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Abstract 

Strengthening geospatial technology is very important in order to support disaster mitigation strategy, to manage vulnerable communities and 

to protectcritical environments. The main challenge in identifying disaster characteristics such as mass movements is the lack of direct observation 

during the event because it is too dangerous for researchers. Geo-Information Technology as a product of Geographic Information Science can be 
used as a solution in order to model the characteristics of mass movements. The purpose of this study is focused on identifying landslide processes 

from point of view of raster-based model. The method of this research emphasizes dynamic landslide model derived from time series raster 

calculation using MassMov2D algorithm. The geographic database that was built for spatial modeling comes from pedogeomorphological and 
Remote Sensing survey outputs, especially topographic data, landforms and soil physical properties. The result shows that the relationship between 

pixels (neighborhood) is determined by the topology of the energy gradient line direction which allows to transfer the value between each pixel. 

The movement of landslide material starts from the toe. This decreases the stability of the landslide material in the main body of the landslide and 
generate progressive erosion. The raster-based model can finally reconstruct and identify the stages of initiation, transport and deposition landslide 

material. 

 
Keywords: Geo-Information Technology, raster-based models, landslides, mass movements. 
 

 

 

1. Introduction 

Raster-based model is part of Geo-Information Technology 

that can be applied for disaster studies, especially mass 

movements. It allows researchers to identify and reconstruct the 

process of mass movements, such as debris flows and 

landslides. This is very important because usually the 

identification of mass movement process is very limited. Such 

identification is pretty dangerous to be done directly in the field 

during the event. 

The need for reconstruction and identification of mass 

movement processes becomes urgent and critical to minimize 

the number of victims which are often reported by mass media 

during the rainy season. Therefore, strengthening geospatial 

technology for disaster studies is paramount, especially for 

supporting disaster mitigation strategy, for managing 

vulnerable communities and for protecting critical 

environments.  

Various mass movement modeling techniques have been 

developed such as Machine Learning Model (Bui et al., 2020), 

Deep Learning Neural Network (Dao et al., 2020), Cellular 

Automata (Adamska-Szatko and Bała, 2010), Statistical 

approaches (He et al., 2019) Physical Simulation (Wibowo, 

2011; Wibowo, 2016, Ran et al., 2018; Weidner et al., 2019; 

Marin and Velásquez, 2020) and Vibration Simulation (Katz et 

Aharonov, 2006; Chen et al. 2020).  

Numerical model (raster) based on physical characteristics 

of materials is being developed as well such as DAN and DAN 

3D based on the application of quantum mechanics to estimate 

the average depth of material of mass movements (Hungr et 

McDougall, 2009). Another numerical model is Mass Mov 2D 

that uses raster data as a basis for calculating mass conservation 

and mometum of materials during the event (Beguería et al., 

2009). Many alternative models are still being developed for 

mass movement, such as Double layer-averaged two-phase 

flow model (Yu et al., 2019; Li et al., 2020; Shen et al., 2020), 

Smoothed-particle hydrodynamics (Lin et al., 2019), 

Unsupervised factor optimization (Sameen et al., 2020), DEM 

optimization (Ville et al., 2015; Sarma et al., 2020), Evaluation 

of raster resolution (Shirzadi et al., 2019; Wang et al., 2020), 

Spatial heterogeneity Model (Wang et al., 2020). 

However, the main obstacle still persists, i.e. the difficulty 

of obtaining data in the field during the event due to security 

reasons. Therefore the purpose of this study is focused on 

identifying landslide processes, as one types of mass 

movements, from point of view of raster-based model. This 

would be important in providing one alternative solution to 

reconstruct landslide process for supporting disaster mitigation 

strategy, managing vulnerable communities and protecting 

critical environments.  

2. Methods 

2.1 Measurement of topography and physical 

characteristics of landslide 

Rotational landslide in Malang Regency has been chosen as 

representative of mass movements.  Landslide geometry was 

measured from fixed observation point in front of landslide. We 

used laser rangefinder for measuring vertical and horizontal 
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distance (accuracy of 5 cm) and azimuth (accuracy of 1°) to 

produce point cloud with X, Y, Z coordinates. This allowed us 

to measure the geometry of the landslide in detail and to 

produce Digital Surface Model as well. 

Identification of soil physical properties was also carried 

out to determine the characteristics of landslide material. An 

outcrop of soil profile next to the landslide was investigated in 

order to have maximum similarity to the physical 

characteristics of landslide materials. Soil horizons and their 

boundaries were used to determine the position of slip surface. 

2.2 Dynamic raster-based model 

Data from topographic measurement and identification of 

physical characteristic of landslides werethen used as input for 

raster-based model. Mass Mov 2D algorithm was used by 

putting rheological parameters, viscosity, basal friction angle, 

internal friction, fluidization index and time. The output of the 

model was devoted to reconstruct the landslide process so that 

the mechanism of initiation, transportation and deposition of 

landslide materials could be identified. 

3. Results 

3.1 Topography and physical characteristics of the landslide 

The studied landslide was located in Kemiri Village, 

Malang Regency, Indonesia. The type of mass movement was 

classified rotational landslide with a length of 78 m and a width 

of 27 m (Figure 1 and Figure 2). Landslide geometry was 

measured using a laser rangefinder to produce 116 filtered X, 

Y, Z coordinates to eliminate improper coordinates other than 

Ground (classification value number 2 in the LiDAR data 

classification). These coordinates were combined into a simple 

point cloud to build the Digital Surface Model (DSM). Based 

on this DSM, the slope of the surrounding area was 36° (or 

72%) with a slightly convex form. 

Fig. 1. Map of study area. Local population have reclaimed this 

landslide scar and turned it back into agriculture land. There is no new 

landslides recently. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 2. Cross section of the landslide area showing topography before and after event. 
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Soil in the study area was developed from 

weatheredquaternaryvolcanic parent materials from Gendis 

Mountains formation (Qpg). The soil types was classified as 

Alfisols, with brown topsoil (10 YR 4/3). The subsoil part 

including the endopedon had a dark brown color (10 YR 3/3). 

The soil texture was dominated by clay with lessivage/clay 

eluviation from topsoil to subsoil. The soil tended to be moistin 

field capacity condition. At depth of more than 228 cm, 

weathered pumice deposits with a diameter of 10-20 cm 

existed. 

The characteristics of landslide materials were closely 

related to the type of soil at the study site. Bingham's viscous 

rheological law was suitable for Alfisols with clay texture. i.e. 

rigid at low pressure, but can flow as thick fluid at high 

pressure. The friction between the landslide materials and the 

slip surface became smaller when it liquefied and reached 

saturation point, because the predominant soil texture in the soil 

profile was clay. Its particle densities ranged from 2110 to 2280 

kg/m3. Dynamic viscosity was high enough for clay soils 

because of its resistance to external forces. However, the 

transformation from solid to liquid phase was rapid, especially 

in the contact area between the toe of the landslide and the slip 

surface. This was aggravated by the position of landslide of 

which the toe touched directly a creek. The characteristics of 

landslide materials are generally summarized in Table 1. 

Table 1. Characteristics of landslide material used as input for raster-

based model 

Parameter Value Unity 

Rheology model Bingham viscous - 

Density 2000 Kg.m-3 

Yield stress 70 Pa 

Dinamic viscosity 300 Pa.s 

Basal friction 12 ° 

Internal friction 14 ° 

Fluidization rate 10 m.s-1 

Time 100 s 

3.2 Calculation of pixel values for dynamic raster-based 

model of landslides 

Landslides were divided into pixels of 30 x 30 cm in two 

raster dataset: DSM before and after the event. Based on cut-

and-fill analysis on these two DSM, the thickness of landslide 

materials was measured. DSM after the event expressed the 

elevation of slip surface as well.  

The floating point values of each pixel represented the 

elevation of slip surface and the thickness of the landslide 

material. Determination of pixel value did not use the central 

point rule, but the largest share rule. It means the obtained pixel 

value is the most spatially dominant value within that pixel.  

Changes in pixel values during the model run indicated the 

dynamics of mass movements. Cohesive landslide material 

moveddownward the slope with constant changes in properties 

during mass movement, which was represented by the rate of 

fluidization. Landslide materials moved because of the 

difference in potential values between pixels, from high to low. 

In every timestep (s), each pixel was always compared to its 

neighbors which had topology connection based on the 

direction of mass movement. The direction of the Energy 

Gradient Line (EGL) affected the direction of mass movement 

that can be devided into X and Y axes (Figure 3). 

In general, movement of landslide materials went to the 

lower pixel. This movement wasaccompanied by the 

sedimentationof material along the movement. It allowed 

sedimentation of cohesive materialsto occur. This avoided 

anexcessive accumulation of landslide materials in one pixel 

(convergence). Weak stability of landslide material became the 

basis for performing repeated calculations (loops) until a stable 

condition is reached for every pixel. 

Fig. 3. Dynamics of spatial clasterization process of landslide material 

which produce spatial autocorrelation. 

This raster-based model showed the dynamics of the 

landslide movement which was characterized by progressive 

erosion. The movement of landslide material started from the 

toe of landslide which decreased the stability of the landslide 

material of the landslide body. Consequently, this triggered 

movement on landslide body and followed by landslide 

crown.The mass movement of the landslide material was 

remarkably rapid at the beginning of the landslide, and slowed 

down during the sedimentation phase (Figure 4). Sedimentation 

of landslide material was accumulated at the bottom of the slope 

and clogged the creek underneath. 

Fig. 4. Dynamic raster-based model of landslide materials  

4. Discussion 

The importance of Geo-Information Technology, affected 

to the fundamental needs of its development, both using 

technical approach and participatory approach (Wibowo and 

Nurani, 2019). This study shows that Geo-Information 

Technology, with its technical approach on spatial aspect, can 
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also be applied for mass movement studies. Raster-based model 

allows to  reconstruct mass movement in order to overcome 

common scientific issues, i.e. lack of direct observation during 

the real event due to security reasons.  

Rotational landslides are one type of the most frequent mass 

movements (Wibowo et al., 2014; Wibowo et al., 2015; Gob et 

al., 2016; Cassel et al., 2018; Samodra et al., 2018), especially 

in tropical region such as in Indonesia (Wibowo, 2010). Given 

that rotational landslides often occur on complex terrain for 

which MassMov2D algorithm has been designed (Beguería et 

al., 2009), we decided to use it to build raster-based model.  

Input data from point cloud that is acquired from laser 

measurement allows to build DSM and to measure the geometry 

of landslide. Laser measurement, both Laser Rangefinder and 

LiDAR, provides high-resolution topographic data and very 

helpful for fieldwork in a remote and dangerous area (Ville et 

al., 2015). Another input data is physical soil properties of the 

landslide material that is acquired from soil profile next to the 

landslide area. This is aimed to have maximum similarity to soil 

properties of the landslide material. Coupling between 

topographic data and physical soil properties of the landslide 

material is key parameter for dynamic raster-based model that 

we perform in this research. 

The process of this rotational landslide on clay dominant 

alfisols can be reconstructed and identified thanks to dynamic 

raster-based model. Pixel values indicating elevation of 

landslide materials change over time. It means that landslide 

materials move dynamically during the event. The change of 

pixel values in the initiation process is much faster than in 

sedimentation process, showing that the movement of this 

landslide was extremely fast at the beginning (7.35 m/s). It 

rapidly slowed down to 1.02 m/s when the materials started to 

be deposited at foot slope. However, this velocity increased to 

2.35 m/s at time step 11 s when the abundant  accumulation of 

this sedimented materials  started to flow downstream 

following the topography of creek. This velocity progressively 

slowed down until it reached stable condition at timestep  100 

s. This phenomena is very common for subaerial mass 

movements on earth surface (Wibowo et al., 2015; Weidner et 

al., 2019; Marin and Velásquez, 2020; Chen et al. 2020). 

The transfer mechanism of pixel value to neighbors follows 

the direction of EGL, indicating that landslide materials shift 

downward with continuous alternating process between erosion 

and sedimentation during the transport phase (Samodra et al., 

2018). Wet clay soils like alfisols tend to be sticky, so that this 

cohesive materials are easily sedimented, except if there is 

enough force erode it during the rapid movement of landslide. 

However, this alternance disappears when the movement 

weakens at the landslide toe (Yu et al., 2019; Li et al., 2020; 

Shen et al., 2020). Absence of transfer of pixel value at timestep 

100 s indicates that the dynamic raster-based model stops when 

sedimented landslide materials reach its stability condition at 

downslope.  

The problematic of this research on lack of direct 

observation during the real event due to security reasons has 

been resolved, given that the  raster-based model in this 

research is able to provide a detailed reconstruction and 

identification of mass movement process.  

5. Conclusion 

Dynamic raster-based modelfor mass movement using the 

MassMov2D algorithm allows to spatially reconstruct landslide 

in Malang Regency, Indonesia. This landslide reconstruction 

helps the identification of initiation, transport and deposition 

process of material of landslide from spatial point of view. This 

landslide process is depicted on the change in value of each 

pixel. The relationship between pixel and its neighbors is 

determined by the topology of the energy gradient line 

direction. It allowsto transfer values between each pixel. The 

dynamics of a landslide movement characterized by progressive 

erosion. The movement of landslide material started from the 

toeof landslide which decreased the stability of the landslide 

material of the landslide body. The output of this research 

would provide one alternative solution to reconstruct landslide 

process, even without direct observation during the real event 

due to security reasons. This kind of landslide reconstruction 

would be important for supporting disaster mitigation strategy, 

for managing vulnerable communities and for protecting 

critical environments.  
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