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Abstract. In this paper, we developed Quintic and Septic C2-spline methods for solv-
ing initial fractional differential equations.
The convergence analysis of the methods is discussed. Illustrative examples are in-
cluded to demonstrate the validity and applicability of the presented techniques. Our
numerical results were compared with those in the recent literature. Keywords: Frac-

tional differential equation; Quintic and Septic C2-splines; Convergence analysis.
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1 Introduction

Fractional calculus has attracted significant interest of many researchers because it has
recently gained popularity in the investigation of various areas of science, and engineering,
such as nonlinear oscillation of earthquakes [9], fluid-dynamic traffic model [10], quantum
and statistical mechanics [16], colored noise [17], solid mechanics [28], economics [3], dy-
namics of interfaces between nanoparticles and substrates [4].
The existence and uniqueness of solutions to the fractional differential equations have been
investigated by the authors [14,24]. During the last decades, several methods have been used
to solve fractional differential equations, fractional partial differential equations, fractional
integro-differential equations and dynamic systems containing fractional derivatives, such
as Adomian’s decomposition method [7,18,19,34], variational iteration method [1,12,21,22],
spectral methods [6, 27, 30], homotopy perturbation method [11, 23, 32], homotopy analysis
method [8, 13, 37].

Consider the following fractional differential equation:

y”(x) + Dαy(x) = f (x, y), x ∈ [0, b] , 0 < α < 2, (1.1)
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with the initial conditions

y(0) = y0 , y′(0) = y′0, (1.2)

where y(x) is an unknown function, and Dα is the Caputo fractional differentiation oper-
ator and y0, y′0 are constants. In [20], Nakhushev investigated the existence and uniqueness
for the solutions of (1.1) by considering (1.2).

The Bagley-Torvik equation

Ay”(x) + BD
3
2 y(x) + Cy(x) = f (x) ,

is a special form of equation(1.1), that arises in the modeling of the motion of a rigid plate
immersed in a Newtonian fluid [33].

In this paper we approximate (1.1) subjected to (1.2) by the C2−spline methods.
The structure of this paper is as follows: In section 2, we introduce some necessary def-

initions and mathematical preliminaries of fractional calculus theory. In section 3, we use
Quintic and Septic C2-spline methods to solve equations (1.1) and (1.2). In section 4, the
convergence of the methods is analyzed. In section 5, the proposed methods are applied to
several examples. Comparisons with previously existing methods have been tested.

2 Basic definitions

In this section, basic definitions of fractional derivative and integral along with some prop-
erties have been presented. There are different definitions for fractional derivatives, the most
commonly used ones are the Riemann-Liouvill and the Caputo derivatives [24].

Definition 2.1. The Riemann-Liouvill fractional derivative is defined by:

RDα f (x) =
1

Γ(m − α)

dm

dxm

∫ x

0
(x − τ)m−α−1 f (τ) dτ, m − 1 < α < m, m ∈ N (2.1)

where Γ(.) is the Gamma function with the property Γ(x + 1) = xΓ(x), x ∈ R .

Definition 2.2. The Caputo fractional derivative is defined by :

Dα f (x) =
1

Γ(m − α)

∫ x

0
(x − τ)m−α−1 f (m)(τ) dτ, m − 1 < α < m, m ∈ N (2.2)

Definition 2.3. The Riemann-Liouvill fractional integral is defined by :

Iα f (x) =
1

Γ(α)

∫ x

0
(x − τ)α−1 f (τ) dτ, α > 0 (2.3)

Suppose that 0 < α < 1, and f is a continuous function, then

Dα(Iα f (t)) = f (t). (2.4)
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Some important properties of fractional derivative and fractional integral are listed in [35]
which are as:

Dαtv =
Γ(1 + v)

Γ(1 + v − α)
tv−α,

Dα( f (t).g(t)) = g(t)Dα
t f (t) + f (t)Dαg(t),

Dα f [g(t)] = f
′
g[g(t)]D

α
t g(t) = Dα

g f [g(t)](g
′
(t)),

Iα(Dα
t f (t)) = f (t)− f (0),

Dα(λ f (t) + µg(t)) = λDα
t f (t) + µDαg(t),

Dαc = 0,

(2.5)

where λ, µ and c are constants.

3 Numerical approximation

According to our knowledge Quintic C2-spline and Septic C2- spline have been developed by
Sallam et al. [31] and Rashidinia et.al [26] respectively to approximate the solution of regu-
lar initial value problems of second order. Here we apply these methods for solving of the
fractional differential equation (1.1) subjected to initial conditions(1.2).

3.1 Quintic C2- spline method

Following [31] for a given positive integer n the interval [0, b] is partitioned into n equal
subintervals Ii = [xi−1, xi], i = 1(1)n with the stepsize h = b

n . Let Π5 denotes the collection
of all polynomials of degree at most and:

S(2)
n,5 = {s(x) : s ∈ C2[0, b], s ∈ Π5, f or x ∈ Ii, i = 1(1)n}.

We want to construct a piecewise polynomial s ∈ S(2)
n,5 that satisfies 1.1 and 1.2 i.e,

s”(x) = −Dαs(x) + f (x, s(x)), s(0) = y0, s
′
(0) = y

′
0, (3.1)

and more ever satisfies the following conditions

(1) s”(xi) = −Dαs(xi) + f (xi, s(xi))

(2) for x ∈ [0, b], s(x) and its derivatives up to order 2 must be continuous.

Now denoting s”(x) at nodal points xi−1, xi− 2
3
, xi− 1

3
and xi such as , s”

i−1, s”
i− 2

3
, s”

i− 1
3
, s”

i , i =

1(1)n and using initial conditions in (3.1), then the unique Quintic s ∈ S(2)
n,5 in the interval

Ii = [xi−1, xi] defined by

s(x) = si−1 + hs
′
i−1A(t) + h2s”

i−1B(t) + h2s”
i− 2

3
C(t) + h2s”

i− 1
3
D(t) + h2s”

i E(t),

(3.2)
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where t = x−xi−1
h and A(t), B(t), C(t), D(t) and E(t) are the polynomials of degree at most 5.

To determine these coefficients, we differentiate (3.2) twice, we have:

s
′
(x) = s

′
i−1A

′
(t) + hs”

i−1B
′
(t) + hs”

i− 2
3
C

′
(t) + hs”

i− 1
3
D

′
(t) + hs”

i E
′
(t),

s”(x) =
1
h

s
′
i−1A”(t) + s”

i−1B”(t) + s”
i− 2

3
C”(t) + s”

i− 1
3
D”(t) + s”

i E”(t).

At nodal points we have

s(xi−1) = si−1 + hs
′
i−1A(0) + h2s”

i−1B(0) + h2s”
i− 2

3
C(0) + h2s”

i− 1
3
D(0) + h2s”

i E(0),

s
′
(xi−1) = s

′
i−1A

′
(0) + hs”

i−1B
′
(0) + hs”

i− 2
3
C

′
(0) + hs”

i− 1
3
D

′
(0) + hs”

i E
′
(0),

s”(xi−1) =
1
h

s
′
i−1A”(0) + s”

i−1B”(0) + s”
i− 2

3
C”(0) + s”

i− 1
3
D”(0) + s”

i E”(0),

s”(xi− 2
3
) =

1
h

s
′
i−1A”(

1
3
) + s”

i−1B”(
1
3
) + s”

i− 2
3
C”(

1
3
) + s”

i− 1
3
D”(

1
3
) + s”

i E”(
1
3
),

s”(xi− 1
3
) =

1
h

s
′
i−1A”(

2
3
) + s”

i−1B”(
2
3
) + s”

i− 2
3
C”(

2
3
) + s”

i− 1
3
D”(

2
3
) + s”

i E”(
2
3
),

s”(xi) =
1
h

s
′
i−1A”(1) + s”

i−1B”(1) + s”
i− 2

3
C”(1) + s”

i− 1
3
D”(1) + s”

i E”(1),

Therefore, we obtain

A(t) = t, B(t) =
1
2

t2 − 11
12

t3 +
3
4

t4 − 9
40

t5, C(t) =
3
2

t3 − 15
8

t4 +
27
40

t5,

D(t) = −3
4

t3 +
3
2

t4 − 27
40

t5, E(t) =
1
6

t3 − 3
8

t4 +
9
40

t5,

(3.3)

Now by using Definition (2.2) on equation (3.2), we obtain

Dαs(x) = hDα(A(t))s
′
i−1 + h2Dα(B(t))s”

i−1 + h2Dα(C(t))s”
i− 2

3
+ h2Dα(D(t))s”

i− 1
3
+ h2Dα(E(t))s”

i .

(3.4)

Setting x = xi in each subinterval, we have

Dα(A(t))|t=1 =
h−α

Γ(2 − α)
,

Dα(B(t))|t=1 = h−α

(
1

Γ(3 − α)
− 33

Γ(4 − α)
− 18

Γ(5 − α)
− 27

Γ(6 − α)

)
,

Dα(C(t))|t=1 = h−α

(
9

Γ(4 − α)
− 45

Γ(5 − α)
− 81

Γ(6 − α)

)
,

Dα(D(t))|t=1 = h−α

(
−18

4Γ(4 − α)
− 36

Γ(5 − α)
− 81

Γ(6 − α)

)
,

Dα(E(t))|t=1 = h−α

(
1

Γ(4 − α)
− 9

Γ(5 − α)
+

27
Γ(6 − α)

)
,

(3.5)
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The C2-spline s(x) for i = 1(1)n has been constructed to approximate the solution y(x)
of (1.1) as follows:

si− 2
3
= si−1 +

1
3

hs
′
i−1 +

97
3240

h2s”
i−1 +

19
540

h2s”
i− 2

3
− 13

1080
h2s”

i− 1
3
+

1
405

h2s”
i ,

si− 1
3
= si−1 +

2
3

hs
′
i−1 +

28
405

h2s”
i−1 +

22
135

h2s”
i− 2

3
− 2

135
h2s”

i− 1
3
+

2
405

h2s”
i ,

si = si−1 + hs
′
i−1 +

13
120

h2s”
i−1 +

3
10

h2s”
i− 2

3
+

3
40

h2s”
i− 1

3
+

1
60

h2s”
i ,

s
′
i = s

′
i−1 +

1
8

hs”
i−1 +

3
8

hs”
i− 2

3
+

3
8

hs”
i− 1

3
+

1
8

hs”
i ,

(3.6)

where s”
a = −Dα

xs(xa) + f (xa, sa) , a = i − 1, i − 2
3 , i − 1

3 , i with s0 = y0, s
′
0 = y

′
0 and finally by

solving above system we can obtain si− 2
3
, si− 1

3
, si.

3.2 Septic C2- spline method

Consider equation (1.1) subjected to the initial conditions (1.2). Following [26] for a given
positive integer n the interval [0, b] is partitioned into n equal subintervals Ii = [xi−1, xi], i =
1(1)n with the stepsize h = b

n . Let Π7 denotes the collection of all polynomials of degree at
most 7 and

S(2)
n,7 = {s(x) : s ∈ C2[0, b], s ∈ Π7, f orx ∈ Ii, i = 1(1)n}.

We want to construct a piecewise polynomial s ∈ S(2)
n,7 satisfies (1.1) and (1.2) i.e,

s”(x) = −Dα
xs(x) + f (x, s(x)), s(0) = y0, s

′
(0) = y

′
0, (3.7)

and more ever satisfies the following conditions:

(1) s”(xi) = −Dα
xs(xi) + f (xi, s(xi))

(2) for x ∈ [0, b], s(x) and its derivatives up to order 2 must be continuous.

Now denoting s”(x) at nodal points xi− 1
5
, xi− 2

5
, xi− 3

5
, xi− 4

5
, xi−1 and xi such as s”

i , s”
i− 1

5
, s”

i− 2
5
, s”

i− 3
5
, s”

i− 4
5
, s”

i−1,

i = 1(1)n and s0, s
′
0, then the unique Septic spline s ∈ S(2)

n,7 in the interval Ii defined by

s(x) = si−1 + hs
′
i−1A(t) + h2s”

i−1B(t) + h2s”
i− 4

5
C(t) + h2s”

i− 3
5
D(t) + h2s”

i− 2
5
E(t)

+h2s”
i− 1

5
F(t) + h2s”

i G(t),

(3.8)

where t = x−xi−1
h and A(t), B(t), C(t), D(t), E(t), F(t) and G(t) are the polynomials of degree at

most 7. In the similar manner we did for Quintic C2-spline, we determine A(t), B(t), C(t), F(t), G(t), E(t)
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in (3.9) as follows:

A(t) = t,

B(t) =
−625
1008

t7 +
125
48

t6 − 425
96

t5 +
125
32

t4 − 137
72

t3 +
1
2

t2,

C(t) =
3125
1008

t7 − 875
72

t6 +
1755

96
t5 − 1925

144
t4 +

25
6

t3,

D(t) =
−3125

504
t7 +

1625
72

t6 − 1475
48

t5 +
2675
144

t4 − 25
6

t3, (3.9)

E(t) =
3125
504

t7 − 1625
72

t6 +
1225
48

t5 − 325
24

t4 +
25
9

t3,

F(t) =
−3125
1008

t7 +
1375
144

t6 − 1025
96

t5 +
1525
288

t4 − 25
24

t3,

G(t) =
625
1008

t7 − 125
72

t6 +
175
96

t5 − 125
144

t4 +
1
3

t3.

Now by using Definition (2.2) on equation (3.8), so we obtain

Dαs(x) = hs
′
i−1Dα A(t) + h2s”

i−1DαB(t) + h2s”
i− 4

5
DαC(t) + h2s”

i− 3
5
DαD(t) + h2s”

i− 2
5
DαE(t)

+h2s”
i− 1

5
DαF(t) + h2s”

i DαG(t).

(3.10)

Setting x = xi in each subinterval, so we have

Dα(A(t))|t=1 =
h−α

Γ(2 − α)
,

Dα(B(t))|t=1 = h−α

(
−3125

Γ(8 − α)
+

1875
Γ(7 − α)

− 2125
Γ(6 − α)

+
375

4Γ(5 − α)

)
,

Dα(C(t))|t=1 = h−α

(
15625

Γ(8 − α)
− 8750

Γ(7 − α)
+

8875
4Γ(6 − α)

− 1975
6Γ(5 − α)

+
25

Γ(4 − α)

)
,

Dα(D(t))|t=1 = h−α

(
−31250
Γ(8 − α)

− 16250
Γ(7 − α)

+
7375

2Γ(6 − α)
+

2675
6Γ(5 − α)

− 25
Γ(4 − α)

)
,

Dα(E(t))|t=1 = h−α

(
−31250
Γ(8 − α)

− 1500
Γ(7 − α)

+
6125

2Γ(6 − α)
− 325

Γ(5 − α)
− 50

3Γ(4 − α)

)
,

Dα(E(t))|t=1 = h−α

(
−31250
Γ(8 − α)

− 1500
Γ(7 − α)

+
6125

2Γ(6 − α)
− 325

Γ(5 − α)
− 50

3Γ(4 − α)

)
.

(3.11)

Finally the C2-spline s(x) f or i = 1(1)n has been constructed to approximate solution y(x)
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of (1.1) as follows:

si− 4
5
= si−1 +

1
5

hs
′
i−1 +

1
125

(
1231
1008

h2s”
i−1 +

4315
2016

h2s”
i− 4

5
− 761

504
h2s”

i− 3
5
+

941
1008

h2s”
i− 2

5

− 341
1008

h2s”
i− 1

5
+

107
2016

h2s”
i

)
,

si− 3
5
= si−1 +

2
5

hs
′
i−1 +

1
125

(
355
126

h2s”
i−1 +

544
63

h2s”
i− 4

5
− 185

63
h2s”

i− 3
5
+

136
63

h2s”
i− 2

5

−101
126

h2s”
i− 1

5
+

8
63

h2s”
i

)
,

si− 2
5
= si−1 +

3
5

hs
′
i−1 +

1
125

(
4428
1008

h2s”
i−1 +

31509
2016

h2s”
i− 4

5
− 9

8
h2s”

i− 3
5
+

435
112

h2s”
i− 2

5

−9
7

h2s”
i− 1

5
+

45
224

h2s”
i

)
,

si− 1
5
= si−1 +

4
5

hs
′
i−1 +

1
125

(
376
63

h2s”
i−1 +

1424
63

h2s”
i− 4

5
− 176

63
h2s”

i− 3
5
+

608
63

h2s”
i− 2

5

−80
63

h2s”
i− 1

5
+

16
63

h2s”
i

)
,

si = si−1 + hs
′
i−1 +

61
1008

h2s”
i−1 +

475
2016

h2s”
i− 4

5
+

25
504

h2s”
i− 3

5
+

125
1008

h2s”
i 2

5
+

25
1008

h2s”
i− 1

5

+
11

2016
h2s”

i ,

s
′
i = s

′
i−1 +

19
288

hs”
i−1 +

25
96

hs”
i− 4

5
+

25
144

hs”
i− 3

5
+

25
144

hs”
i− 2

5
+

25
96

hs”
i− 1

5
+

19
288

hs”
i ,

(3.12)

where s”
a = −Dα

x s(xa) + f (xa, sa), a = i − 1, i − 4
5 , i − 3

5 , i − 2
5 , i − 1

5 , i with s0 = y0, s
′
0 = y

′
0 and

coefficients si− 4
5
, si− 3

5
, si− 2

5
, si− 1

5
, si can be determined by solving system (3.12).

4 Convergence analysis

In this section, without loss of generality we will consider problem (1.1) with homogenous
conditions.

Considering

y”(x) = z(x), (4.1)

with the initial conditions

y(0) = 0, y
′
(0) = 0, (4.2)

has a unique solution, then there is a Green’s function G(x, s) for the problem, where

y(x) =
∫ x

0
G(x, s)z(s) ds = Gz(x), (4.3)
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and

G(x, s) = (x − s). (4.4)

Since the operator Gz(x) satisfies the following conditions :

(1) limh→0(maxt,s∈[0,b] max
|t−s|≤h

∫ b
0 |G(t, x)− G(s, x)| dx) = 0.

(2) max
t∈[0,b]

∫ b
0 |G(t, s)| ds < ∞.

Therefore Gz(x) is a compact and bounded operator [2].
Now we will prove the following theorem.

Theorem 4.1. Let y(x) satisfies (4.3), then

Dαy(x) = Dα
∫ x

0
G(x, s) z(s) ds =

∫ x

0
(Dα G(x, s)) z(s) ds = Dα Gz(x). (4.5)

Proof. From the Caputo fractional derivative Dαy(x), we get

Dαy(x) = Dα
∫ s=x

s=0
G(x, s) z(s) ds =

1
Γ(m − α)

∫ t=x

t=0
(x − t)m−α−1

( dm

dtm

[∫ s=t

s=0
G(t, s)

z(s) ds
])

dt,

(4.6)

where
dm

dtm

[∫ s=t

s=0
G(t, s) z(s) ds

]
=

∫ s=t

s=0

∂m

∂tm G(t, s) z(s) ds, (4.7)

so we have:

Dαy(x) =
1

Γ(m − α)

∫ t=x

t=0
(x − t)m−α−1

[∫ s=x

s=0

∂m

∂tm G(t, s) z(s) ds
]

dt. (4.8)

By changing the order of integration we have:

Dαy(x) =
∫ s=x

s=0

[ 1
Γ(m − α)

∫ t=x

t=a
(x − t)m−α−1 ∂m

∂tm G(t, s) dt
]
z(s) ds.∫ s=x

s=0
(DαG(x, s)) z(s) ds = Dα Gz(x).

(4.9)

So that the proof is complete.

Theorem 4.2. Assuming that s(x) ∈ S(2)
n,i , i = 5, 7 be the solution of (3.1) and y(x) be the solution

of (1.1)-(1.2). If n ≥ N0, then for constants ck and c0 independent of h, we have:

∥y − s(x)∥ ≤ ck∥y(k+2)∥hk, f or y ∈ Ck+2[0, b], 1 ≤ k ≤ 2,

∥y − s(x)∥ ≤ c0ψ(y”, h), f or y ∈ C2[0, b],
(4.10)

where

ψ(ϕ, h) = sup{|ϕ(x + h)− ϕ(x)| : x, x + h ∈ [0, b]}. (4.11)
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Proof. Following [15] by using equation (4.1) and theorem 4.1, equation (1.1) can be written
in the following form

z(x) +
∫ x

0
Dα G(x, s) z(s) ds = f (x, Gz(x)), (4.12)

where the operator DαG is compact. Therefore, the solution of equations (1.1)-(1.2) is
equivalent to the solution of equation (4.12).

Equation (4.12) can be written in operator form as:

(I + DαG)z = f . (4.13)

Since s(x) ∈ S(2)
n,i , i = 5, 7, therefore, s ∈ C2[0, b] and so s”(x) ∈ C[0, b].

Setting

s”(x) = zn(x), (4.14)

so zn(x) is a continuous piecewise polynomial that satisfies homogeneous initial condi-
tions.
Now define a linear projection Pc which maps each continuous function into

Sj = {s(x) : s ∈ C2[0, b], s ∈ Πj}, j = 3, 5,

where Sj is a spline function of degree j, and by following [25] for continuous function
z, lim

h→0
∥Pcz − z∥∞ → 0 and this implies that lim

h→0
∥PcDαG − DαG∥∞ → 0.

By using theorem (4.1), we obtain

s”(x) = −DαGs(x) + f (x, s(x)). (4.15)

Substitute (4.14) in (4.15) and operating Pc on both sides of (4.15) and since Pczn = zn, then
after simplification we obtain:

zn + PcDαGzn = Pc f . (4.16)

Operating the linear projection operator Pc on both sides of (4.13) we have

Pcz + PcDαGz = Pc f . (4.17)

By using (4.16) and (4.17), we easily obtain that

(I + PcDαG)(z − zn) = z − Pcz. (4.18)

Following [29], (I + PcDαG)−1 exists and it is bounded. then we have

z − zn = (I + PcDαG)−1(z − Pcz). (4.19)

By operating G on both sides of (4.19) and using (4.1) and (4.3), we obtain

y − s(x) = G(I + PcDαG)−1(y” − Pcy”). (4.20)

Since operator G is bounded we have

∥y − s(x)∥ ≤ ∥G∥∥(I + PcDαG)−1∥∥y” − Pcy”∥. (4.21)

According to the theory of interpolation [25], we have

∥y” − Pcy”∥ ≤ ηk∥y(k+2)∥hk, f or y ∈ Ck+2[0, b], 1 ≤ k ≤ 2,

∥y” − Pcy”∥ ≤ η0ψ(y”, h), f or y ∈ C2[0, b]. (4.22)

Following [29], ∥(I + PcDαG)−1∥ ≤ δ, for n ≥ N0. Finally c0 = δη0∥G∥ and ck = δηk∥G∥,
k = 1, 2. Then the proof is complete.
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5 Numerical results

In this section, we test our presented methods to solve the following examples. Numerical
computations reported here have been carried out in a Mathematica environment. We verify
that our approaches are efficient and applicable to fractional differential equations (1.1). The
computed errors in the solutions are given:

RMS =

[ n

∑
j=0

e2
n(xj)

n

] 1
2

,

where.en = y(xn)− s(xn).
We compare our results with the results given in [5], [15] and [36].

Example 5.1. Consider the Bagley-Torvik equation

y”(x) + BD
3
2 y(x) + Cy(x) = f (x) ,

with

y(0) = 1, y
′
(0) = 1.

In order to make a comparison with the numerical solution in [5] we have solved this problem
on interval [0, b]. The numerical results at x = 5, are listed in Table 5.1. the exact solution to
this problem is y(x) = x + 1.

Table 5.1: Absolute errors.
h Quintic spline method Septic spline method [5]
1
2 5.9 E − 2 4.24 E − 2 1.51 E − 1
1
4 1.9 E − 2 1.62 E − 2 4.68 E − 2
1
8 6.66 E − 3 6.071 E − 3 1.602 E − 2
1

16 2.25 E − 3 2.23 E − 3 5.62 E − 3

Example 5.2. Consider the following fractional differential equation

y”(x) = −Dαy(x) + 30x4 − 56x6 +
1024

231
√

π
x5.5 − 32768

6435
√

π
x7.5,

with

y(0) = 0, y
′
(0) = 0.

The exact solution to this problem is y(x) = x6 − x8. RMS errors with solutions are presented
in Tables 5.2,5.3, 5.4.

Example 5.3. Consider the following fractional differential equation

y”(x) = −D0.5y(x) +
256

64
√

π
x4.5 − 128

35
√

π
x3.5 + 20x3 − 12x2,

with

y(0) = 0, y
′
(0) = 0.

the exact solution of this problem is y(x) = x5 − x4. RMS errors with solutions is presented
in Table 5.5.
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Table 5.2: RMS errors for α = 0
h Quintic spline method Septic spline method
1
8 0.488524 E − 4 7.44652 E − 8
1
16 0.358964 E − 4 1.01118 E − 7
1
32 0.383262 E − 4 1.24191 E − 7
1
64 0.414685 E − 4 1.39324 E − 7

Table 5.3: RMS errors for α = 0.2
h Quintic spline method Septic spline method
1
8 0.119991 E − 3 1.34581 E − 7
1
16 0.675742 E − 4 1.85004 E − 7
1
32 0.691067 E − 4 2.38609 E − 7
1
64 0.768007 E − 4 2.80765 E − 7

Table 5.4: RMS errors for α = 0.4
h Quintic spline method Septic spline method
1
8 0.335703 E − 3 2.24091 E − 7
1
16 0.124821 E − 3 3.57712 E − 7
1
32 0.111639 E − 3 4.05279 E − 7
1
64 0.126435 E − 3 5.05839 E − 7

Table 5.5: RMS errors.
h Quintic spline method Septic spline method [15]
1
8 0.44981 E − 3 0.6988 E − 2 6.9291 E − 3
1
16 0.27243 E − 3 1.7222 E − 4 1.7368 E − 3
1
32 0.28483 E − 3 2.2623 E − 4 4.3646 E − 4
1
64 0.31768 E − 3 2.7225 E − 4 1.0914 E − 4
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