **
μ_{2}	0.4882	0.0402	12.144 **
μ_{3}	0.6592	0.0464	14.195 **
*	Significant at the 5% level Significant at the 10% level		
**			

As usual in models with discrete dependent variables the marginal impacts of the \mathbf{x} values on the probabilities are not equal to the coefficients. To measure the marginal impact of a binary explanatory variable, one must compare the probabilities that result when the variable takes on its two values (0 or 1) with all other variables held constant at their means. Table 5 shows the marginal impact of each of the binary regressors (school tiers or gender) on the five publishing probabilities given all the other variables are held constant at t heir s ample m eans. For e xample, a ccording to the estimated ma rginal impacts presented in Table 5, m ales are 9.20% more likely to not publish than females given the school tiers are held constant at their mean values. Likewise a graduate of a Tier 2 institution is 5.40% less likely to not publish than other individuals given gender and the other three tier dummy variables are held constant at their mean values.

The s mall d ifferences in ma le a nd female p ublication p robabilities in the f ive school t iers r einforce t he non -significance of t he t ier d ummy v ariables. T he g ender dummy va riables however pr ovide some s urprising results. M en ar e about 9% more likely than women to not publish at all. Women, on the other hand, are about 8% more likely than men to publ ish 4 or more articles or to be "super publishers". In a ddition, women and men are almost equally likely to publish 1, 2, or 3 articles between 1985 and 1999.

Table 5

Marginal Impact of Gender \& School Tier on Publishing Probabilities

	Prob. $\mathrm{y}=0$	Prob. $\mathrm{y}=1$	Prob. $\mathrm{y}=2$	Prob. $\mathrm{y}=3$	Prob. $\mathrm{y}=4$
Gender $=0$	0.412	0.123	0.069	0.064	0.331
Gender $=1$	0.504	0.122	0.065	0.058	0.252
Difference	0.092	-0.001	-0.004	-0.006	-0.079
Tier 1 = 0	0.486	0.122	0.066	0.060	0.266
Tier 1 =	0.499	0.122	0.065	0.058	0.256
Difference	0.013	0.000	-0.001	-0.002	-0.010
Tier 2 = 0	0.503	0.122	0.065	0.058	0.253
Tier 2 =	0.449	0.124	0.068	0.062	0.298
Difference	-0.054	0.002	0.003	0.004	0.045
Tier 3 = 0	0.488	0.123	0.066	0.059	0.264
Tier 3 = 1	0.484	0.123	0.066	0.059	0.264
Difference	-0.004	0.000	0.000	0.000	0.000
Tier 4 $=0$	0.488	0.123	0.066	0.059	0.264
Tier 4 = 1	0.483	0.123	0.066	0.059	0.269
Difference	-0.005	0.000	0.000	0.000	0.005

Conclusion

This study used research records based on a search of the Economic Literature Database citations to 250 -plus economics and related journals to examine the impact of gender and school tier on t he probability that an individual who received the PhD in 1985 w ould publish zero, one, two, three or four or more articles between 1985 and 1999. We find that for this group, the tier (general quality) of the graduate institution from which they graduated does not impact their publishing probability. W e also find that men have a significantly different publication pattern than women though the difference is narrow. In particularly we find that men in this cohort are more likely to not publish at all. On the other hand, we find that women are more likely to be "super publishers" publishing four or more articles between 1985 and 1999.

References

American Economic Association. 1985. Eighty-second List of Doctoral Dissertations in Political Economy in American Universities and Colleges." American Economic Review, December: 1225-46.

American Economic Association. 1986. Eighty-third List of Doctoral Dissertations in Political Economy in American Universities and Colleges. American Economic Review, December: 1238-57.
Broder, I E. 1993. "Professional Achievements and Gender Differences Among Academic Economists." Economic Inquiry 31 (1): 116-27.
Davis, J. C., J. H. Huston and D. M. Patterson. 2001. "The Scholarly Output of Economists: A Description of Publishing Patterns." American Economics Journal 29 (3): 341-49.
Durell, Alan, Bruce Sacerdote, and Heidi Williams. 2007. "Is Economics Becoming Gender Neutral?" AEAweb: Conference Papers, <http://www.aeaweb.org/annual_mtg_papers/2007/0105_1430_1103.pdf, 2007> ASSA Conference, Chicago, Illinois, January 5-7, 2007
Enomoto, C. E. and S. N. Ghosh. 1993. "A Stratified Approach to the Ranking of Economics Journals." Studies in Economic Analysis 14 (2): 74-93.
Fish, M. and J. D. Gibbons. 1989. 2004. "A Comparison of the Publications of Female and Male Economists." Journal of Economic Education 20 (1): 93-105.
Ginther, D. K. and S. Kahn. 2004. "Women in Economics: Moving Up or Falling Off the Academic Career Ladder." Journal of Economic Perspectives 18 (3): 193-214.
Goodwin, T. H. and R. D. Sauer. 1995. "Life Cycle Productivity in Academic Research: Evidence from Cumulative Publication Histories of Academic Economists." Southern Economic Journal 61 (3): 728-43.
Hansen, W. L., B. A. Weisbrod and R. P. Strauss. 1978. "Modeling the Earnings and Research Productivity of Academic Economists.' Journal of Political Economy 86 (4): 729-41.
Heck, J. L. 2001. Economic Literature Database. Wayne, PA: JLH Enterprises.
Hutchinson, E. B. and T. L. Zivney. 1995. "The Publication Profile of Economists." Journal of Economic Education 26 (1): 59-79.
Laband, D. N. and M. J. Piette. 1994. "The Relative Impacts of Economics Journals: 1970-1990." Journal of Economic Literature 32 (2): 640-66.
Mason, P. J., J. W. Steagall, and M. M. Fabritius. 1997. "Economics Journal Rankings by Type of School: Perceptions Versus Citations." Quarterly Journal of Business and Economics 36 (1):
McDowell, J. M. and J. K. Smith. 1992. "The Effect of Gender Sorting on Propensity to Coauthor: Implications for Academic Promotion." Economic Inquiry 30 (1): 6882.

McDowell, J. M., L. D. Singell, and M. Stater. 2006. "Two to Tango? Gender Differences in the Decisions to Publish and Coauthor." Economic Inquiry 44 (1): 153-168.
National Research Council 1995. Continuity and Change. Washington, D. C.: National Academy of Sciences.

[^0]: ${ }^{1}$ E. Bruce Hutchinson is Professor of Economics, Department of Economics, University of Tennessee at Chattanooga, Chattanooga, TN 37403; Marc A. Loizeaux is Manager, Provider P erformance Assessment A nalytics, BlueCross B lueShield of T ennessee, Chattanooga, T N 37402 ; Leila J. P ratt is Hart Professor of E conomics, University of Tennessee at Chattanooga; a nd, Stephanie S mullen, is Professor of C omputer S cience, Computer Science, University of Tennessee at Chattanooga.

[^1]: ${ }^{4}$ Schools in the various Tiers are:
 Tier 1: Chicago, Harvard, MIT, Princeton, Stanford, Yale
 Tier 2: Columbia, Michigan, M innesota, N orthwestern, Pennsylvania, R ochester, U CBerkeley, UCLA, UW-Madison
 Tier 3: Brown, C al-Tech, C arnegie-Mellon, C ornell, D uke, Illinois, J ohns H opkins, Maryland, Michigan State, New Y ork University, North Carolina, UC-San Diego, Virginia, Virginia Polytechnic Institute, Washington-Seattle
 Tier 4: Boston University, C laremont, Florida, Iowa, Iowa State, Massachusetts, Ohio State, Pennsylvania State, Pittsburgh, Purdue, SUNY-Stony Brook, T exas A \&M, Texas-Austin, UC-Davis, UC -Santa B arbara, U SC, V anderbilt, W ashington-St. Louis

