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Abstract. We study the free vibration of an Euler-Bernoulli beam without internal
damping. By applying suitable control at the free boundary, we can exponentially
dampen these vibrations. The exponential stability was proven using the Lyapunov
method, and the results were confirmed through numerical simulation.
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1 Introduction

We consider the following Euler-Bernoulli beam with boundary control:
ρwtt + EIwxxxx − Twxx = 0, x ∈ (0, L) , t ≥ 0,
w(0, t) = wx(0, t) = wxx(L, t) = 0,
−EIwxxx(L, t) + Twx(L, t) = U(t), t ≥ 0,
w(x, 0) = w0(x), wt(x, 0) = w1(x), x ∈ (0, L) ,

(1.1)

where w(x, t) represents the displacements transverse of the beam at the position x for time
t, ρ, L, T and EI are respectively uniform mass, length, axial tension and bending stiffness
of the beam, and U(t) is the boundary control.

Recently, the problem of beam control has become one of the most important research
topics because of their applications in various fields. As it is one of the most effective mech-
anisms to achieve the stability of dynamic systems in the absence of internal dampers. We
mention some of the works that adopted boundary control [2–5, 11]. For problems with
internal damping, see [1, 6–10, 12].

The main contribution of this work is to achieve an exponential stabilization result by
adopting boundary control only.
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2 Preliminary

In this section, we will define energy as well as suggest an ideal control to achieve exponential
stability.

We introduce the energy associated with (1.1) as

E(t) =
ρ

2

∫ L

0
w2

t dx +
EI
2

∫ L

0
w2

xxdx +
T
2

∫ L

0
w2

xdx. (2.1)

Observe that this is the usual classical energy. The first term represents kinetic energy and
the other terms represent potential energy.

Control

The control’s objective is to reduce the free transverse vibrations of the beam. Lyapunov’s
direct method is used to construct a suitable boundary control at the free end of the beam.

To stabilize system (1.1), we propose the following control:

U(t) = −kwt(L, t), (2.2)

where k is a positive constant.

Lemma 2.1. The energy functional (2.1) satisfies

E′(t) = U(t)wt(L, t), ∀t ≥ 0. (2.3)

Proof. We take the derivation of energy E(t) with respect to time t, we have

E′(t) = ρ
∫ L

0
wttwtdx + EI

∫ L

0
wxxtwxxdx + T

L∫
0

wxtwxdx. (2.4)

By integrating by parts the last two terms into the previous relation and taking into
account the boundary condition (1.1), we get

E′(t) = ρ
∫ L

0
wttwtdx + EI

(∫ L

0
wtwxxxxdx − wtwxxx(L, t)

)
− T

(∫ L

0
wtwxxdx − wtwx(L, t)

)
.(2.5)

Using the equations (1.1) into (2.5), we obtain

E′(t) =
∫ L

0
(ρwtt + EIwxxxx − Twxx)wtdx + (Twx(L, t)− EIwt(L, t))wt(L, t)

= U(t)wt(L, t). (2.6)

Remark 2.2. The proposed control (2.2) and Lemma 2.1. ensure that energy is dissipated.
That is,

E′(t) = −kw2
t (L, t) ≤ 0, ∀t ≥ 0. (2.7)
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3 Exponential stability

In order to prove the energy decay result, let us define the Lyapunov functional by

L(t) = ϵE(t) + V(t), (3.1)

where ϵ is a positive constant and

V(t) = ρ
∫ L

0
xwxwtdx.

Proposition 3.1. There exist two positive constants τ1 and τ2, such that

τ1E(t) ≤ L(t) ≤ τ2E(t), ∀t ≥ 0. (3.2)

Proof. Applying Young’s inequality, we get

|V(t)| ≤ Lρ

2

∫ L

0
w2

t dx +
Lρ

2

∫ L

0
w2

xdx

≤ max{L,
L
T
}E(t). (3.3)

Considering ϵ > max{L, L
T}, we get (3.2) with τ1 = ϵ − max{L, L

T} and τ2 = ϵ + max{L, L
T}.

Lemma 3.2. The derivative of V(t) satisfies

V ′(t) ≤ −ρ

2

∫ L

0
w2

t dx − 3EI
2

∫ L

0
w2

xxdx − T
2

∫ L

0
w2

xdx

+
ρδ + 2

2δ
Lw2

t (L, t)− 2T − δ

2
Lw2

x(L, t), (3.4)

where δ is a positive constant.

Proof. By differentiating V(t) and using the first equation of (1.1), we have

V ′(t) = ρ
∫ L

0
(xwxtwt + xwxwtt) dx

=
∫ L

0
(ρxwxtwt − EIxwxwxxxx + Txwxwxx) dx. (3.5)

By integrating by parts the terms of (3.5) with respect for the boundary condition (1.1),
as follows

ρ
∫ L

0
xwxtwtdx = ρ

L
2

w2(L, t)− ρ

2

∫ L

0
w2

t dx, (3.6)

EI
∫ L

0
xwxwxxxxdx = EILwxwxxx(L, t)− EI

∫ L

0
(wx + xwxx)wxxxdx

= EILwxwxxx(L, t) +
3EI

2

∫ L

0
w2

xxdx (3.7)
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and

T
∫ L

0
xwxwxxdx =

TL
2

w2
x(L, t)− T

2

∫ L

0
w2

xdx. (3.8)

By collecting results (3.5)-(3.8), we get

V(t) = −ρ

2

∫ L

0
w2

t dx − 3EI
2

∫ L

0
w2

xxdx − T
2

∫ L

0
w2

xdx

+
Lρ

2
w2

t (L, t)− EILwxwxxx(L, t) +
TL
2

w2
x(L, t)

= −ρ

2

∫ L

0
w2

t dx − 3EI
2

∫ L

0
w2

xxdx − T
2

∫ L

0
w2

xdx

+
Lρ

2
w2

t (L, t) + LU(t)wx(L, t)− TL
2

w2
x(L, t). (3.9)

Using boundary control (2.2) and Young’s inequality, we obtain (3.4).

Theorem 3.3. The energy E(t) satisfies along the solution of system (1.1)

E(t) ≤ Ce−λt, t ≥ 0, (3.10)

where C and λ are two positive constants.

Proof. The derivative of L(t) is
L′(t) = E′(t) + V ′(t), (3.11)

Taking Lemma (2.2) and Lemma (2.3), we obtain

L′(t) ≤ −ρ

2

L∫
0

w2
t dx − 3EI

2

∫ L

0
w2

xxdx − T
2

∫ L

0
w2

xdx

−2δϵk − ρδ − 2
2δ

Lw2
t (L, t)− 2TL − Lδ

2
w2

x(L, t). (3.12)

By choosing δ < 2T and ϵ > ρδ+2
2δk > ρT+2

2Tk such that

2δϵk − ρδ − 2 > 0,

and
2TL − Lδ > 0.

The result (3.12) becomes
L′(t) ≤ −E(t), t ≥ 0.

Using equivalence relation (3.2), we obtain

L′(t) ≤ − 1
τ2
L(t), (3.13)

integrate this differential inequality over (0, t), we have

L(t) ≤ L(0)e−
1

τ2
t. (3.14)

Using relation (3.2) again, we obtain (3.10) with C = L(0)
τ1

and λ = 1
τ2

.
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4 Numerical simulations

In order to verify the effectiveness of the proposed control law, a simulation of the problem
(1.1) described in this section was performed using the finite difference method. It should
be noted that large values of the model parameters require very small time steps, which
increases the computation time. Therefore, it is possible to extend the simulation parameters
to improve the temporal performance. System parameters are listed in the following table:

Parameter Description Value
l Length of the beam 2m
T Tension 10N
ρ The mass per unit length 10kg/m
EI Bending stiffness 10Nm2

The corresponding initial conditions are given as w(x, 0) = cos(4πx) and wt(x, 0) = 0.

Figure 4.1: The displacement w(x, t) of beam: without control and with control.

Figure 4.2: Boundary control U(t) .

The displacement of the beam without control (i.e., with control gains k = 0) is shown
on the left side of Figure 4.1. From the results presented, it can be observed that there are
large vibrations along the beam. In the right side of Figure 4.1, the beam displacement
after activating the proposed control (k = 50) is shown. As can be seen, the control law
successfully reduces the vibrations and stabilizes the system. The temporal behavior of the
boundary control U(t) is shown in the Figure 4.2.
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5 Conclusion

This work succeeded in proposing an ideal linear control of the Euler-Bernoulli beam and
we were able to stabilize the beam energy exponentially under free vibrations.
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