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Abstract. In this paper, we study the existence of a continuous solution for a nonlinear
integral equation of a product type. The analysis uses the techniques of measures
of noncompactness and Darbo’s fixed point Theorem. Our results are obtained under
rather general assumptions. Moreover, the method used in the proof allows us to obtain
the asymptotic stability of the solutions.
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1 Introduction

In this paper, we consider the following nonlinear integral equation of product type

x(t) = f (t, x(t)) +
[

p(t) +
∫ t

0
u(t, s, x(s))ds

]
×
[

q(t) +
∫ t

0
v(t, s, x(s))ds

]
, t ∈ R+, (1.1)

where f , p, q, u, v are continuous functions and x(t) ∈ C(R+, R) is an unknown function.
A variety of problems in physics and biology have their mathematical setting as integral
equations of product type. In particular, in the study of the spread of an infectious disease
that does not induce permanent immunity (see, for example [3, 10, 11, 16]).
Recently, there has been a growing interest in integral equations of product type. In [12]
Gripenberg studied the qualitative behavior of solutions of the following integral equation of
product type

x(t) = k
[

p(t) +
∫ t

0
A(t− s)x(s)ds

]
×
[

q(t) +
∫ t

0
B(t− s)x(s)ds

]
. (1.2)

More exactly, the author studied the existence and uniqueness of a bounded continuous and
nonnegative solution of (1.2). Moreover, Pachpatte [15], Abdeldaim [1] and Li et al. [13] stud-
ied the boundedness, the asymptotic behavior and continuous solutions of (1.2).
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Bellour et al. [8] studied the existence of an integrable solution of (1.1) on the interval [0, 1].
On the other hand, Ardjouni and Djoudi [2] studied the existence and approximation of so-
lutions of the initial value problems of nonlinear hybrid Caputo fractional integro-differential
equations, which can be transformed to the following integral equation of product type

x(t) =
[

p(t) +
1

Γ(β)

∫ t

0
(t− s)β−1g(s, x(s))ds

]
×
[

θ +
1

Γ(α)

∫ t

0
(t− s)α−1 f (s, x(s))ds

]
,

on a bounded interval [0, a].
In the paper [14], Olaru studied the existence and the uniqueness of the continuous solution
of the following integral equation

x(t) =
m

∏
i=1

(
gi(t) +

∫ t

a
Ki(t, s, x(s))ds

)
, (1.3)

on a bounded interval [a, b], where Ki, i = 1, ..., n are continuous functions satisfying Lipschitz
conditions with respect to the last variable.
Later, Boulfoul et al. [9] studied the existence of an integrable solution of a generalization of
(1.3) on R+.

The purpose of the present work is to study the existence of a continuous solution and
bounded solution to (1.1) under fairly simple conditions. Moreover, the method used in the
proof allows us to obtain the asymptotic stability of the solutions. An example is presented to
show the importance and the applicability of our results.

2 Auxiliary facts and results

In this section, we provide some notations, definitions and auxiliary facts which will be needed
for stating our results. Denote by BC(R+, R) the Banach space of all real functions defined,
continuous and bounded on R+. It is equipped with the standard norm

‖x‖ = sup
t∈R+

|x(t)|.

For later use, we assume that X be a Banach space. Let B(X) denote the family of all nonempty
bounded subsets of X and W(X) the subset of B(X) consisting of all relatively compact
subsets of X. Finally, let Br denote the closed ball centered at 0 with radius r.
Recall the following definition of the concept of the axiomatic measure of noncompactness.

Definition 2.1. [6]. A function µ : B(X) −→ R+ is said to be a measure of noncompactness
if it satisfies the following conditions:

(1) The family ker(µ) = {M ∈ B(X) : µ(M) = 0} is nonempty and ker(µ) ⊂ W(X).

(2) M1 ⊂ M2 ⇒ µ(M1) ≤ µ(M2).

(3) µ(co(M)) = µ(M), where co(M) is the convex hull of M.

(4) µ(λM1 + (1− λ)M2) ≤ λµ(M1) + (1− λ)µ(M2) for λ ∈ [0, 1].

(5) If (Mn)n≥1 is a sequence of nonempty, weakly closed subsets of X with M1 bounded and
M1 ⊇ M2 ⊇ ... ⊇ Mn ⊇ ... such that lim

n→∞
µ(Mn) = 0, then M∞ :=

⋂∞
n=1 Mn is nonempty.

A measure µ is said to be sublinear if it satisfies the following two conditions:



Integral equations of product type 33

(6) µ(λM) = |λ|µ(M) for λ ∈ R.

(7) µ(M1 + M2) ≤ µ(M1) + µ(M2).

The family ker(µ) described in (1) is called the kernel of the measure of noncompactness µ.
More information about measures of noncompactness and their properties can be found in [5].
For our purposes, we will only need the following fixed point theorem [5].

In what follows, we will use a measure of noncompactness in the space BC(R+, R) which
was introduced in [5]. In order to recall the definition of this measure let us fix a nonempty
bounded subset X ∈ BC(R+, R) and a positive number T > 0. For x ∈ X and ε > 0, let us
define the following quantities (cf. [5]):

ωT(x, ε) = sup {|x(s)− x(t)| : t, s ∈ [0, T], |t− s| ≤ ε} .

Further, let us put

ωT(X, ε) = sup
{

ωT(x, ε) : x ∈ X
}

,

ωT
0 (X) = lim

ε−→0
ωT(X, ε), ω0(X) = lim

T−→∞
ωT

0 (X).

For a fixed number t ≥ 0, we denote

d(X(t)) = sup {|x(t)− y(t)| : x, y ∈ X} .

and
d(X) = lim sup

t−→∞
d(X(t)).

Finally, the function µ is defined by putting

µ(X) = ω0(X) + d(X).

It can be shown [5] that the function µ is a measure of noncompactness in the space BC(R+, R)

with the kernel ker(µ) consisting of all nonempty and bounded sets X such that functions from
X are equicontinuous and nondecreasing on R+. For other properties of µ, see [5].

3 Main result

We will use the following fixed point theorem.

Theorem 3.1. [4] Let Q be nonempty bounded closed convex subset of the space E and let F : Q −→
Q be a continuous operator such that µ(FX) ≤ kµ(X) for any nonempty subset X of Q, where
k ∈ [0, 1) is a constant. Then F has a fixed point in the set Q.

Equation (1.1) will be studied under the following assumptions:

(i) The functions p, q : R+ → R are continuous and bounded functions on R+. Let ‖p‖ be
the norm of p in BC(R+, R) and ‖q‖ be the norm of q in BC(R+, R).

(ii) The function f : R+ ×R → R is Lipschizian with respect to the second variable with a
Lipschitz constant α, that is, | f (t, x)− f (t, y)| ≤ α|x− y| for all t ∈ R+ and all x, y ∈ R.
Let β(t) = | f (t, 0)| ∈ BC(R+, R).
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(iii) The function u : R+ ×R+ ×R→ R is continuous and there exist a positive constant b1

and a function a1 ∈ BC(R+, R) such that |u(t, s, x)| ≤ k1(t, s) [a1(s) + b1 |x|] for (t, s, x) ∈
R+×R+×R, where k1 : R+×R+ → R+ is measurable function and the linear Volterra
operator K1 generated by k1,

(K1x) (t) =
∫ t

0
k1(t, s)x(s)ds, (3.1)

transforms the space BC(R+, R) into itself. Let ‖K1‖ be the norm of this operator.

(iv) The function v : R+ × R+ × R → R is continuous and there exists a function a2 ∈
BC(R+, R) such that |v(t, s, x)| ≤ k2(t, s)a2(s) for (t, s, x) ∈ R+ ×R+ ×R, where k2 :
R+ ×R+ → R+ is measurable function and the linear Volterra operator K2 generated
by k2,

(K2x) (t) =
∫ t

0
k2(t, s)x(s)ds, (3.2)

transforms the space BC(R+, R) into itself. Let ‖K2‖ be the norm of this operator.

(v) lim
t−→+∞

(Ki1) (t) = lim
t−→+∞

∫ t
0 ki(t, s)ds = 0, for i = 1, 2.

(vi) α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖) < 1.

To prove our main result, we need the following lemma.

Lemma 3.2. Under the assumptions (i)-(v) the operators

(Ux)(t) = p(t) +
∫ t

0
u(t, s, x(s))ds,

(Vx)(t) = q(t) +
∫ t

0
v(t, s, x(s))ds.

map BC(R+, R) continuously into itself.

Proof. We prove only that U maps BC(R+, R) continuously into itself and the proof of V is
similarly.
It is clear that the operator U maps BC(R+, R) into C(R+, R). Moreover, let x ∈ BC(R+, R),
since

| (K1x) (t)| ≤ ‖x‖ (K11) (t).

On the other hand, from the assumption (v), there exists T > 0 such for all t ≥ T

(K11) (t) ≤ 1.

Hence, from the assumption (iii), we have for all t ≥ T

|(Ux)(t)| ≤ (‖a1‖+ b1‖x‖) (K11) (t) ≤ ‖a1‖+ b1‖x‖.

On the other hand, (Ux) is bounded on [0, T], we deduce that U maps BC(R+, R) into itself.
Now, to prove that U is continuous, let {xn} be an arbitrary sequence in BC(R+, R) which
converges to x ∈ BC(R+, R).
Then, for ε > 0 there exist n1 ∈N and T > 0, such that for all n ≥ n1 and t ≥ T, we have

‖xn‖ ≤ 1 + ‖x‖, (K11) (t) ≤ ε

2‖a1‖+ b1(2‖x‖+ 1)
.
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It follows that, for n ≥ n1 and t ≥ T, we have

|(Uxn −Ux)(t)| ≤ (2‖a1‖+ b1(2‖x‖+ 1)) (K11) (t) ≤ ε. (3.3)

On the other hand, since u is uniformly bounded on the compact set [0, T] × [0, T] × [−1−
‖x‖, 1 + ‖x‖], hence there exists n2 ∈N such that for all n ≥ n2, we have

sup{|u(t, s, xn(s))− u(t, s, x(s))|, (t, s) ∈ [0, T]× [0, T], n ≥ n2} ≤
ε

T
,

which implies that, for all n ≥ n2 and t ∈ [0, T]

|(Uxn −Ux)(t)| ≤ ε. (3.4)

Then, from (3.3) and (3.4), we deduce that, for all n ≥ n0 = max(n1, n2)

‖Uxn −Ux‖ ≤ ε.

Thus, U maps BC(R+, R) continuously into itself. �

Remark 3.3. [7] The concept of the asymptotic stability of a solution x = x(t) of Eq. (1.1) is
understood in the following sense.
For any ε > 0 there exist T > 0 and r > 0 such that if x = x(t), y = y(t) are solutions of (1.1)
then |x(t)− y(t)| ≤ ε for t ≥ T.

Now we are able to state our main result.

Theorem 3.4. Under the assumptions above the nonlinear integral equation (1.1) has at least an
asymptotically stable solution x ∈ BC(R+, R).

Proof. Solving Eq. (1.1) is equivalent to finding a fixed point of the operator A, where Ax(t) =
f (t, x(t)) + (Ux)(t)× (Vx)(t). We will show that A satisfies the conditions of Theorem 3.1.
The proof is split into four steps.

Step 1. We first show that there exists Br0 from BC(R+, R) such that A(Br0) ⊂ Br0 . To see this,
let x ∈ Br. Then

‖Ax‖ ≤‖ f (t, x(t))‖+ ‖(Ux)(t)× (Vx)(t)‖
≤α‖x‖+ ‖β‖+ (‖p‖+ ‖K1(a1 + b1x)‖)× (‖q‖+ ‖K2(a2)‖)
≤α‖x‖+ ‖β‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖x‖))× (‖q‖+ ‖K2‖‖a2‖)
≤αr + ‖β‖+ (‖p‖+ ‖K1‖‖a1‖+ b1‖K1‖r)× (‖q‖+ ‖K2‖‖a2‖)
≤(α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖))r + ‖β‖+ (‖p‖+ ‖K1‖‖a1‖)(‖q‖+ ‖K2‖‖a2‖).

Since α + b1‖K1‖(‖q‖+ ‖K2‖‖a2‖) < 1, we deduce that the operator A transforms the ball Br0

into itself for r0 = ‖β‖+(‖p‖+‖K1‖‖a1‖)(‖q‖+‖K2‖‖a2‖)
1−(α+b1‖K1‖(‖q‖+‖K2‖‖a2‖)) .

Step 2. The operator A maps Br0 continuously into itself. To see this, take an arbitrary number
ε > 0 and a convergent sequence (xn) to (x) in Br0 .
Hence, by Lemma 3.2, there exists n0 such that for all n ≥ n0, we have

‖xn − x‖ ≤ ε

3α
, ‖Uxn −Ux‖ ≤ ε

3(‖q‖+ ‖K2‖‖a2‖)
,

‖Vxn −Vx‖ ≤ ε

3(‖p‖+ ‖K1‖(‖a1‖+ b1r0))
.



36 M. Bousselsal and A. Bellour

Which implies, for all n ≥ n0,

‖Axn − Ax‖ ≤α‖xn − x‖+ ‖(Uxn)× (Vxn)− (Ux)× (Vx)‖
≤α‖xn − x‖+ ‖Uxn‖‖Vxn −Vx‖+ ‖Vx‖‖Uxn −Ux‖
≤α‖xn − x‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1‖xn‖))‖Vxn −Vx‖
+ (‖q‖+ ‖K2‖‖a2‖)‖Uxn −Ux‖
≤α‖xn − x‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖Vxn −Vx‖
+ (‖q‖+ ‖K2‖‖a2‖)‖Uxn −Ux‖
≤ε.

We deduce that the operator A maps Br0 continuously into itself.
Step 3. We illustrate that there exists γ ∈ [0, 1) such that µ(AX) ≤ γµ(X) for all subset X of
Br0 . To see this, take an arbitrary number t ≥ 0. Then for any x, y ∈ X, we have

|Ax(t)− Ay(t)| ≤α|x(t)− y(t)|+ |Ux(t)||Vx(t)−Vy(t)|+ |Vy(t)||Ux(t)−Uy(t)|
≤α‖x(t)− y(t)‖+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))|Vx(t)−Vy(t)|
+ (‖q‖+ ‖K2‖‖a2‖)|Ux(t)−Uy(t)|
≤α‖x(t)− y(t)‖+ 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Which implies that

d(AX(t)) ≤αd(X(t)) + 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Now, taking into account the assumption (v) we obtain the following estimate:

d(AX) ≤ αd(X). (3.5)

Further, let us fix arbitrarily numbers T > 0, ε > 0, let x ∈ X and take t1, t2 ∈ [0, T] such that
|t2 − t1| ≤ ε. Without loss of generality we may assume that t1 < t2.
Then, in view of our assumptions, we have

|Ax(t2)− Ax(t1)| ≤α|x(t2)− x(t1)|+ |Ux(t2)||Vx(t2)−Vx(t1)|
+ |Vx(t1)||Ux(t2)−Ux(t1)|
≤α|x(t2)− x(t1)|+ (‖p‖+ ‖K1‖(‖a1‖+ b1r0))|Vx(t2)−Vx(t1)|
+ (‖q‖+ ‖K2‖‖a2‖)|Ux(t2)−Ux(t1)|.

(3.6)

Now, from the assumption (iii), we have

|Ux(t2)−Ux(t1)| ≤
∫ t2

0
|u(t2, s, x(s))− u(t1, s, x(s))|ds

+
∫ t2

t1

|u(t1, s, x(s))|ds

≤TωT(u, ε) + |t2 − t1|u
≤TωT(u, ε) + εu,

(3.7)
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where,

ωT(u, ε) = sup{|u(t2, s, x)− u(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},
u = sup{|u(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Similarly, from the assumption (iv), we obtain

|Vx(t2)−Vx(t1)| ≤ TωT(v, ε) + εv, (3.8)

where,

ωT(v, ε) = sup{|v(t2, s, x)− v(t1, s, x)|, t1, t2, s ∈ [0, T], |t2 − t1| ≤ ε, |x| ≤ r0},
vT = sup{|v(t, s, x)|, t, s ∈ [0, T], |x| ≤ r0}.

Hence, from (3.6), (3.7) and (3.8), we obtain

ωT(Ax, ε) ≤αωT(x, ε) + (‖p‖+ ‖K1‖(‖a1‖+ b1r0))(TωT(v, ε) + εv)

+ (‖q‖+ ‖K2‖‖a2‖)(TωT(u, ε) + εu).

Since lim
ε−→0

ωT(u, ε) = lim
ε−→0

ωT(v, ε) = 0, then

ω0(AX) ≤ αω0(X). (3.9)

We deduce, from (3.5) and (3.9), that

µ(AX) ≤ αµ(X).

Hence the third step is completed by taking γ = α < 1.
Finally, using Theorem 3.1, we can see that (1.1) has at least one solution x ∈ BC(R+, R).
Step 4. The solution x is asymptotically stable on R+.
Let ε > 0, and taking r = r0, then, for any other solution y ∈ Br0 , we have from Step 3

|Ax(t)− Ay(t)| ≤α‖x(t)− y(t)‖+ 2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖K21(t)

+ 2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0))K11(t).

Since α < 1, we obtain

|Ax(t)− Ay(t)| ≤2(‖p‖+ ‖K1‖(‖a1‖+ b1r0))‖a2‖
1− α

K21(t)

+
2(‖q‖+ ‖K2‖‖a2‖)(‖a1‖+ b1r0)

1− α
K11(t).

By using Assumption (v), we deduce that there exists T > 0 such that for all t ≥ T

|Ax(t)− Ay(t)| ≤ ε.

Which implies that the solution is asymptotically stable on R+. �
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4 Example

Consider the following integral equation

x(t) = t exp(−t) + 1 +
1
2

x(t)+
(

1
5 + t

+
∫ t

0

cos(s + t)
t + λ

ln(1 + x2(s))ds
)
×(

exp(−t) +
∫ t

0

sin(t)
(1 + 2t− s + |x(s)|)2 ds

)
,

(4.1)

where t ∈ R+ and λ is a positive number.
Set

f (t, x) = t exp(−t) + 1 +
1
2

x, p(t) =
1

5 + t
, q(t) = exp(−t), k1(t, s) =

| cos(s + t)|
t + λ

,

and

k2(t, s) =
1

(1 + 2t− s)2 , a1(s) = 0, b1 = 1, a2(s) = | sin(t)|.

Using the notations of Theorem 3.4, we can easily show that

α =
1
2

, ‖p‖ = 1
5

, ‖q‖ = ‖a2‖ = 1, K11(t) ≤ 2
t + λ

, K21(t) ≤ 1
1 + t

,

and

‖K1‖ ≤
2
λ

, ‖K2‖ ≤ 1.

Then the assumption (v) is satisfied, therefore, the inequality (vi) takes the form

1
2
+

4
λ
< 1⇐⇒ λ > 8.

Then by Theorem 3.4, we conclude that the integral equation (4.1) has an asymptotically stable
solution x ∈ BC(R+, R) whenever λ > 8.

5 Conclusion

In this paper, we have considered a general form of integral equations of product type on
the half-axis. The existence of a continuous solution and its asymptotic stability have been
investigated using the measures of non-compactness and Darbo’s fixed point theorem. Finally,
an example is provided to illustrate our main result.
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