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1 Introduction

In the present work we study a class of Calderón-Zygmund operators on weighted Besov-
Triebel-Lizorkin spaces .
Next, we recall some needed results.

We say that w is a weight if w is an a.e. positive locally integrable function on Rn. Let w
to be a weight and 0 < p < ∞, we say that f ∈ Lp(w) if and only if

|| f ||p,w = (

∫
Rn

| f (x)|pw(x)dx

 1
p

< ∞.

A nonnegative locally integrable function w is said to be in the Muckenhoupt classes Ap, 1 <

p < ∞ if there exists a constant Cp > 0 such that for all cube Q,

1
|Q|

∫
Q

wdy

 1
|Q|

∫
Q

w1−p′dy

p−1

≤ Cp
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when 1 < p < ∞, 1
p +

1
p′ = 1, well for p = 1,

1
|Q|

∫
Q

wdy ≤ C1w(x),

for a.e. x ∈ Q. The A∞- Muckenhoupt class is defined by A∞ = ∪p≥1Ap. For more details
concerning the Muckunhoupt class we refer to [14, 31, 37].

Let S(Rn) to be the space of all Schwartz functions on Rn with the classical topology
generated by the family of semi-norms

||ν||k,N = sup
x∈Rn

sup
|β|≤N

(1 + |x|)k |∂βν(x)| k, N ∈N0, ν ∈ S(Rn).

The topological dual space, S ′(Rn) of S(Rn) is the set of all continuous linear functional
S(Rn) −→ C endowed with the weak ?-topology. We denote by S∞(Rn), the topological
subspace of functions in S(Rn) having all vanishing moments :

S∞(R
n) =

{
ν ∈ S(Rn) :

∫
Rn

xβν(x)dx = 0, ∀β ∈Nn
}

.

S ′∞(Rn) denotes the topological dual space of S∞(Rn) , namely, the set of all continuous linear
functional on S ′∞(Rn). The space S ′∞(Rn) is also endowed with the weak ?-topology. It is well
known that S ′∞(Rn) = S ′(Rn)/P(Rn) as topological spaces, where P(Rn) denotes the set of
all polynomials on Rn; see, for example, [36, Proposition 8.1]. The Fourier transform, Fν = ν̂,
of Schwartz function ν is defined by

ν̂(ξ) =
∫

Rn
e−2πiξ.xν(x)dy

and the convolution of two function ν, µ ∈ S(Rn) is defined by

ν ? µ(x) =
∫

Rn
ν(x− y)µ(y)dy

and still belongs to S(Rn). The convolution operator can be extended to S(Rn) × S ′(Rn)

via ν ? f (x) = 〈 f , µ(x− .)〉. It makes sense pointwise and is a C∞ function on Rn of at most
polynomial growth.

To simplifying notation, we write often ν f = ν ? f . In some other situations, to avoid
confusion, we keep the notation ν ? f . Throughout the paper, for all t > 0 and x ∈ Rn, we put
νt(x) = t−nν( x

t ).

Definition 1.1. Let ν in the Schwartz space with supp ν̂ contained in an annulus about the origin and

∑
j∈Z

ν̂(2−jξ) = 1 f or all ξ , 0.

Let w ∈ A∞, 0 < p, q ≤ ∞ and γ ∈ R, the homogeneous Triebel-Lizorkin space Ḟγ,q
p,w is the set of all

distribution f in S ′∞(Rn) such that:

|| f ||Ḟγ,q
p,w

=

∣∣∣∣∣∣
∣∣∣∣∣∣
(

∑
j∈Z

2jγq|ν2−j f |q
) 1

q
∣∣∣∣∣∣
∣∣∣∣∣∣

p,w

< ∞; 0 < p, q < ∞
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and

|| f ||Ḟγ,q
∞,w

=sup
Q

{ 1
w(Q)

∫
Q

∞

∑
j=−log2l(Q)

2jγq|ν2−j f |qw(x)dx
} 1

q
< ∞; 0 < q ≤ ∞

with the interpretation that when q = ∞,

|| f ||Ḟγ,∞
∞,w

=sup
Q

sup
j≥−log2l(Q)

1
w(Q)

∫
Q

2jγ|ν2−j f |w(x)dx < ∞.

The homogeneous Besov-Lipshitz space Ḃγ,q
p is the set of all distribution f in S ′∞(Rn) such that:

|| f ||Ḃγ,q
p,w

=

(
∑
j∈Z

2jγq||ν2−j f ||qp,w

) 1
q

< ∞; 0 < p, q < ∞.

The supremum is taken over all dyadic cubes Q and l(Q)) denotes the length of sides of the cube Q.
Let µ be a Schwartz function given by

µ̂(ξ) + ∑
j≥1

ν̂(2jξ) = 1, ∀ξ ∈ Rn.

Definition 1.2. The nonhomogeneous Triebel-Lizorkin space Fγ,q
p is the set of all distribution f in

S ′∞(Rn) such that:

|| f ||Fγ,q
p,w

= ||µ ? f ||p,w +
∣∣∣∣∣∣ (∑

j≥1
2jγq|ν2−j f |q

) 1
q ∣∣∣∣∣∣

p,w
< ∞.

The nonhomogeneous Besov-Lipshitz space Bγ,q
p is the set of all distribution f in S ′∞(Rn) such that:

|| f ||Bγ,q
p,w

= ||µ ? f ||p,w +

(
∑
j≥1

2jγq||ν2−j f ||qp,w

) 1
q

< ∞; 0 < p, q < ∞.

With standard modifications when p = ∞ or q = ∞.
It is well known that the Besov-Lipshitz space and Triebel-Lizorkin spaces are independent of the choices
of ν, see, for example [3–5, 11–13, 40].

It has long been known that many classical smoothness spaces are covered by the Besov
and Triebel-Lizorkin spaces. We recall some examples,

1. Ḟ0,2
p,w = Hp,w, 0 < p < ∞,

2. F0,2
p,w = hp,w, 0 < p < ∞,,

where Hp,w denotes the weighted Hardy spaces of f ∈ S ′ for which

|| f ||Hp,w = ||sup
t>0

µt ? f ||p,w < ∞,

and hp,w is the local weighted Hardy space, the space of f ∈ S ′ for which

|| f ||hp,w = || sup
0<t<1

µt ? f ||p,w < ∞,

where µ is a fixed function in S with
∫

Rn µ(x)dx , 0. By the fundamental work of C.
Feferman and E. Stein [10] adapted to the weighted case, Hp,w or hp,w does not depend
on the choices of µ in its definition. In particular

Ḟ0,2
p,w = F0,2

p,w = Lp,w, 1 < p < ∞.
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3. Ḟγ,2
p,w = Hγ

p,w, 1 < p < ∞, where Hγ
p,w denotes the weighted Bessel potential space defined

by
|| f ||Hγ

p,w
= ||F−1(1 + |ξ|2)γ/2F f ||Lp,w .

In particular, when the exponent is a natural number, say γ = N ∈N, then the weighted
Bessel potential space can be identified with the classical Sobolev space

WN
p,w = { f ∈ Lp,w : || ∑

|σ|≤N
∂σ f ||Lp,w < ∞}, 1 < p < ∞.

Where all identities have to be understood in the sense of equivalent quasi-norms.

In the present paper, the following results will be used. The first one is the continuous charac-
terisation of the Treibel-Lizorkin spaces, the second is the Calderón reproducing formula and
the third one is the characterization of the weighted Hardy inequality.

Theorem 1.1. [4, 18]. Let γ ∈ R, 0 < p, q < ∞, 0 < δ < min(p, q) and w ∈ Ap/δ. Assume
ν ∈ S∞ satisfying the Tauberian condition, i.e.,for each ξ , 0 there exists a t > 0 s.t ν̂(tξ) , 0. Then∣∣∣∣∣

∣∣∣∣∣
(∫ ∞

0
t−γq(ν?t f )q dt

t

) 1
q
∣∣∣∣∣
∣∣∣∣∣

p,w

≈ || f ||Ḟγ,q
p,w
≈‖ g?λ,q f ‖p,w

for all f ∈ Ḟγ,q
p,w. where ν?t f (x) is the Peetre maximal function and g?λ,γ,q is the Littlewood-Paley g

function defined respectively by

ν?t f (x) = sup
y∈Rn

|νt ? f (y)|
(1 + |x−y|

t )λ

g?λ,γ,q f (x) =
( ∫ ∞

0

∫
Rn

s−γq|νs f (y)|q(1 + |x− y|
s

)−λq dyds
sn+1

)1/q

for some large λ

and
|| f ||Ḟγ,q

∞,w
'
∣∣∣∣∣∣Nγ,q f

∣∣∣∣∣∣
∞,w
'
∣∣∣∣∣∣N?

γ,q f
∣∣∣∣∣∣

∞,w
, 0 < q < ∞,

where

Nγ,q f (x) =sup
R>0

(
1

w (B(x, R))

∫
B(x,R)

∫ R

0
t−γq|νt f (y)|qw(y)

dtdy
t

) 1
q

N?
γ,q f (x) =sup

R>0

(
1

w (B(x, R))

∫
B(x,R)

∫ R

0
t−γq(ν?t f (y))qw(y)

dtdy
t

) 1
q

.

When γ = 0 we put g?λ,0,q = g?λ,q.

Remark 1.1. Note also that

1. if Iα denotes the Riesz potential defined by Îα f (ξ) = |ξ|−α f̂ (ξ) then

||Iα f ||Ḟα+γ,q
p,w
≈ || f ||Ḟγ,q

p,w
,
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2. if Rj, j = 1, . . . , n denotes the Riesz transform defined by R̂j f (ξ) = iξ j|ξ|−1 f̂ (ξ) then

||Rj f ||Ḟγ,q
p,w
≈ || f ||Ḟγ,q

p,w
,

and

3. if N is a positive integer then f ∈ ḞN,q
p,w if and only if ∂σ f ∈ Ḟ0,q

p,w for all σ such that |σ| = N and

|| f ||ḞN,q
p,w
' ∑
|σ|=N

||∂σ f ||Ḟ0,q
p,w

.

In fact, let ν as in Theorem 1.1. Then Iαν behaves as ν, νt(Iα f ) = tα(Iαν)t f and Iα I−α = id .
So we have the first assertion.
The second assertion can obtained from the identity νt(Rj f ) = (Rjν)t f . And finally, the
third assertion can obtained by iteration from the identity ∂j = −Rj ◦ I1. In fact, we have
∂σ = (−1)|σ|Rσ ◦ I−|σ| with R = (R1, . . . , Rn).

Theorem 1.2. [4]. Let γ ∈ R, 0 < p < ∞, 0 < q ≤ ∞, a > 0, 0 < δ < min(p, q) and w ∈ Ap/δ.
Assume µ, ν ∈ S satisfying the Tauberian condition , Φ ∈ S and that ϕ satisfies the strong Tauberian
condition ϕ̂(0) , 0, then there exists a positive constant b for which

||Φ? f ||p,w +
∣∣∣∣∣∣ (∫ a

0
t−γq(µ?

t f )q dt
t

) 1
q ∣∣∣∣∣∣

p,w
≤ || f ||Fγ,q

p,w

≤ ||ϕ? f ||p,w +
∣∣∣∣∣∣ (∫ b

0
t−γq(ν?t f )q dt

t

) 1
q ∣∣∣∣∣∣

p,w

for all f ∈ Fγ,q
p,w and for large λ.

Lemma 1.1. [6, 7, 20] (Calderón reproducing formula).
Let ν ∈ S satisfying the Tauberian condition and having all vanishing moments, then there exists ζ ∈ S
with supp ζ̂ contained in an annulus about the origin such that∫ ∞

0
ν̂(sξ)ζ̂(sξ)

ds
s

= 1 f or all ξ , 0.

Lemma 1.2. [4] (Sub-mean value property).
Let µ ∈ S satisfying the Tauberian condition. Assume that µ̂ is supported in an annulus about the
origin. Then for every r > 0 and N > 0, there exists C > 0 for wich

|µs f (x)|r ≤ C
∫ ∞

0

∫
Rn

|µτ f (y)|r(1 + |x− y|
τ

)−Nr(min(
τ

s
,

s
τ
))Nr dydτ

τn+1

for all g ∈ S
′
, x ∈ Rn and s > 0.

The next lemma gives a characterization of the weighted Hardy inequality(∫ b

a

(∫ s

a
f (t)dt

)q

u(s)ds
)1/q

≤ C
(∫ a

b
f p(s)v(s)

)1/p

(1.1)

where −∞ ≤ a < b ≤ ∞, 1 < p, q < ∞ and u; v are measurable functions and positive a.e. in
(a, b).
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Lemma 1.3. 1. If 1 ≤ p ≤ q < ∞; then the inequality 1.1 holds for all measurable functions
f (x) ≥ 0 on (a, b) if and only if

sup
a<s<b

(∫ b

s
u(t)dt

)1/q (∫ s

a
v1−p′(t)dt

)1/p′

< ∞.

2. If 1 < p < q < ∞; then the inequality 1.1 holds for all measurable functions f (x) ≥ 0 on (a, b)
if and only if ∫ b

a

(∫ b

s
u(t)dt

)ε/q (∫ s

a
v1−p′(t)dt

)ε/q′

v1−p′(s)ds < ∞,

where 1/ε = 1/q− 1/p.

There is extensive literature devoted to the different kinds of the Hardy inequalities, see
for instance [?, 2, 19, 21–27].

2 Statements of results

Let z 7−→ K(x, z) belongs to ∈ C∞ (Rn\{0}) for a.e.x ∈ Rn such that for some 0 ≤ α ≤ n

K(x, λz) = λ−n−αK(x, z), ∀λ > 0, a.e x, z ∈ Rn, z

and satisfies for some R > 0 sufficiently large,

sup
x∈Rn

sup
y∈Sn−1

|∂σ
x∂

β
y K(x, y)| = M < +∞,

for all multi-indices β s.t |β|+ |σ| < R. We also assume for α = 0 that∫
Sn−1

K(x, z)dσz = 0.

We denote by TF the operator, initially defined on S(Rn), by

T f (x) =
∫

Rn
K(x, x− y) f (y)dy,

(with the integral taken in the principal value sense when α = 0).
In this work, we shall prove the following results.

Theorem 2.1. Let γ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and w ∈ A∞ then

||T f ||Fα+γ,q
p,w
≤ || f ||Fγ,q

p,w
.

If in addition K is a convolution kernel, then

||T f ||Ḟα+γ,q
p,w
≤ C|| f ||Ḟγ,q

p,w
.

Theorem 2.2. Given β ∈ R, 0 < p, d < ∞, 0 < q, r ≤ ∞ and R is large enough. Let γ ∈ R with
0 < α− γ + β and w ∈ A∞ and let p? be such that

1
p?

=
1
p
− α− γ + β

d
.
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If w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x, then

||T f ||Fγ,q
p? ,w
≤ C|| f ||Fβ,r

p,w
. (2.1)

If in addition K is a convolution kernel and w(B(x, t)) ≥ Ctd for some d > 0 and all x, then

||T f ||Ḟγ,q
p? ,w
≤ C|| f ||Ḟβ,r

p,w
. (2.2)

Theorem 2.3. Given any reals α, γ s.t 0 < α− γ, 0 < p < ∞, 0 < q, r ≤ ∞, and d > 0. Assume
w ∈ A∞ and let 0 < p? ≤ ∞ determined by

1
p?

=
1
p
− α− γ

d
.

If w(B(x, t)) ≥ Ctd for all 0 < t < ∞ and all x, then

Ḟα,q
p,w ⊆

⋂
q>0

Ḟγ,r
p?,w,

and if w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x, then

Fα,q
p,w ⊆

⋂
q>0

Fγ,r
p?,w

with the continuous imbedding Ḟα,q
p,w ↪→ Ḟγ,r

p?,w, Fα,q
p,w ↪→ Fγ,r

p?,w for each 0 < r ≤ ∞.

Remark 2.1. We note that Theorem 2.3 is a generalization of Theorem 2.6 in [3] and includes the
particular case p? = ∞ for which we do not know if it is known yet in the weight case. In the unweight
and homogenous case, Theorem 2.3 is proved by Young-Kum Cho [42].

We note also that some similar results can be found in [15–17].
The proof of our results is based essentially on the expansion of the kernel K into spherical

harmonics. A good reference is [32].
Denote by Πm the set of all real polynomials in x ∈ Rn, n ≥ 2 which are homogeneous

of degree m. It is well known that Πm is a finite dimensional vector space of dimension
gm = Cn−1

m+n−1.
Solid harmonics of degree m are polynomials P ∈ Πm which satisfy ∆P = 0.
The set of all solid harmonics of degree m, denoted by Sm is a subspace of Πm of dimension

dm = gm − gm−2 = Cn−1
m+n−1 − Cn−1

m+n−3.

The restriction of solid harmonics to unit sphere is called spherical harmonics of degree m
and we denote by Qm the set of all spherical harmonics of degree m.

The vector space Qm can be seen as a linear subspace of the Hilbert space L2(Sn−1), with
inner product

〈 f , g〉 =
∫

Sn−1

f gdσ.

With respect this inner product, we can construct in each Qm an orthonormal basis Ykm, k =

1, . . . , d(m). Moreover, we have

Theorem 2.4. The collection {Ykm(z)}, k ∈ {1, . . . , dm}, m ∈ N is a complete orthonormal system
of spherical harmonics on L2 (Sn−1) .
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On the other hand, if we denote by L the operator defined by L f = |x|2∆ f then

Lemma 2.1. [32]

a) dm ≤ c(n)mn−2

b) |
(

∂
∂x

)α [
|z|mYkm(

z
|z| )
]
| ≤ C(α, n)m(n−2)/2+|α||z|m−|α|

c) LrYkm = (−m)r(m + n− 2)rYkm, ∀r ∈N,

d) if f , g ∈ C2r (Rn\{0}) and are homogeneous of degree zero, then∫
Sn−1

f Lrgdσ =
∫

Sn−1

f Lrgdσ.

Denote by z′ = z
|z| . Then we can write [32] Ch III, IV)

K(x, z) = |z|−n+αK(x,
z
|z| ) =

+∞

∑
m=1

dm

∑
k=1

akm(x)
Ykm(z′)
|z|n−m−α

(2.3)

where
akm(x) =

∫
Sn−1

K(x, z)Ykm(z)dσz.

Lemma 2.2. Let R > 0 and assume

sup
x∈Rn

sup
y∈Sn−1

|∂σ
x∂

β
y K(x, y)| = M < +∞

for all multi-indices β, σ s.t |β|+ |σ| < r. Then

||∂σakm||L∞ ≤ C(n)Mrm−2r.

Proof. It follows from Lemma 2.1

akm(x) = (−m)−r(m + n− 2)−r
∫

Sn−1

K(x, z)LrYkmdσz

= (−m)−r(m + n− 2)−r
∫

Sn−1

LrK(x, z)Ykmdσz.

Using Hölder’s inequality and the hypothesis of the lemma we get

||∂σakm||L∞ ≤ C(n)Mrm−2r

 ∫
Sn−1

|Ykm|2dσz

 1
2

≤ C(n)Mrm−2r.

�
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Lemma 2.3. ( [38] p.73) Let Kkmα(x) = γ−1
m,α|x|−n+m+αYkm(x) with

γm,α = imπn/2−α
Γ
(

m+α
2

)
Γ
(

m+n−α
2

)
and define

bkmα(z) = K̂kmα(z),

then
bkmα(z) = |z|−m−αYkm(z)

provided either 0 < α < n and j ∈N0, or α ∈ {0, n} and j ∈N0.

Lemma 2.4. Let δ > 0. Then, on 1/2δ ≤ |z| ≤ 2δ we have

|(∂σbkmα)(z)| ≤ C(n)δ−α−|σ|mn/2−1+|σ|

∀σ = (σ1, ..., σn) ∈Nn.

Proof. Define C ≡ |ξi − zi| = εδ, i = 1, ..., n with ε > 0 sufficiently small. Since |z|−m−α is real
analytic on Rn \ {0} then the contour integral representation of |z|−m−α along C implies

|(∂σ|z|−m−α)(z)| ≤ C(n)σ! δ−|σ|max
ξ∈C
|ξ|−m−α ≤ C(n)σ! δ−m−α−|σ|.

Using Leibnitz’s rule to obtain,

|(∂σbkmα)(z)| = | ∑
γ≤σ

Cγ
σ (∂

γ|z|−m−α)(z)(∂σ−γYkm)(z)|

≤ C ∑
γ≤σ

Cγ
σ γ! δ−m−α−|γ|mn/2−1+|σ−γ||z|m−|σ−γ|

≤ Cδ−α−|σ|mn/2−1+|σ| ∑
γ≤σ

Cγ
σ γ! m−γ

≤ Cδ−α−|σ|mn/2−1+|σ|.

�

Lemma 2.5. Let ν a be a Schwartz function and assume that ν̂ is supported in 1/2 ≤ |ξ| ≤ 2. Then,
for every r > 0 and λ > 0 we have

ν?s f (x) ≤ Cg?λ,r f (x)

for all f ∈ S
′
, x ∈ Rn and s > 0.

Proof. Let x, y, z ∈ Rn then if s > τ > 0 we have

(1 + |y− z|/τ)−λr ≤ (1 + |y− z|/s)−λr

≤ (1 + |x− z|/s)λr(1 + |y− x|/s)−λr

≤ sλr(1 + |x− z|/s)λr(s + |y− x|)−λr

≤ sλr(1 + |x− z|/s)λr(τ + |y− x|)−λr

≤ (
s
τ
)λr(1 + |x− z|/s)λr(1 + |y− x|/τ)−λr



10 A Loulit

if τ > s > 0 then we have

(1 + |y− z|/τ)−λr ≤ (1 + |x− z|/τ)λr(1 + |y− x|/τ)−λr

≤ (1 + |x− z|/s)λr(1 + |y− x|/τ)−λr

≤ (
τ

s
)λr(1 + |x− z|/s)λr(1 + |y− x|/τ)−λr.

Hence
(1 + |y− z|/τ)−λr ≤ max(

s
τ

,
τ

s
)λr(1 + |x− z|/s)λr(1 + |y− x|/τ)−λr.

The last estimate and Lemma 1.2 lead to

|νs f (z)|r ≤ C
∫ ∞

0

∫
Rn

|ντ f (y)|r(1 + |y− z|/τ)−λr(min(τ/s, s/τ)Nr dydτ

τn+1

≤ C(1 + |x− z|/s)λr
∫ ∞

0

×
∫

Rn

|ντ f (y)|r(1 + |y− x|/τ)−λr(max(
s
τ

,
τ

s
))λr(min(

s
τ

,
τ

s
))λr dydτ

τn+1

≤ C(1 + |x− z|/s)λr
∫ ∞

0

∫
Rn

|ντ f (y)|r(1 + |y− x|/τ)−λr dydτ

τn+1

≤ C(1 + |x− z|/s)λrg?λ,r f (x).

�

Lemma 2.6. Let ν and µ be as in Lemma 2.5. For a tempered distribution f , set Tkmα f (x) = Kkmα ?

f (x). Given α ∈ R and 2 ≤ r < ∞.

1) If Φ = µ ? ν, then for all x, y ∈ Rn,

|Φt(Tkmα f )(y)| ≤ Ctαmn/2−1+N
(

1 +
|y− x

t

)N

µ?
t f (x) (2.4)

2) if |x− y| < t, then
|νt(Tkmα f )(y)| ≤ Ctαmn/2−1+N g?N,r f (x) (2.5)

3) if |x− y| < t, then
|νt(Tkmα f )(y)| ≤ Ctαmn/2−1+N Nλ f (x) (2.6)

with

Nλ f (x) = sup
t>0,y∈Rn

|µt ? f (y)|
(1 + |y−x|

t )λ
.

Corollary 2.1. Let K(x, y) as at the beginning of this section satisfying 2 with σ = 0 and assume
in addition that K is a convolution kernel,i.e, K(x, y) = K(x− y). For a tempered distribution f , set
T f (x) = K ? f (x).
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1) If Φ = µ ? ν, then for all x, y ∈ Rn,

|Φt(T f )(y)| ≤ Ctα

(
1 +
|y− x

t

)N

µ?
t f (x) (2.7)

2) if |x− y| < t, then
|νt(T f )(y)| ≤ Ctαg?N,r f (x) (2.8)

3) if |x− y| < t, then
|νt(T f )(y)| ≤ CtαNλ f (x). (2.9)

Here ν, µ, Φ, α and r are as in Lemma 2.6.

Proof. We prove only the first estimate of Corollary 2.1. The proof of the rest of estimates is
similar.

Since T is a convolution operator, we have |Φt(T f )(y)| = |T(Φt ? f )(y)|, then using the
expansion 2.3 and Lemma 2.6 to obtain

|Φt(T f )(y)| ≤
+∞

∑
m=1

dm

∑
k=1
|γm,αakm(y)||Φt(Tkm f )(y)|

≤ tα

(
1 +
|y− x

t

)N

µ?
t f (x)

+∞

∑
m=1

dm

∑
k=1
|γm,αakm(y)|mn/2−1+N .

Using the estimates in Lemma 2.2, Lemma 2.1 together with the estimate γm,α ≤ C(α, n)mα−n/2

to obtain

|Φt(T f )(y)| ≤ tα

(
1 +
|y− x

t

)N

µ?
t f (x)

+∞

∑
m=1

m−2r+n−2+α−n/2+n/2−1+N

≤ tα

(
1 +
|y− x

t

)N

µ?
t f (x)

+∞

∑
m=1

m−2r+n+α+N−3

≤ tα

(
1 +
|y− x

t

)N

µ?
t f (x)

if we choose r large so that −2r + n + α + N − 3 < 0.
�

Theorem 2.5. Let γ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, 0 < δ < min(p, q) and w ∈ Ap/δ if N is large
enough then

||Tkmα f ||Ḟα+γ,q
p,w
≤ Cmn/2−1+N || f ||Ḟγ,q

p,w

and
||Tkmα f ||Fα+γ,q

p,w
≤ Cmn/2−1+N || f ||Fγ,q

p,w
.

Proof. The first inequality of Theorem 2.5 is an immediate consequence of Theorem 1.1, Lemma
2.6 and the inequality 2.4. The second inequality is also an immediate consequence of Theo-
rem 1.2 and the inequality 2.4. �

As consequence of Theorem 2.5 is the well known lifting property of the Riesz potential
Iα f and the Bessel potential Jα f defined by Ĵα f (ξ) = (1 + |ξ|2)−α/2 f̂ (ξ).
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Proposition 2.1. Lifting property. Let γ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞, 0 < δ < min(p, q) and
w ∈ Ap/δ then

||Iα f ||Ḟα+γ,q
p,w
≈ || f ||Ḟγ,q

p,w

and

||Jα f ||Fα+γ,q
p,w
≈ || f ||Fγ,q

p,w
.

Theorem 2.6. Let γ ∈ R, 0 < p < ∞, 0 < q, r ≤ ∞, N is large enough and w ∈ A∞. If
w(B(x, t)) ≥ Ctd for all t > 0 and all x, then

||Tkmα f ||Ḟγ,q
p? ,w
≤ Cmn/2−1+N || f ||Ḟ0,r

p,w
(2.10)

and if w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x, then

||Tkmα f ||Fγ,q
p? ,w
≤ Cmn/2−1+N || f ||F0,r

p,w
(2.11)

with p? is given by
1
p?

=
1
p
− α− γ

d
. (2.12)

Proof. First we assume 0 < q, r < ∞. We will consider two cases
Case 1. 0 < α− γ < d

p .
From Lemma 2.6 if x, y ∈ Rn, t > 0 s.t |x− y| < t,

|νt(Tkmα f )(y)| ≤ Ctαmn/2−1+N g?N,r f (x). (2.13)

Fix y, rise the last inequality to the pth power and integrate over the ball B(y, t) with respect
w(x)dx to obtain

|νt(Tkmα f )(y)| ≤ Ctαmn/2−1+N 1

[w (B(y, t))]1/p ||g
?
N,r f ||p,w

≤ Ctα− d
p mn/2−1+N || f ||Ḟ0,r

p,w

since w(B(x, t)) ≥ Ctd and ||g?N,r f ||p,w ' || f ||Ḟ0,r
p,w

by Theorem 1.1. It follows that

|νt(Tkmα f )(y)| ≤ Cmn/2−1+Nmin
(

tαg?N,r f (y), tα− d
p || f ||Ḟ0,r

p,w

)
(2.14)

for all y ∈ Rn and t > 0. Let δ > 0 to be choose later and using the estimate 2.14 to get(∫ ∞

0
t−γq|νt(Tkmα f )(y)|q dt

t

)1/q

≤ Cmn/2−1+N
(∫ δ

0
t(α−γ)q (g?N,r f (y)

)q dt
t
+
∫ ∞

δ
t(α−γ− d

p )q
(
|| f ||Ḟ0,r

p,w

)q dt
t

)1/q

≤ Cmn/2−1+N
(

δ(α−γ)q (g?N,r f (y)
)q

+ δ
(α−γ− d

p )q
(
|| f ||Ḟ0,r

p,w

)q)1/q

since 0 < α− γ < d
p .

Choose δ > 0 so that
δα−γg?N,r f (y) = δ

α−γ− d
p || f ||Ḟ0,r

p,w
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to obtain (∫ ∞

0
t−γq|νt(Tkmα f )(y)|q dt

t

)1/q

≤ Cmn/2−1+N (g?N,r f (y)
) p

p?

(
|| f ||Ḟ0,r

p,w

)1− p
p? ,

hence, by Theorem 1.1 we have

||Tkmα f ||Ḟγ,q
p? ,w
'
(∫

Rn

(∫ ∞

0
t−γq|νt(Tkmα f )(y)|q dt

t

)p?/q

w(y)dy

)1/p?

≤ Cmn/2−1+N
(∫

Rn

(
g?N,r f (y)

)p w(y)dy
) 1

p? (
|| f ||Ḟ0,r

p,w

)1− p
p?

' mn/2−1+N || f ||Ḟ0,r
p,w

.

Case 2. α− γ = d
p .

The estimate 2.13 shows that for |x− y| < δ,

w(x)
(∫ δ

0
t−γq|νt(Tkmα f )(y)|q dt

t

)p/q

≤ Cm(n/2−1+N)pδ(α−γ)p (g?N,r f (x)
)p w(x).

Integrating over the ball B(y, δ) with respect x to get(∫ δ

0
t−γq|νt(Tkmα f )(y)|q dt

t

)1/q

≤ Cmn/2−1+N 1

[w (B(y, t))]1/p δα−γ|| f ||Ḟ0,r
p,w

≤ Cmn/2−1+Nδ
α−γ− d

p || f ||Ḟ0,r
p,w

= Cmn/2−1+N || f ||Ḟ0,r
p,w

.

It follows that for all δ > 0 and all z ∈ Rn,(
1

w (B(z, δ))

∫
B(z,δ)

∫ δ

0
t−γq|νt f (y)|qw(y)

dtdy
t

) 1
q

≤ Cmn/2−1+N || f ||Ḟ0,r
p,w

.

Theorem 1.1 and the last estimate lead to

||Tkmα f ||Ḟγ,q
∞,w
≤ Cmn/2−1+N || f ||Ḟ0,r

p,w
.

Now suppose r = ∞ and 0 < q ≤ ∞. Then, using 2.6 and arguing as before to get

||Tkmα f ||Ḟγ,q
p? ,w
≤ Cmn/2−1+N ||Nλ f ||p,w ' mn/2−1+N || f ||Ḟ0,∞

p,w
,

whenever 0 < α− γ < d
p and

||Tkmα f ||Ḟγ,q
∞,w
≤ Cmn/2−1+N || f ||Ḟ0,∞

p,w

whenever α− γ = d
p .

To prove the second imbedding of Theorem 2.6, we note that the inequality 2.4 implies, for all
x, y ∈ Rn,

|Φ?(Tkmα f )(y)| ≤ Cmn/2−1+Nµ? f (x).

Fix y , rise the last inequality to the pth power and integrate over the ball B(y, 1) with respect
w(x)dx and using 1.2 to obtain

|Φ?(Tkmα f )(y)| ≤ Cmn/2−1+N || f ||F0,r
p,w

.
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Put Cm = Cmn/2−1+N and A = Cm|| f ||F0,r
p,w

, then for any 0 < p < ∞ we have

∫
Rn
|Φ?(Tkmα f )(y)|p?w(y) =

∫ A

0
τp?−1 w{Φ?Tkmα f )(y) > τ}dτ

≤
∫ A

0
τp?−1 w{µ? f )(y) > C−1

m τ}dτ

≤ Cp?
m

∫ C−1
m A

0
τp?−1 w{µ? f )(y) > τ}dτ.

Let 0 < ε < p/r0, where r0 = in f {s : w ∈ As}, so that in particular, w ∈ Ap/ε. Then we have

w{µ? f )(y) > τ} ≤ w{M(µ? f )ε)(y) > τε} ≤ τ−p
∫

Rn
(µ? f )p(y)w(y)dy

≤ || f ||p
F0,r

p,w
.

It follows, ∫
Rn
|Φ?(Tkmα f )(y)|p?w(y) ≤ Cp?

m || f ||
p
F0,r

p,w

∫ C−1
m A

0
τp?−p−1 dτ

≤ Cp?
m || f ||

p
F0,r

p,w
(C−1

m A)p?−p ' Cp?
m || f ||

p?
F0,r

p,w
. (2.15)

On the other hand by [39, Theorem 1, Chapter V] we have for µ, ν, ψ ∈ S such that µ̂(0) , 0,
for any 0 < δ < ∞ , N > 0 large enough and x, z ∈ Rn, there exists C = C(µ, ν, ψ, r, n) such
that

|ψt f (x)| ≤ C

∫ t

0

∫
Rn

|Φs f )(y)|δ(1 + |x− y|
s

)−Nδ(s/t)Nδ dyds
sn+1

1/δ

. (2.16)

Using 2.4 and 2.16 to get for λ > and N > 0 large enough,

|C−1
m ψt(Tkmα f )(x)|δ ≤

∫ t

0

∫
Rn

|Φs(Tkmα f )(y)|δ
(

1 +
|x− y|

s

)−Nδ

(s/t)Nδ dyds
sn+1

≤
∫ t

0

∫
Rn

sδα|µ?
s f (x)|δ

(
1 +
|x− y|

s

)−Nδ+λδ

(s/t)Nδ dyds
sn+1

≤
∫ t

0

∫
Rn

tδγ(s/t)δγsδα−δγ|µ?
s f (x)|δ

×
(

1 +
|z− y|

s

)−Nδ+λδ (
1 +
|x− z|

s

)Nδ−λδ

(s/t)Nδ dyds
sn+1

≤ tδγ

(
1 +
|z− x|

t

)−Nδ+λδ

×
∫ t

0

∫
Rn

sδα−δγ|µ?
s f (x)|δ

(
1 +
|z− y|

s

)−Nδ+λδ

(s/t)λδ

(
1 +
|x− z|

s

)Nδ−λδ dyds
sn+1

≤ tδγ

(
1 +
|x− z|

t

)Nδ−λδ ∫ t

0

∫
Rn

sδ(α−β)|µ?
s f (x)|δ

(
1 +
|z− y|

s

)−Nδ+λδ

(s/t)λδ dyds
sn+1

≤ tδγ

(
1 +
|x− z|

t

)Nδ−λδ ∫ t

0
sδ(α−γ)|µ?

s f (x)|δ(s/t)λδ ds
s

.
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We conclude that for all t > 0

|ψ?
t (Tkmα f )(x)| ≤ Cmtγ

(∫ t

0
sδ(α−γ)|µ?

s f (x)|δ(s/t)λδ ds
s

)1/δ

,

hence∫ 1

0
t−γq|ψ?

t (Tkmα f )(x)|q dt
t
≤ Cq

m

∫ 1

0
t−λq−1

(∫ t

0
sδ(α−γ)|µ?

s f (x)|δ(s/t)λδ ds
s

)q/δ

dt. (2.17)

We will now consider two cases to finish the proof.

Case 1. Assume 0 < r ≤ q < ∞ and fix 0 ≤ δ ≤ r. Put u(t) = ta, v(t) = tb with a = −λq− 1
and b = −λr + r/δ− 1. Then we have for q1 = q/δ and r1 = r/δ

sup
0<s<1

(∫ 1

s
u(t)dt

)1/q1
(∫ s

0
v1−r′1(t)dt

)1/r′1
≤ sup

0<s<1
(sa+1 − 1)1/q1 s

b(1−r′1)+1

r′1

≤ sup
0<s<1

(1− s−a−1)1/q1 s
a+1
q1
− b+1

r1
+1

≤ sup
0<s<1

(1− sλq1)1/q1 ≤ 1;

since a+1
q1
− b+1

r1
+ 1 = −δλ + δ(λ− 1/δ) + 1 = 0. If 1 < r/δ < q/δ then by Lemma 1.3 the

Hardy inequality 1.1 holds. It follows(∫ 1

0
t−λq−1

(∫ t

0
sδ(α−γ)|µ?

s f (x)|δ(s/t)λδ ds
s

)q/δ

dt

)1/q

≤
(∫ 1

0
sr(α−γ)|µ?

s f (x)|rsλr−r/δv(s)ds
)1/r

=

(∫ 1

0
sr(α−γ)|µ?

s f (x)|r ds
s

)1/r

.

The last estimate and 2.17 lead to∣∣∣∣∣
∣∣∣∣∣
(∫ 1

0
t−γq|ψ?

t (Tkmα f )(x)|q dt
t

)1/q
∣∣∣∣∣
∣∣∣∣∣

p?,w

(2.18)

≤ Cm

∣∣∣∣∣
∣∣∣∣∣
(∫ 1

0
sr(α−γ)|µ?

s f (x)|r ds
s

)1/r
∣∣∣∣∣
∣∣∣∣∣

p?,w

≤ Cm|| f ||F−α+γ,r
p? ,w

≤ Cm|| f ||F0,r
p,w

. (2.19)

Where in the last step we have used the continuous inclusion F0,r
p,w ⊂ F−α+γ,r

p?,w , since −α + γ =
d
p? −

d
p , see [3, Theorem 2.6]. Combining the estimate 2.15, the estimate 2.19 and applying

Theorem 1.2 to obtain
||Tkmα f ||Fγ,r

p? ,w
≤ Cmn/2−1+N || f ||F0,r

p,w
.

Case 2. Assume 0 < q ≤ r < ∞ and fix 0 ≤ δ ≤ q < r. Let u(t), v(t), q1 and r1 as in the first
case. Then on can check that∫ 1

0

(∫ 1

s
u(t)dt

)ε/q1
(∫ s

0
v1−r′1(t)dt

)ε/q′1
v1−r′1(s)ds

'
∫ 1

0
(1− s−a−1)ε/q1 sε( a+1

q1
− b+1

r1
+1),

where 1/ε = 1/q1 − 1/r1. Using Hardy inequality 1.1 in the case 1 < q/δ < r/δ and arguing
as in Case 1 to conclude. �
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Corollary 2.2. Let γ ∈ R, 0 < p < ∞, 0 < q, r ≤ ∞ and N is large enough. Assume w ∈ A∞

satisfying w(B(x, t)) ≥ Ctd for some d > 0 and all x. If 0 < α− γ + β ≤ d
p then

||Tkmα f ||Ḟγ,q
p? ,w
≤ Cmn/2−1+N || f ||Ḟβ,r

p,w
. (2.20)

If w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x, then

||Tkmα f ||Fγ,q
p? ,w
≤ Cmn/2−1+N || f ||Fβ,r

p,w
. (2.21)

Here p? is given by
1
p?

=
1
p
− α− γ + β

d
.

Proof. Using the lifting property and Theorem 2.6 to obtain

||Tkmα f ||Ḟγ,q
p? ,w
' ||Iβ

{
Tkmα(I−β f )

}
||Ḟγ,q

p? ,w

' ||Tkmα(I−β f )||Ḟγ−β,q
p? ,w

≤ Cmn/2−1+N ||I−β f ||Ḟ0,r
p,w
' mn/2−1+N || f ||Ḟβ,r

p,w
.

Hence 2.20 is proved. A similar argument leads to 2.21 by using the lifting property of the
Bessel potential. �

Proof of Theorem 2.1 and 2.2. The proof of Theorem 2.1 and Theorem 2.2 in the case homoge-
neous space is the same as the proof of Theorem 2.6 and 2.5. The proof Theorem 2.1 and
Theorem 2.2 in the case nonhomogeneous space is an immediate consequence of Theorem 2.6,
Theorem 2.5 and the following result due to Rychkov, S.V., see the estimate 2.52 in [33].

Lemma 2.7. (Boundedness of the multiplication operator). Let a ∈ CN(Rn) with N is large enough
and w ∈ A∞ . Assume that

‖ ∂σa ‖∞≤ CN , ∀ | σ |≤ N

then we have
||a f ||Fβ,r

p,w
≤ CN || f ||Fβ,r

p,w
, ∀ f ∈ Fβ,r

p,w.

�

Proof of Theorem 2.3. Using the lifting property and apply Theorem 2.6 to obtain

|| f ||Ḟγ,q
p? ,w

= ||Iα(I−α f )||Ḟγ,q
p? ,w

≤ C||(I−α f ||Ḟ0,r
p,w
' || f ||Ḟα,r

p,w
,

and

|| f ||Fγ,q
p? ,w

= ||Jα(J−α f )||Fγ,q
p? ,w

≤ C||(J−α f ||F0,r
p,w
' || f ||Fα,r

p,w
.

�
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Proposition 2.2. (General Sobolev-Gagliardo-Nirenberg inequalities). Let d, p, q, r and d as in Theo-
rem 2.2 and let p? be such that

1
p?

=
1
p
+

γ− β

d
.

Then

|| f ||Ḟγ+1,q
p? ,w
≤ C

n

∑
j=1
||∂j f ||Ḟβ,r

p,w
.

In particular, if β = 0, γ = −1 and r = q = 2, then we have the following more general classical
Sobolev-Gagliardo-Nirenberg inequalities,

|| f ||Hp? ,w ≤ C
n

∑
j=1
||∂j f ||Hp,w

with
1
p?

=
1
p
− 1

d
.

Proof. The proof is immediate by using the precedent results and the identity

id = −
n

∑
j=1

I1 ◦ Rj ◦ ∂j.

�

Similar results hold in the homogeneous Besov spaces.

Remark 2.2. The above result can be found in [41] in the unweight Lebesgues space.

3 Weighted Sobolev-Gagliardo-Nirenberg inequality

3.1 Extention of Sobolev-Gagliardo-Nirenberg inequality to differential forms.

The space of differential forms with coefficients in Ḟγ,q
p,w is denoted by Ḟγ,q

p,w,Λ and the space of
differential forms in Ḟγ,q

p,w,Λ of order l is denoted by Ḟγ,q
p,w,Λl . We define by the similar way the

space Ḃγ,q
p,w,Λ and Fγ,q

p,w,Λl .
The exterior derivative for forms is denoted by d and δ denotes its adjoint., with the

convention, du = 0 whenever u is an n-form. Recall also that d2 = 0.
To simplify notation we denote by Ȧγ,q

p,w the space Ḟγ,q
p,w,Λl or Ḃγ,q

p,w,Λ.

Theorem 3.1. Let 0 < p < ∞ and w ∈ A∞. Then we have

||∂j f ||Ȧγ,q
p,w
≤ ||d f ||Ȧγ,q

p,w
+ ||δ f ||Ȧγ,q

p,w
.

Proof. We have
∂j f ? νt ' t−1 f ? (∂jν)t

so that in the case of 0-forms
||∂j f ||Ȧγ,q

p,w
' || f ||Ȧγ+1,q

p,w
. (3.1)

Define the Riesz transform in S′∞(Rn, Λ) by

R = d ◦ I1 = I1 ◦ d
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and its adjoint by
R∗ = δ ◦ I1 = I1 ◦ δ.

It follows from 3.1 and the lifting property of I1 that R and R∗ are bounded on Ȧγ+1,q
p,w . Now

the following identity
∂j = Rj ◦ R ◦ δ + Rj ◦ R∗ ◦ d,

implies what we want to prove. �

Theorem 3.2. Let 0 < p < ∞, 0 < q, r ≤ ∞, and w ∈ A∞. Then we have

|| f ||Ȧγ+1,q
p? ,w
≤ ||d f ||Ȧβ,r

p,w
+ ||δ f ||Ȧβ,r

p,w

with
1
p?

=
1
p
+

γ− β

d
.

Proof. The proof is immediate from the precedent results by using the identity

f = I1 ◦ R(d f ) + I1 ◦ R∗(δ f ).

�

Remark 3.1. In the unweighted case and whenever 1
p? = 1

p −
1
n a version of the above Theorem can be

found

1. in [34] in the context of Homogeneous Triebel-Lizorkin spaces,

2. in [41] in the context of Lp spaces.

Remark 3.2. When w = 1 then

|| f ||Ȧγ+1,q
p? ,w
≤ ||d f ||Ȧβ,r

p,w
+ ||δ f ||Ȧβ,r

p,w

holds if and only if
1
p?

=
1
p
+

γ− β

n
.

In fact, let hτ to be the 1-parameter group of linear dilatations given in Rn by hτ(x) = τx.
Then one can check that for any f ∈ Ȧα,q

p?,w,Λk , we have

||h∗τ f ||Ȧα,q
p

= τ
k− n

p+α|| f ||Ȧα,q
p

.

On the other hand we have from the definition of d, δ and hτ(x) that dhτ f = hτd f is a (k + 1)-
form and δhτ f = τ2hτd f is a (k− 1)-form . Hence

||h∗τ f ||Ȧγ+1,q
p? ,w
≤ ||dh∗τ f ||Ȧβ,r

p,w
+ ||δh∗τ f ||Ȧβ,r

p,w

holds if and only if

τ
k− n

p? +γ+1|| f ||Ȧγ+1,q
p
≤ τ

k+1− n
p+β

(
||d f ||Ȧβ,r

p
+ |δ f ||Ȧβ,r

p

)
.

Thus, we must have
1
p?

=
1
p
+

γ− β

n
.
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3.2 Some special limiting cases

Proposition 3.1. Let 1 < p < ∞, 0 < q, r ≤ ∞, and w ∈ A∞ with w(B(x, t)) > td for all t > 0.
Then we have

|| f ||Ḟγ+1,q
p? ,w
≤ ||d f ||Hp,w + ||δ f ||Hp,w

with
1
p?

=
1
p
+

γ

d
.

Proof. Using Theorem 3.2 by taking β = 0, r = 2 to get the result. �

In particular, we have

Proposition 3.2. Let 0 < p < ∞, 0 < q ≤ ∞, and w ∈ A∞ with w(B(x, t)) > td for all t > 0. Then
we have

|| f ||Ḟγ+1,q
p? ,w
≤ ||d f ||H1,w + ||δ f ||H1,w .

with
1
p?

= 1 +
γ

d
.

Note that H1,w is a good substitute of the space L1,w. See [1], [28], [34] and [30] for com-
parison.

Proposition 3.3. For every −n ≤ γ < 0, 1 < p? ≤ ∞, with 1
p? = 1 + γ

n , 0 < q ≤ ∞, 1 ≤
l ≤ n− 1 and w ∈ A∞ with w(B(x, t)) > tn for all t > 0, there exists C > 0 such that for every
f ∈ C∞

c (Rn, Λl), one has
|| f ||Ḟγ+1,q

p?
≤ ||d f ||L1,w + ||δ f ||L1,w .

To prove Proposition 3.3 we need the following additional result due to J.V. Schafttingen.
[34]

Lemma 3.1. For every 0 < s < 1, 1 < p < ∞,with 1
p = 1− s

n , 1 < q ≤ ∞ and 1 ≤ l ≤ n− 1,
there exists C > 0 such that for every f ∈ C∞

c (Rn, Λl) with d f = 0, one has

|| f ||Ḟ−s,p
p
≤ || f ||L1 .

Corollary 3.1. For every 0 < s < 1, 1 < p < ∞,with 1
p = 1− s

n , 1 < q ≤ ∞, 1 ≤ l ≤ n− 1
and w ∈ A∞ with w(B(x, t)) > tn for all t > 0 and all x , there exists C > 0 such that for every
f ∈ C∞

c (Rn, Λl) with d f = 0, one has

|| f ||Ḟ−s,q
p
≤ || f ||L1,w.

Proof. Since 1
|B(x,t|

∫
B(x,t) w(y)dy � 1 for all t > 0 and all x, we have by Lebesgue’s differen-

tiation theorem that w(x) � 1 for a.e x. Now Corollary 3.1 follows directly from Lemma
3.1. �

Proof of Proposition 3.3. Using 3.2 and Lemma 3.1 by taking 1 < p < ∞, 0 < q ≤ ∞, r > 1,
−1 < β = −s < 0, 1

p = 1− s
n = 1 + β

n and 1
p? = 1 + γ

n with 0 < −γ − s ≤ n
p = n − s to

conclude that
|| f ||Ȧγ+1,q

p?
≤ ||d f ||Ȧβ,r

p
+ ||δ f ||Ȧβ,r

p
≤ ||d f ||L1,w + ||δ f ||L1,w ,

whenever −n ≤ γ < 0. �
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Remark 3.3. In particular, we have by taking γ = −1

|| f ||L n
n−1
≤ ||d f ||L1,w + ||δ f ||L1,w .

In the unweighted case, this estimate has obtained by J. Bourgain and H. Brezis [1], and L. Lanzani
and E. Stein [28]. See also [29] for comparison.

4 On the equation du = f

In this section, we discuss briefly the equation du = f , whereas before d denotes the exterior
derivative operator and where f is an exact l-form with coefficients are in a suitable function
space.

Denote the full exterior algebra on Rn by Λ and the interior product (or contraction) by
y with the convention that fyv = 0 whenever f is a 0-form and v is a 1-form. The space of
differential forms with coefficients in Ḟγ,q

p,w is denoted by Ḟγ,q
p,w,Λ. We define by the similar way

the space Fγ,q
p,w,Λ.

In their work [9] the authors construct a linear operator T to solve the potential equation
du = f where f is a given exact form. The potential u is given by u = T f . Their construction
is based essentially on the following Lemma due to Chang, Krantz and Stein [8, Lemma 3.4,
Lemma 3.5].

Lemma 4.1. Given an open O of Rn whose closure Ō is contained in some open cone K ⊂ Rn. Then
there exists a C∞ function φ : Rn −→ R with the following properties:

1. supp Φ ⊂ Ō,

2.
∫

Rn Φ(x)dx = 1

3.
∫

Rn Φ(x)xjdx = 0 whenever 1 ≤ j ≤ n, and

4. if δ denotes the Dirac distribution, then

δ =
n

∑
j=1

lim
N→+∞

∫ N

1/N
(∂jΦ)t ? (Ψj)t

dt
t

, (4.1)

where Ψj(x) = 2Φ(x)xj and the limit is taken in S′∞.

Define the family of kernels KN(x) by

KN(x) =
∫ N

1/N
(Φ)t ? (Ψ)tdt

and for each f ∈ S′∞ define T by

T f = lim
N→+∞

KN?y f , (4.2)

where Φ and Ψ are as in Lemma 4.1 and the limit is taken in S′∞. Formally we write

T f =
∫ ∞

0
(Φ)t ? (Ψ)t?y f dt.
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Lemma 4.2. [9] The operator T defined by 4.2 has the following properties:

T : S′∞,Λ −→ S′∞,Λ,

dT f + Td f = f whenever u ∈ S′∞,Λ,

moreover the fourier transform b of its kernel is in C∞(Rn\{0}) and satisfying

|∂σb(z)| ≤ C|z|−1+|σ|

∀σ = (σ1, ..., σn) ∈Nn.

As a consequence we have the following conclusions.

Theorem 4.1. Let γ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and w ∈ A∞. Then

||T f ||Ḟ1+γ,q
p,w,Λ
≤ C|| f ||Ḟγ,q

p,w,Λ
,

and
||T f ||F1+γ,q

p,w,Λ
≤ C|| f ||Fγ,q

p,w,Λ
.

Theorem 4.2. Let γ ∈ R, 0 < p, d < ∞, 0 < q, r ≤ ∞ . Assume 0 < β− γ ≤ d
p and w ∈ A∞. If

w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x ∈ Rn, then

||T f ||Fγ+1,q
p? ,w,Λ

≤ C|| f ||Fβ,r
p,w,Λ

. (4.3)

If w(B(x, t)) ≥ Ctd for some d > 0 and all x ∈ Rn and t > 0, then

||T f ||Ḟγ+1,q
p? ,w,Λ

≤ C|| f ||Ḟβ,r
p,w,Λ

, (4.4)

where p? is given by
1
p?

=
1
p
+

γ− β

d
.

Denote by Ȧγ
w(R

n, Λ) the space Ḟγ,q
p?,w,Λ and by Aγ

w(R
n, Λ) the space Fγ,q

p?,w,Λ.

Corollary 4.1. Given f in Ȧγ
w(R

n, Λ), then there exists g ∈ Ȧγ+1
w (Rn, Λ)

||g||Ȧγ+1
w (Rn,Λ)

≤ c|| f ||Ȧγ
w(Rn,Λ) ≤ c

(
||dg||Ȧγ

w(Rn,Λ) + ||d f ||Ȧγ−1
w (Rn,Λ)

)
. (4.5)

The similar result holds if we take f ∈ Bγ
w(R

n, Λ).

Corollary 4.2. Given f in Ȧγ
w(R

n, Λ) or in Aγ
w(R

n, Λ) such that d f = 0, then there exists g ∈
Ȧγ+1

w (Rn, Λ) such that dg = f . Moreover, there is a constant c independent of f such that

||g||Ȧγ+1
w (Rn,Λ)

≤ c|| f ||Ȧγ
w(Rn,Λ) (4.6)

and
||g||Aγ+1

w (Rn,Λ)
≤ c|| f ||Aγ

w(Rn,Λ).

Consequently, the de Rham complex

0→ Ȧγ
w(R

n, Λ0)
d→ Ȧγ−1

w (Rn, Λ1)
d→ Ȧγ−2

w (Rn, Λ2)... d→ Ȧγ−n
w (Rn, Λn)→ 0
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and
0→ Bγ

w(R
n, Λ0)

d→ Bγ−1
w (Rn, Λ1)

d→ Bγ−2
w (Rn, Λ2)... d→ Bγ−n

w (Rn, Λn)→ 0

are exact, and each space has a direct sum decomposition

Ȧγ
w(R

n, Λk) = dȦγ+1
w (Rn, Λk−1)⊕ TdȦγ

w(R
n, Λk)

Bγ
w(R

n, Λk) = dBγ+1
w (Rn, Λk−1)⊕ TdBγ

w(R
n, Λk)

with bounded projections dT and Td.

Proof. The proof is as in the proof of Corollary 4.2 in [9]. We give some indications.
If d f = 0 then dT f = f . So set g = T f and using Theorem 4.1 or Theorem 4.2 to obtain 4.6
and 4.5. On the other hand one can check that dT and Td are bounded projections and that
dTȦγ

w(R
n, Λk) = dȦγ+1

w (Rn, Λk−1) and dTAγ
w(R

n, Λk) = dAγ+1
w (Rn, Λk−1). �

Remark 4.1. Similar results hold in the nonhomogeneous Besov or Treibel-Lizorkin spaces.

4.1 On the divergence equation

As before we define formally T f by

T f =
∫ ∞

0
(Φ)t ? (Ψ)t ? f dt, (4.7)

where Φ and Ψ are as in the precedent section. Then one can check easily that

div T f = f . (4.8)

Arguing as before to obtain the following results.

Theorem 4.3. Let γ ∈ R, 0 < p ≤ ∞, 0 < q ≤ ∞ and w ∈ A∞. Given f ∈ Ḟγ,q
p,w,Λ. Then there exits

g ∈ Ḟ1+γ,q
p,w,Λ such that div g = f and

||g||Ḟ1+γ,q
p,w
≤ C|| f ||Ḟγ,q

p,w
.

Theorem 4.4. Let γ ∈ R, 0 < p, d < ∞, 0 < q, r ≤ ∞ . Assume 0 < 1− γ + β and w ∈ A∞. If
w(B(x, t)) ≥ Ctd for all 0 < t < 1 and all x, then

||g||F1+γ,q
p? ,w
≤ C|| f ||Fβ,r

p,w
. (4.9)

If w(B(x, t)) ≥ Ctd for some d > 0 and all t > 0 and all x, then

||g||Ḟγ+1,q
p? ,w
≤ C|| f ||Ḟβ,r

p,w
, (4.10)

where p? is given by
1
p?

=
1
p
+

γ− β

d
.
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4.2 Some remarks on the divergence equation

For example, when f ∈ Lp, 1 < p < ∞ one can find a solution g ∈ W1
p of the equation

div g = f . In the limiting case where f ∈ L1, it is not always possible to pick g ∈ W1
1 as

shown by Bourgain and Brezis in [1]. However, if f is in the Hardy space H1 which is a good
substitute for L1 one can find a solution g ∈ F1,2

1,w which is a good substitute for W1
1 .

More precisely we have the following results.

Proposition 4.1. Let f ∈ H1,w and w as in Theorem 4.4 with d = n. Then there exists a solution
g ∈ Ḟ1,2

1,w of the equation div g = f such that

||g||Ḟ1,2
1,w
≤ C|| f ||H1,w . (4.11)

Proof. Using Theorem 4.3 by taking p = 1, ; q = 2 and γ = 0 to get,

||g||Ḟ1,2
1,w
≤ || f ||H1,w .

�

In the similar way we can deduce also the following result.

Proposition 4.2. Let f ∈ h1,w and w as in Theorem 4.4 with d = n. Then there exists a solution
g ∈ F0,2

1,w of the equation div g = f such that

||g||F0,2
1,w
≤ C|| f ||h1,w .

Another interesting special cases are the following.

Proposition 4.3. Let f ∈ Ln,w and w as in Theorem 4.4 with d = n. Then there exists a solution
g ∈ Ḟ0,q

∞,w of the equation div g = f such that

||g||Ḟ0,q
∞,w
≤ C|| f ||Ln,w .

Proposition 4.4. Let f ∈ Fs,q
n,w with s > 0 and w as in Theorem 4.4 with d = n. Then there exists a

bounded linear operator T : Fs,q
n,w −→ L∞,w such that div T f = f and

||T f ||L∞,w ≤ C|| f ||Fs,q
n,w

.

The last result is false in general whenever s = 0 (see Bourgain and Bresis [1]).

Proof of Proposition 4.3. Using Theorem 4.4 by taking p? = ∞, p = n, r = 2, β = 0 and
γ = −1 to obtain,

||g||Ḟ0,q
∞,w
≤ C|| f ||Ln,w .

�

Proof of Proposition 4.4. The proof is an immediate consequence of Theorem 4.4 and the well
known result:

||g||L∞,w ≤ C||g||Fs+1,q
p,w

holds if and only if s + 1 > n
p or s + 1 = n

p and 0 < p ≤ 1. (See for instance [35]). �

In the context of Bessel potential spaces, we have the following result.

Proposition 4.5. Let β, γ ∈ R 1 < p? ≤ ∞ and 1 < p < ∞ and w as in Theorem 4.4. If f ∈ Hβ
p,w,

then there exists a solution g ∈ Hγ+1
p?,w of the equation div g = f such that

||g||Hγ+1
p? ,w
≤ C|| f ||Hβ

p,w
.
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