Journal of Innovative Applied Mathematics and Computational Sciences

J. Innov. Appl. Math. Comput. Sci. 2(2) (2022), 48–52. n2t.net/ark:/49935/jiamcs.v2i2.18

http://jiamcs.centre-univ-mila.dz/

Results in semi-E-convex functions

Ayache Benhadid [●] [∞]

Department of mathematics, Faculty of mathematics and computer science, Batna 2 University, Batna, Algeria.

Received 18 Junuary 2022, Accepted 08 September 2022, Published 10 September 2022

Abstract. The concept of convexity and its various generalizations is important for quantitative and qualitative studies in operations research or applied mathematics. Recently, E-convex sets and functions were introduced with important implications across numerous branches of mathematics. By relaxing the definition of convex sets and functions, a new concept of semi-*E*-convex functions was introduced, and its properties are discussed. It has been demonstrated that if a function $f : M \to \mathbb{R}$ is semi-*E*-convex on an *E*-convex set $M \subset \mathbb{R}^n$ then, $f(E(x)) \leq f(x)$ for each $x \in M$. This article discusses the inverse of this proposition and presents some results for convex functions.

Keywords: Semi-E-convex functions, convex functions, Lower semi-continuous functions.

2020 Mathematics Subject Classification: 26B25, 46J10, 26B30.

1 Introduction

Youness in [5] introduced a class of sets and functions called *E*-convex sets and *E*-convex functions by relaxing the definition of convex sets and convex functions. Following this, Xiusu Chen [1] introduced a new class of semi-*E*-convex functions and applied these functions to nonlinear programming problems see for instance [3,4]. In this paper, we give weak conditions for a lower semi-continuous function on \mathbb{R}^n to be a semi-*E*-convex function, we also present some results for convex functions.

2 Preliminaries

Let *M* be a nonempty subset of \mathbb{R}^n and let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a map. We recall:

Definition 2.1. [5] A set $M \subseteq \mathbb{R}^n$ is said to be *E*-convex in \mathbb{R}^n if

$$tE(x) + (1-t)E(y) \in M,$$

for each $x, y \in M$ and all $t \in [0, 1]$.

[™] Corresponding author. Email: benhadidayache@yahoo.fr

^{© 2022} Published under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 International License by the Institute of Science and Technology, Mila University Center Publishing

Definition 2.2. [5] A function $f : M \to \mathbb{R}$ is said to be *E*-convex on *M* if *M* is *E*-convex and

$$f(tE(x) + (1-t)E(y)) \le tf(E(x)) + (1-t)f(E(y)),$$

for each $x, y \in M$ and all $t \in [0, 1]$.

Definition 2.3. [1] A function $f : M \to \mathbb{R}$ is said to be semi-*E*-convex on *M* if *M* is *E*-convex and

$$f(tE(x) + (1-t)E(y)) \le tf(x) + (1-t)f(y)$$
,

for each $x, y \in M$ and all $t \in [0, 1]$.

Definition 2.4. [1] We define a map $E \times I$ as follows:

$$E \times I : \mathbb{R}^n \times \mathbb{R} \to \mathbb{R}^n \times \mathbb{R}$$

(x,t) $\to (E \times I)(x,t) = (E(x),t).$

This Proposition gives a characterization of a semi-*E*-convex function in term of its epi(f).

Proposition 2.5. [1] The function $f : \mathbb{R}^n \to \mathbb{R}$ is semi-*E*-convex on \mathbb{R}^n if and only if its epigraph $epi(f) = \{(x, \alpha) \in \mathbb{R}^n \times \mathbb{R} : f(x) \le \alpha\}$ is $E \times I$ -convex on $\mathbb{R}^n \times \mathbb{R}$.

Definition 2.6. [2] A function $f : \mathbb{R}^n \to \mathbb{R}$ is lower semi-continuous if and only if, for every real number α , the set $\{x \in \mathbb{R}^n : f(x) \le \alpha\}$ is closed.

In the following, we introduce a Proposition about lower semi-continuous functions, which shall be used in the sequel. We refer to [2] for details and missing proofs.

Proposition 2.7. [2] A function $f : \mathbb{R}^n \to \mathbb{R}$ is lower semi-continuous if and only if its epigraph is closed.

Definition 2.8. Let $(x,s), (y,t) \in \mathbb{R}^{n+1}$, with $x, y \in \mathbb{R}^n$ and $s, t \in \mathbb{R}$. The line segment [(x,s), (y,t)] (with endpoints (x,s) and (y,t)) is the segment

$$\{\alpha(x,s) + (1-\alpha)(y,t) : 0 \le \alpha \le 1\}.$$

If $(x, s) \neq (y, t)$, the interior](x, s), (y, t)[of [(x, s), (y, t)] is the segment

$$\{\alpha(x,s) + (1-\alpha)(y,t) : 0 < \alpha < 1\}$$

In a similar way, we can define [(x,s), (y,t)) and ((x,s), (y,t)].

3 Main results for semi-*E*-convex functions

Lemma 3.1. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map. Consider $(\overline{x}, u) \in [(E(x), s), (E(y), t)]$. Then

$$E\left(\overline{x}\right) = \overline{x}$$

Proof. Let $(\overline{x}, u) \in [(E(x), s), (E(y), t)]$, then there exist $\alpha \in [0, 1]$, such that $(\overline{x}, u) = \alpha(E(x), s) + (1 - \alpha)(E(y), t)$. Using the fact that *E* is a linear and idempotent map, we have

$$(E \times I) (\overline{x}, u) = (E (\alpha E (x) + (1 - \alpha) E (y)), \alpha s + (1 - \alpha)t)$$

= $(\alpha E (x) + (1 - \alpha) E (y), \alpha s + (1 - \alpha)t)$
= $(\overline{x}, u).$

On the other hand $(E \times I)(\overline{x}, u) = (E(\overline{x}), u)$, therefore $E(\overline{x}) = \overline{x}$.

We shall make use of the following three sets:

$$H_{Sci} = \{ f : \mathbb{R}^n \to \mathbb{R}, f \text{ is lower semi continuous} \},$$
(3.1)

$$H_{L,I} = \{E : \mathbb{R}^n \to \mathbb{R}^n, E \text{ is linear and idempotent}\}$$
(3.2)

and for each $E \in H_{L,I}$ we define H_E as follows:

$$H_E = \{ f \in H_{Sci}, f(E(x)) \le f(x) \text{ for all } x \in \mathbb{R}^n \}$$
(3.3)

Theorem 3.2. Let $E \in H_{L,I}$, and $f \in H_E$. Suppose that there exists an $\alpha \in]0,1[$ such that for all $x, y \in \mathbb{R}^n$, $s, t \in \mathbb{R}$ such that f(x) < s, f(y) < t,

$$f(\alpha E(x) + (1 - \alpha)E(y)) < \alpha s + (1 - \alpha)t.$$

Then f is semi-E-convex.

Proof. By Proposition (2.5), it is sufficient to show that epi(f) is $E \times I$ -convex as a subset of $\mathbb{R}^n \times \mathbb{R}$. By contradiction, suppose that there exist $(x_1, \alpha_1), (x_2, \alpha_2) \in epi(f)$ (with $x_1, x_2 \in \mathbb{R}^n$ and $\alpha_1, \alpha_2 \in \mathbb{R}$) and $\alpha_0 \in]0, 1[$ such that,

 $(\alpha_0 E(x_1) + (1 - \alpha_0) E(x_2), \alpha_0 \alpha_1 + (1 - \alpha_0) \alpha_2) \notin epi(f).$

Let $x_0 = \alpha_0 E(x_1) + (1 - \alpha_0) E(x_2)$ and $\lambda_0 = \alpha_0 \alpha_1 + (1 - \alpha_0) \alpha_2$, then $(x_0, \lambda_0) \notin epi(f)$. Using the fact that $f \in H_E$, we see that $(E(x_1), \alpha_1), (E(x_2), \alpha_2) \in epi(f)$. Let

$$A = epi(f) \cap [(E(x_1), \alpha_1), (x_0, \lambda_0)]$$

and

$$B = epi(f) \cap [(x_0, \lambda_0), (E(x_2), \alpha_2)].$$

Since $f \in H_{Sci}$, by Proposition (2.7), epi(f) is a closed subset of $\mathbb{R}^n \times \mathbb{R}$. Consequently, *A* and *B* are bounded and closed subsets of $\mathbb{R}^n \times \mathbb{R}$.

Also we have $(x_0, \lambda_0) \notin A$ and $(x_0, \lambda_0) \notin B$. Thus there exist $Z_A = (x_3, \alpha_3) \in A$ and $Z_B = (x_4, \alpha_4) \in B$ such that,

$$\min_{Z \in A} \|Z - (x_0, \lambda_0)\| = \|Z_A - (x_0, \lambda_0)\|$$

and

$$\min_{Z\in B} \|Z - (x_0, \lambda_0)\| = \|Z_B - (x_0, \lambda_0)\|.$$

Hence, we have

$$]Z_A, Z_B[\cap epi(f) = \emptyset.$$
(3.4)

On the other hand, since $Z_A \in epi(f)$ and $Z_B \in epi(f)$, we get $f(x_3) < \alpha_3 + \varepsilon$, $f(x_4) < \alpha_4 + \varepsilon$ for each $\varepsilon > 0$. Since $\alpha (\alpha_3 + \varepsilon) + (1 - \alpha) (\alpha_4 + \varepsilon) = \alpha \alpha_3 + (1 - \alpha) \alpha_4 + \varepsilon$. By the hypothesis of the Theorem, we obtain

$$f(\alpha E(x_3) + (1-\alpha)E(x_4)) < \alpha \alpha_3 + (1-\alpha)\alpha_4 + \varepsilon.$$

Since ε is an arbitrary positive real number, it follows that

$$f(\alpha E(x_3) + (1 - \alpha)E(x_4)) \le \alpha \alpha_3 + (1 - \alpha)\alpha_4.$$
 (3.5)

Since $Z_A \in A \subset [(E(x_1), \alpha_1), (E(x_2), \alpha_2)]$ and $Z_B \in B \subset [(E(x_1), \alpha_1), (E(x_2), \alpha_2)]$. By Lemma (3.1) we have $E(x_3) = x_3$ and $E(x_4) = x_4$. Using (3.5) we get

$$(\alpha x_3 + (1 - \alpha)x_4, \alpha \alpha_3 + (1 - \alpha))\alpha_4) \in epi(f).$$

Therfore

$$\alpha Z_A + (1-\alpha)Z_B \in epi(f)$$
,

which contradicts (3.4). Thus, we conclude that epi(f) is $E \times I$ -convex.

Theorem 3.3. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f : \mathbb{R}^n \to \mathbb{R}$ be lower semicontinuous and $f(E(x)) \leq f(x)$ for all $x \in \mathbb{R}^n$. Then f is semi-E-convex if and only if there exists an $\alpha \in [0, 1]$ such that for all $x, y \in \mathbb{R}^n$

$$f\left(\alpha E(x) + (1-\alpha)E(y)\right) \le \alpha f\left(x\right) + (1-\alpha)f\left(y\right).$$

Proof. Follows from Theorem (3.2) with $s = f(x) + \varepsilon$ and $t = f(y) + \varepsilon$ for each $\varepsilon > 0$, then taking $\varepsilon \to 0$.

By taking $\alpha = \frac{1}{2}$, in Theorem 3.3 we'll find the following Corollary.

Corollary 3.4. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f : \mathbb{R}^n \to \mathbb{R}$ be lower semicontinuous and $f(E(x)) \leq f(x)$ for all $x \in \mathbb{R}^n$. Then f is semi-E-convex if and only if for all $x, y \in \mathbb{R}^n$,

$$f\left(\frac{1}{2}(E(x)+E(y))\right) \leq \frac{1}{2}[f(x)+f(y)].$$

Theorem 3.5. Let $E : \mathbb{R}^n \to \mathbb{R}^n$ be a linear and idempotent map, $f : \mathbb{R}^n \to \mathbb{R}$ be lower semicontinuous and $f(E(x)) \leq f(x)$ for all $x \in \mathbb{R}^n$. Then f is semi-E-convex if and only if for all $x, y \in \mathbb{R}^n$, there exists an $\alpha \in [0,1[$ (α depends on x, y) such that

$$f\left(\alpha E(x) + (1-\alpha)E(y)\right) \le \alpha f\left(x\right) + (1-\alpha)f\left(y\right).$$
(3.6)

Proof. In this case (α depends on x, y), the proof is similar to the Theorem 3.2

According to Theorems 3.3, 3.5 and Corollary 3.4 with $E = Id_{\mathbb{R}^n}$, we get $E \in H_{L,I}$, and $H_E = H_{Sci}$. Then we find results about convex functions.

Theorem 3.6. Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if there exists an $\alpha \in [0, 1]$ such that, for all $x, y \in \mathbb{R}^n$,

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Theorem 3.7. Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if for all $x, y \in \mathbb{R}^n$, there exists an $\alpha \in [0, 1]$ (α depends on x, y) such that

$$f(\alpha x + (1 - \alpha)y) \le \alpha f(x) + (1 - \alpha)f(y).$$

Corollary 3.8. Let $f : \mathbb{R}^n \to \mathbb{R}$ be lower semi-continuous. Then f is convex if and only if for all $x, y \in \mathbb{R}^n$,

$$f\left(\frac{1}{2}\left(x+y\right)\right) \leq \frac{1}{2}\left[f\left(x\right)+f\left(y\right)\right].$$

Acknowledgements

This paper has been presented in the International Conference on Mathematics and Applications (ICMA'2021), December 7-8, 2021, Blida1 University, Algeria.

The authors would like to express their most sincere thanks and grateful acknowledgments to Professor Mohammed Hachama: General Chair of The International Conference on Mathematics and Applications (ICMA'2021) Blida1.

Conflict of Interest

The authors have no conflicts of interest to declare.

References

- X. CHEN, Some properties of semi-E-convex functions, J. Math. Anal. Appl., 275 (2002), 251– 262. DOI
- [2] G. DAL MASO, An Introduction to Γ-convergence, BirKhauser, Boston, 1993. URL
- [3] A. A. MEGAHED, H. G. GOMMA, E. A. YOUNESS AND A. H. BANNA, Optimality conditions of E-convex programming for an E-differentiable function, J. Inequal. Appl., 246 (2013), 1–11. DOI
- [4] M. A. NOOR, M. U. AWAN AND K. I. NOOR, On some inequalities for relative semi-convex functions, J. Inequal. Appl., 332 (2013), 1–16. DOI
- [5] E. A. YOUNESS, *E-convex sets, E-convex functions, and E-convex programming, J. Optim.* Theory Appl., **102** (1999), 439–450. DOI