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Abstract. The concept of convexity and its various generalizations is important for
quantitative and qualitative studies in operations research or applied mathematics. Re-
cently, E-convex sets and functions were introduced with important implications across
numerous branches of mathematics. By relaxing the definition of convex sets and func-
tions, a new concept of semi-E-convex functions was introduced, and its properties are
discussed. It has been demonstrated that if a function f : M → R is semi-E-convex on
an E-convex set M ⊂ Rn then, f (E(x)) ≤ f (x) for each x ∈ M. This article discusses
the inverse of this proposition and presents some results for convex functions.
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1 Introduction

Youness in [5] introduced a class of sets and functions called E-convex sets and E-convex
functions by relaxing the definition of convex sets and convex functions. Following this, Xiusu
Chen [1] introduced a new class of semi-E-convex functions and applied these functions to
nonlinear programming problems see for instance [3,4]. In this paper, we give weak conditions
for a lower semi-continuous function on Rn to be a semi-E-convex function, we also present
some results for convex functions.

2 Preliminaries

Let M be a nonempty subset of Rn and let E : Rn → Rn be a map. We recall:

Definition 2.1. [5] A set M ⊆ Rn is said to be E-convex in Rn if

tE(x) + (1− t)E(y) ∈ M,

for each x, y ∈ M and all t ∈ [0, 1].
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Definition 2.2. [5] A function f : M→ R is said to be E-convex on M if M is E-convex and

f (tE(x) + (1− t)E(y)) ≤ t f (E (x)) + (1− t) f (E (y)) ,

for each x, y ∈ M and all t ∈ [0, 1].

Definition 2.3. [1] A function f : M → R is said to be semi-E-convex on M if M is E-convex
and

f (tE(x) + (1− t)E(y)) ≤ t f (x) + (1− t) f (y) ,

for each x, y ∈ M and all t ∈ [0, 1].

Definition 2.4. [1] We define a map E× I as follows:

E× I : Rn ×R → Rn ×R

(x, t) → (E× I)(x, t) = (E(x), t) .

This Proposition gives a characterization of a semi-E-convex function in term of its epi ( f ).

Proposition 2.5. [1] The function f : Rn → R is semi-E-convex on Rn if and only if its epigraph
epi ( f ) = {(x, α) ∈ Rn ×R : f (x) ≤ α} is E× I-convex on Rn×R.

Definition 2.6. [2] A function f : Rn → R is lower semi-continuous if and only if, for every
real number α, the set {x ∈ Rn : f (x) ≤ α} is closed.

In the following, we introduce a Proposition about lower semi-continuous functions, which
shall be used in the sequel. We refer to [2] for details and missing proofs.

Proposition 2.7. [2] A function f : Rn → R is lower semi-continuous if and only if its epigraph is
closed.

Definition 2.8. Let (x, s), (y, t) ∈ Rn+1, with x, y ∈ Rn and s, t ∈ R. The line segment
[(x, s), (y, t)] (with endpoints (x, s) and (y, t)) is the segment

{α(x, s) + (1− α)(y, t) : 0 ≤ α ≤ 1} .

If (x, s) , (y, t), the interior ](x, s), (y, t)[ of [(x, s), (y, t)] is the segment

{α(x, s) + (1− α)(y, t) : 0 < α < 1} .

In a similar way, we can define [(x, s), (y, t)) and ((x, s), (y, t)].

3 Main results for semi-E-convex functions

Lemma 3.1. Let E : Rn → Rn be a linear and idempotent map. Consider
(x, u) ∈ [(E (x) , s), (E (y) , t)]. Then

E (x) = x.

Proof. Let (x, u) ∈ [(E (x) , s), (E (y) , t)], then there exist α ∈ [0, 1], such that
(x, u) = α(E (x) , s) + (1− α)(E (y) , t). Using the fact that E is a linear and idempotent map,
we have

(E× I) (x, u) = (E (αE (x) + (1− α)E (y)) , αs + (1− α)t)

= (αE (x) + (1− α)E (y) , αs + (1− α)t)

= (x, u) .

On the other hand (E× I) (x, u) = (E (x) , u), therefore E (x) = x. �
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We shall make use of the following three sets:

HSci = { f : Rn → R, f is lower semi continuous} , (3.1)

HL,I = {E : Rn → Rn, E is linear and idempotent} (3.2)

and for each E ∈ HL,I we define HE as follows:

HE = { f ∈ HSci, f (E (x)) ≤ f (x) for all x ∈ Rn} (3.3)

Theorem 3.2. Let E ∈ HL,I , and f ∈ HE. Suppose that there exists an α ∈ ]0, 1[ such that for all
x, y ∈ Rn, s, t ∈ R such that f (x) < s, f (y) < t,

f (αE(x) + (1− α)E(y)) < αs + (1− α)t.

Then f is semi-E-convex.

Proof. By Proposition (2.5), it is sufficient to show that epi ( f ) is E× I-convex as a subset of
Rn×R. By contradiction, suppose that there exist (x1, α1), (x2, α2) ∈ epi ( f ) (with x1, x2 ∈ Rn

and α1, α2 ∈ R) and α0 ∈ ]0, 1[ such that,
(α0E (x1) + (1− α0) E (x2) , α0α1 + (1− α0) α2) < epi ( f ) .
Let x0 = α0E (x1) + (1− α0) E (x2) and λ0 = α0α1 + (1− α0) α2, then (x0, λ0) < epi ( f ). Using
the fact that f ∈ HE, we see that (E (x1) , α1), (E (x2) , α2) ∈ epi ( f ) . Let

A = epi ( f ) ∩ [(E (x1) , α1), (x0, λ0)]

and
B = epi ( f ) ∩ [(x0, λ0) , (E (x2) , α2)] .

Since f ∈ HSci, by Proposition (2.7), epi ( f ) is a closed subset of Rn×R. Consequently, A and
B are bounded and closed subsets of Rn×R.
Also we have (x0, λ0) < A and (x0, λ0) < B. Thus there exist ZA = (x3, α3) ∈ A and ZB =

(x4, α4) ∈ B such that,
min
Z∈A
‖Z− (x0, λ0)‖ = ‖ZA − (x0, λ0)‖

and
min
Z∈B
‖Z− (x0, λ0)‖ = ‖ZB − (x0, λ0)‖ .

Hence, we have
]ZA, ZB[ ∩ epi ( f ) = ∅. (3.4)

On the other hand, since ZA ∈ epi ( f ) and ZB ∈ epi ( f ), we get
f (x3) < α3 + ε, f (x4) < α4 + ε for each ε > 0.
Since α (α3 + ε) + (1− α) (α4 + ε) = αα3 + (1− α)α4 + ε. By the hypothesis of the Theorem, we
obtain

f (αE(x3) + (1− α)E(x4)) < αα3 + (1− α)α4 + ε.

Since ε is an arbitrary positive real number, it follows that

f (αE(x3) + (1− α)E(x4)) ≤ αα3 + (1− α)α4. (3.5)
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Since ZA ∈ A ⊂ [(E (x1) , α1) , (E (x2) , α2)] and
ZB ∈ B ⊂ [(E (x1) , α1) , (E (x2) , α2)]. By Lemma (3.1) we have E (x3) = x3 and
E (x4) = x4. Using (3.5) we get

(αx3 + (1− α)x4, αα3 + (1− α)) α4) ∈ epi ( f ) .

Therfore
αZA + (1− α)ZB ∈ epi ( f ) ,

which contradicts (3.4). Thus, we conclude that epi ( f ) is E× I-convex. �

Theorem 3.3. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if there exists
an α ∈ ]0, 1[ such that for all x, y ∈ Rn

f (αE(x) + (1− α)E(y)) ≤ α f (x) + (1− α) f (y) .

Proof. Follows from Theorem (3.2) with s = f (x) + ε and t = f (y) + ε for each ε > 0, then
taking ε→ 0. �

By taking α =
1
2

, in Theorem 3.3 we’ll find the following Corollary.

Corollary 3.4. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if for all
x, y ∈ Rn,

f
(

1
2
(E(x) + E(y))

)
≤ 1

2
[ f (x) + f (y)] .

Theorem 3.5. Let E : Rn → Rn be a linear and idempotent map, f : Rn → R be lower semi-
continuous and f (E (x)) ≤ f (x) for all x ∈ Rn. Then f is semi-E-convex if and only if for all
x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αE(x) + (1− α)E(y)) ≤ α f (x) + (1− α) f (y) . (3.6)

Proof. In this case (α depends on x, y), the proof is similar to the Theorem 3.2 �

According to Theorems 3.3, 3.5 and Corollary 3.4 with E = IdRn, we get E ∈ HL,I , and
HE = HSci. Then we find results about convex functions.

Theorem 3.6. Let f : Rn → R be lower semi-continuous.Then f is convex if and only if there exists
an α ∈ ]0, 1[ such that, for all x, y ∈ Rn,

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y) .

Theorem 3.7. Let f : Rn → R be lower semi-continuous. Then f is convex if and only if for all
x, y ∈ Rn, there exists an α ∈ ]0, 1[ (α depends on x, y) such that

f (αx + (1− α)y) ≤ α f (x) + (1− α) f (y) .

Corollary 3.8. Let f : Rn → R be lower semi-continuous. Then f is convex if and only if for all
x, y ∈ Rn,

f
(

1
2
(x + y)

)
≤ 1

2
[ f (x) + f (y)] .
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