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Abstract. This work aims to investigate a delay hematopoiesis model where the delay
depends on both the time and the current density of mature blood cells. Based on the
Banach contraction principle, the Schauder’s fixed point theorem and some properties
of a Green’s function, we establish several interesting existence and uniqueness results
of positive periodic solutions for the proposed model. The derived results are new and
generalize some previous studies.
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1 Introduction

In the end of the seventies of the last century, Michael Mackey and Leon Glass [13] put forward
the following hematopoiesis model with constant delay:

x′ (t) = −a x (t) + p
x (t− τ)

1 + x (t− τ)
,

which describes the white blood cells production. Biologically, x (t) is the current density
of mature white blood cells in the blood circulation at time t, a > 0 is the destruction rate,

p
x (t− τ)

1 + x (t− τ)
stands for the blood cell reproduction, p > 0 is the maximal production rate

and the time delay τ > 0 describes the duration of the maturational phase.
It is well known that the harvesting of mature blood cells such as hijama cupping, blood

donation and sampling blood play an important role in the blood cell population dynam-
ics. For this, by assuming that the coefficient are time varying and taking into account the
harvesting strategy, the classical Mackey-Glass model can be modified into the following one:

x′ (t) = −a (t) x (t) + p (t)
x (t− τ)

1 + x (t− τ)
− H (t, x(t), x(t− τ)) , (1.1)
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where H is the harvesting function.
Meanwhile, a lot of investigations have revealed that the time and state dependent de-

lays are more realistic than other types of lags to describe real phenomena, especially in life
sciences. Actually, in the production of blood cells, some growth factors and hormones that
control the division of the hematopoietic stem cells, depend on time and the density of mature
cells. So, we need to revisit the Mackey-Glass model (1.1) as follows:

x′ (t) = −a (t) x (t) + p (t)
x (t− τ (t, x(t)))

1 + x (t− τ (t, x(t)))
− H (t, x(t), x(t− τ (t, x(t)))) , (1.2)

where a, p ∈ C (R, (0, ∞)) are ω−periodic and H ∈ C
(
[0, ω]×R2, (0, ∞)

)
.

Throughout this paper we shall assume that the delay in equation (1.2) takes the form
τ (t, x (t)) = t− x (t) . Under this assumption, equation (1.2) becomes the following first order
iterative differential equation:

x′ (t) = −a (t) x (t) + p (t)
x[2] (t)

1 + x[2] (t)
− H

(
t, x(t), x[2](t)

)
, (1.3)

where x[2] (t) = x (x (t)) .
For detailed information about such equations and their emerging theory we refer the

reader to [1–12], [14–17].
The key focus of this work is on the existence, uniqueness and stability of positive peri-

odic solutions for equation (1.3) by the use of an efficient technique based on converting the
proposed equation into an integral one before applying two suitable fixed point theorems as
well as the Green’s functions method.

The present manuscript is organized as follows. The next section presents some necessary
notations, definitions, and preliminary results that will be used throughout this work. In the
third section, we apply Banach and Schauder’s fixed point theorems combined with the use
of some properties of an obtained Green’s function to establish sufficient conditions for the
existence, uniqueness, and continuous dependence on parameters of positive periodic and
bounded solutions for equation (1.3).

2 Preliminaries

We assume the following hypotheses on the harvesting function:

H (t + ω, x, y) = H (t, x, y) , for all t, x, y ∈ R, (2.1)

and there exist k1, k2 > 0, such that

|H (t, x1, y1)− H (t, x2, y2)| ≤ k1 |x1 − x2|+ k2 |y1 − y2| . (2.2)

To proving the existence of at least one positive periodic solution of (1.3), we will convert it
into an integral equation before employing the Schauder’s fixed point theorem.

For L, M > 0, let

K = {x ∈ X, 0 ≤ x (t) ≤ M, |x(t2)− x(t1)| ≤ L |t2 − t1| , ∀t1, t2 ∈ [0, ]} ,

a convex bounded and closed subset of the Banach space (X, ‖.‖) where

X = {x ∈ C(R, R), x(t + ω) = x(t)} ,
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and

‖x‖ = sup
t∈R

|x(t)| = sup
t∈[0,ω]

|x(t)| .

Furthermore, we assume that

ωβ (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) ≤ M, (2.3)

and

β (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) (2 + ω ‖a‖) ≤ L, (2.4)

where

α =
e−
∫ ω

0 a(v)dv

e
∫ ω

0 a(v)dv − 1
, β =

e
∫ ω

0 a(v)dv

e
∫ ω

0 a(v)dv − 1
,

and

H0 = sup
t∈[0,ω]

H (t, 0, 0) .

Remark 2.1. Thanks to Arzelà-Ascoli theorem, K is a compact subset of X.

Let’s begin our study with the following result, which ensures the conversion of our prob-
lem into an equivalent integral equation:

Lemma 2.2. If the condition (2.1) holds, then x ∈ K ∩C1 (R, R) is a solution of (1.3) if and only if
x ∈ K is a solution of the following integral equation:

x (t) =
∫ t+ω

t

[
p (s)

x[2](s)
1 + x[2](s)

− H
(

s, x(s), x[2](s)
)]

G (t, s) ds, (2.5)

where

G (t, s) =
e

∫ s

t
a(v)dv

e

∫ ω

0
a(v)dv

− 1

. (2.6)

Remark 2.3. The function G satisfies

G(t + ω, s + ω) = G(t, s), (2.7)

0 < α ≤ G (t, s) ≤ β, (2.8)

and ∫ t1+w

t1

|G (t2, s)− G (t1, s)| ds ≤ βw ‖a‖ |t2 − t1| . (2.9)

Theorem 2.4. (Schauder). Let Ω be a closed convex compact subset of a Banach space. Suppose that
A : Ω→ Ω is continuous. Then there exists z ∈ Ω such that z = Az.
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3 Main results

3.1 Existence

Now, to apply Schauder’s fixed point theorem, we need to construct an operator A : K → X
as follows:

(Aϕ) (t) =
∫ t+ω

t

[
p (s)

ϕ[2](s)
1 + ϕ[2](s)

− H
(

s, ϕ(s), ϕ[2](s)
)]

G (t, s) ds. (3.1)

From Lemma 2.2, fixed points of operator A are solutions of equation (1.3) and vice versa.

Remark 3.1. For all t ∈ [0, ω] and ϕ ∈ K we have

(Aϕ) (t + ω) = (Aϕ) (t) ,

so A is well defined.

Lemma 3.2. If condition (2.2) holds, then operator A is continuous.

Proof. Let ϕ, θ ∈ K, we have

|(Aϕ) (t)− (Aθ) (t)| ≤
∫ t+ω

t
G (t, s) p (s)

∣∣∣∣∣ ϕ[2](s)
1 + ϕ[2](s)

− θ[2](s)
1 + θ[2](s)

∣∣∣∣∣ ds

+
∫ t+ω

t
G (t, s)

∣∣∣H (s, ϕ(s), ϕ[2](s)
)
− H

(
s, θ(s), θ[2](s)

)∣∣∣ ds.

By using (2.2), (2.8) and Lemma 2.1, [17], we obtain

‖Aϕ−Aθ‖ ≤ βω ((‖p‖+ k2) (1 + L) + k1) ‖ϕ− θ‖ .

Consequently, A is Lipschitz continuous and hence continuous. �

Lemma 3.3. Let conditions (2.2)-(2.4) hold and suppose that

p (t)
ϕ[2](t)

1 + ϕ[2](t)
− H

(
s, ϕ(t), ϕ[2](t)

)
≥ 0, (3.2)

for all t ∈ [0, ω] and ϕ ∈ K. Then
A (K) ⊂ K.

Proof.
Step 1: If ϕ ∈ K, then

(Aϕ) (t) =
∫ t+ω

t

[
p (s)

ϕ[2](s)
1 + ϕ[2](s)

− H
(

s, ϕ(s), ϕ[2](s)
)]

G (t, s) ds

≤
∫ t+ω

t
p (s)

ϕ[2](s)
1 + ϕ[2](s)

G (t, s) ds

+
∫ t+ω

t
H
(

s, ϕ(s), ϕ[2](s)
)

G (t, s) ds

≤ ωβ (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) .
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From (2.3), we obtain
(Aϕ) (t) ≤ M,

and from (3.2) we get
0 ≤ (Aϕ) (t) .

Then
0 ≤ (Aϕ) (t) ≤ M, ∀t ∈ [0, ω] , ∀ϕ∈K. (3.3)

Step 2: Let ϕ ∈ K and t1, t2 ∈ [0, ω]. Taking into account the assumptions (2.2), (2.8), (2.9) and
Lemma 2.1, [17], it yields

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ 2β (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) |t2 − t1|
+ βω ‖a‖ (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) |t2 − t1|
= β (H0 + ‖p‖+ (k1 + k2 (1 + L)) M) (2 + ω ‖a‖) |t2 − t1| .

By virtue of (2.4), we get

|(Aϕ) (t2)− (Aϕ) (t1)| ≤ L |t2 − t1| . (3.4)

Thanks to (3.3) and (3.4), we find
A (K) ⊂ K,

which completes the proof. �

Now, we can state and prove our first existence result as follows:

Theorem 3.4. If the assumptions (2.1)-(2.4) and (3.2) are fulfilled, then equation (1.3) has at least one
positive periodic solution in K.

Proof. As a consequence of the compactness of K, Lemmas 3.2 and 3.3, all conditions of
Schauder’s fixed point theorem are fulfilled. So, we conclude that A has at least one fixed
point in K which is a solution of equation (1.3). �

3.2 Existence and Uniqueness

Theorem 3.5. Besides the assumptions (2.1)-(2.4), we suppose that

βω ((‖p‖+ k2) (1 + L) + k1) < 1. (3.5)

Then equation (1.3) has one and only one positive periodic solution x ∈ K.

Proof. Similarly as in the proof of Lemmas 3.2 we have

‖Aϕ−Aθ‖ ≤ βω ((‖p‖+ k2) (1 + L) + k1) ‖ϕ− θ‖ ,

for all ϕ, θ ∈ K.
It follows from (3.5) and the Banach fixed point theorem that A is a contraction and hence A
has a unique fixed point in K which is the unique solution of equation (1.3). �
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3.3 Continuous dependence on parameters

Theorem 3.6. Under the hypotheses of Theorem 3.5, the unique solution of equation (1.3) depends
continuously on parameters.

Proof. Let

z1 (t) =
∫ t+ω

t

[
p1 (s)

z[2]1 (s)

1 + z[2]1 (s)
− H1

(
s, z1(s), z[2]1 (s)

)]
G1 (t, s) ds,

and

z2 (t) =
∫ t+ω

t

[
p2 (s)

z[2]2 (s)

1 + z[2]2 (s)
− H2

(
s, z2(s), z[2]2 (s)

)]
G2 (t, s) ds,

where

G1 (t, s) =
e

∫ s

t
a1(v)dv

e

∫ ω

0
a1(v)dv

− 1

, G2 (t, s) =
e

∫ s

t
a2(v)dv

e

∫ ω

0
a2(v)dv

− 1

,

are two different solutions of equation (1.3).
We have

|(G1 (t, s)− G2 (t, s)) ds| ≤ µ ‖a1 − a2‖ ,

where

µ = w2ew max(‖a1‖,‖a2‖)


1

e

∫ ω

0
a1(v)dv

− 1

+
ew‖a2‖e

∫ ω

0
a1(v)dv

− 1

e

∫ ω

0
a2dv
− 1




.

From (1.3) we get

‖z1 − z2‖ ≤
1

1− βω ((‖p2‖+ k2) (1 + L) + k1)
{βω (((‖p2‖+ k2) (L + 1) + k1) ‖z1 − z2‖

+M ‖p1 − p2‖+ ‖H1 − H2‖) + (H0 + M (k1 + k2 + ‖p2‖ω + Lk2)) ‖a1 − a2‖} .

This completes the proof. �
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