
Journal of Innovative Applied Mathematics and Computational Sciences

J. Innov. Appl. Math. Comput. Sci. 1(1) (2021) 64–78. n2t.net/ark:/49935/jiamcs.v1i1.6

http://jiamcs.centre-univ-mila.dz/

ISSN (electronic): 2773-4196
© 2021 Published under a Creative Commons Attribution-Non Commercial-NoDerivatives 4.0 International Li-
cense by the Institute of Sciences and Technology, University Center Abdelhafid Boussouf , MILA, ALGERIA.

On periodic solutions of fractional-order differential
systems with a fixed length of sliding memory

Safa Bourafa ID B 1, Mohammed Salah Abdelouahab ID 1 and René Lozi
ID 2

1Laboratory of Mathematics and their interactions, University Center of Mila, Algeria
2 Université Côte d’Azur, CNRS, LJAD, Nice, France

Received 16 November 2021, Accepted 25 December 2021, Published 30 December 2021

Abstract. The fractional-order derivative of a non-constant periodic function is not pe-
riodic with the same period. Consequently, any time-invariant fractional-order systems
do not have a non-constant periodic solution. This property limits the applicability of
fractional derivatives and makes it unfavorable to model periodic real phenomena. This
article introduces a modification to the Caputo and Rieman-Liouville fractional-order
operators by fixing their memory length and varying the lower terminal. It is shown
that this modified definition of fractional derivative preserves the periodicity. There-
fore, periodic solutions can be expected in fractional-order systems in terms of the new
fractional derivative operator. To confirm this assertion, one investigates two examples,
one linear system for which one gives an exact periodic solution by its analytical ex-
pression and another nonlinear system for which one provides exact periodic solutions
using qualitative and numerical methods.

Keywords: Fractional-order derivative; sliding fixed memory length; periodic solution.
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1 Introduction

The history of fractional calculus goes back to the end of the 17th century when L’Hopital
asked Leibniz what meaning could be ascribed to Dn f if n were a fraction? Since that,
time-fractional calculus has drawn the attention of many famous mathematicians, such as
Euler, Laplace, Fourier, Abel, Liouville, Riemann, and Laurent [18]. The advantages of
fractional calculus have been described and pointed out in the last few decades by many
authors [8, 15–19]. It has been shown that the fractional-order models of realistic systems
are regularly more adequate than usually used integer-order models. Applications of these
fractional-order models spread in many fields, such as viscoelastic systems, dielectric polar-
ization, electrode-electrolyte polarization, electromagnetic waves, quantum evolution of com-
plex systems, and so on [6, 10, 11, 14, 20]. There are three definitions most frequently used
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for the general fractional differential operators. The first one is the Grünwald-Letnikov (GL)
fractional differential operator defined by the limit of a fractional-order backward difference
and has an advantage for numerical simulations. The second type is the Riemann-Liouville
(RL) definition; this operator played a pivotal role in developing the fractional calculus the-
ory. Using these two fractional differential operators in modeling real phenomena leads to
mathematical models with initial conditions expressed in terms of fractional derivatives that
do not have known physical interpretation. The third type is the Caputo derivative having the
advantage of dealing models with initial conditions expressed in terms of the field variables
and their integer-order derivatives, having clear physical interpretations [9]. Recently it has
been demonstrated that the fractional-order derivative of a non-constant periodic function is
not a periodic function with the same period [13, 22, 23] and in [5] the authors studied quasi-
periodic properties of fractional order integrals and derivatives of periodic functions. As a
consequence of the non-periodicity of the fractional derivative of a T−periodic function, the
time-invariant fractional-order systems do not have any non-constant exact periodic solution
unless the lower terminal of the derivative is ±∞ [12, 13,23], which is not realistic. This prop-
erty limits the applicability of the fractional derivative and makes it unfavorable for periodic
real phenomena. In [1], the authors have proposed a modification of the Grünwald-Letnikov
fractional differential operator, which consists of fixing the memory length and varying the
lower terminal of the derivative. They have demonstrated that the modified definition of
fractional derivative preserves the periodicity. The present paper extends this modification to
the Caputo and Rieman-Liouville fractional-order operators. Tow examples are investigated
to confirm that periodic solutions arise in fractional-order systems when the new fractional
derivative operator is used. One linear system for which one gives an exact periodic solution
defined by its analytical expression and another nonlinear system for which one provides an
exact periodic solution using both qualitative and numerical methods.

2 Fractional-Order Derivatives

As said above, the most usual definitions of fractional-order derivative are the Grünwald-
Letnikov, the Riemann-Liouville and the Caputo definitions [17]. For 0 < α < N, the α−th
order derivative of a function f (t) with respect to t and a terminal value a is given in the sense
of

• Grünwald-Letnikov by

GL
a Dα

t f (x) = lim
h→ 0

nh = x− a

h−α
n

∑
k=0

(−1)k
(

α

k

)
f (x− kh), (2.1)

where
(

α

k

)
= Γ(α+1)

k!Γ(α−k+1) .

• Riemann-Liouville by

RL
a Dα

t f (t) =
1

Γ(m− α)

dm

dtm (

t∫
a

(t− τ)m−α−1 f (τ)dτ). (2.2)
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• Caputo by

C
a Dα

t f (t) =
1

Γ(m− α)

t∫
a

(t− τ)m−α−1 f (m)(τ)dτ. (2.3)

In (2.2) and (2.3), m is the first integer greater than α, and Γ(.) is the Gamma function.
The following theorems reveal a remarkable property for the fractional derivatives based on
Caputo definition, Grünwald-Letnikov definition, Riemann-Liouville definition [22].

Theorem 2.1. Suppose that f (t) is a non constant periodic function with period T.
If f (t) is m-times differentiable, then the functions C

a Dα
t f (t), where 0 < α < N and m is the first

integer greater than α, cannot be a periodic functions with period T.

Theorem 2.2. Suppose that f (t) is (m-1)-times continuously differentiable and f (m)(t) is bounded. If
f (t) is a non-constant periodic function with period T, then the functions GL

a Dα
t f (t) and RL

a Dα
t f (t),

where 0 < α <N and m is the first integer greater than α, cannot be periodic functions with period T.

Example 2.3. Let f (t) = sin(t). One has

sin(t) =
∞

∑
p=0

(−1)p t2p+1

(2p + 1)!
.

Hence

RL
a Dα

t sin(t) = t1−αE2,2−α(−t2),

where 0 < α < 1 and Eα,β(t) is the generalized Mittag-Leffler function defined by

Eα,β(t) =
∞

∑
k=0

tk

Γ(αk + β)
.

Numerical simulations showed that t1−αE2,2−α(−t2) is not a periodic function where 0 < α <

1, even if α = 1 this function is the periodic function cos(t).

As a consequence of the above theorems, periodic solution cannot be expected in fractional-
order systems, under any circumstances [22, 23].

Corollary 2.4. A differential equation of fractional-order in the form

.
a Dα

t x(t) = f (x(t)),

where 0 < α <N, cannot have any non-constant smooth periodic solution.

This property highlights one of the basic differences between fractional-order derivative
and integer-order one, and it makes fractional-order systems unfavourable for a wide range
of real periodic phenomena. Therefore in this paper one overcomes this problem by imposing
a simple modification to both Riemann-Liouville and Caputo definitions.
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3 The Fractional-Order Derivative with Sliding Fixed Memory Length

one first recalls the Grünwald-Letnikov fractional-order derivative with fixed memory length
introduced in [1].

Definition 3.1. (The Grünwald-Letnikov fractional derivative with fixed memory length)
Let α ≥ 0, L > 0, m an integer such that m− 1 ≤ α < m and f an integrable function in the
interval [a− L, b]. The operator

MG

L
Dα

t defined by :

MG

L
Dα

t f (t) = lim
h→0

1
hα

L
h

∑
k=0

(−1)k Γ(α + 1)
k!Γ(α− k + 1)

f (t− kh), t ∈ [a, b], (3.1)

is called the Grünwald-Letnikov fractional derivative with sliding fixed memory length.

The following proposition gives an evaluation of the limit in the definition of Grünwald-
Letnikov fractional derivative with sliding fixed memory length.

Proposition 3.2. Under the assumptions of definition (3.1), if the function f is m-differentiable with
f (m) ∈ L1[a− L, b], then

MG

L Dα
t f (t) =

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(m− α)

t∫
t−L

(t− τ)m−α−1 f (m)(τ)dτ. (3.2)

It has been demonstrated that this modified fractional-order derivative possesses two im-
portant properties: the preservation of periodicity and the short memory, which considerably
reduces the cost of numerical computations. Furthermore, it has been proven that contrarily
to fractional autonomous systems defined using classical fractional derivative, the fractional
autonomous systems in terms of the modified fractional derivative can generate exact periodic
solutions.
In order to generalize this work, one introduces in this section a similar modification to both
Caputo fractional-order derivative and Riemann-Liouville fractional-order derivative as fol-
lows.

Definition 3.3. (The Caputo fractional derivative with sliding fixed memory length) Let α > 0,
L > 0, m an integer such that m = [α] + 1 and f ∈ Cm[a − L, b]. The Caputo fractional
derivative with sliding fixed memory length is defined by

MC
L Dα

t f (t) =
1

Γ(m− α)

t∫
t−L

(t− τ)m−α−1 f (m)(τ)dτ. (3.3)

Definition 3.4. (The Riemann-Liouville fractional derivative with sliding fixed memory length)
Let α ≥ 0, L > 0, m an integer such that m− 1 ≤ α < m and f is a continuous function in
[a− L, b],the Riemann-Liouville fractional derivative with sliding fixed memory length is de-
fined by

MRL

L Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

t−L
(t− τ)m−α−1 f (τ)dτ, (3.4)

Remark 3.5. From (3.2) and (3.3) one gets

MC

LDα
t f (t) =

MG

LDα
t f (t)−

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.5)
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Proposition 3.6. Under the assumption that the function f (t) is m-times continuously differentiable

MRL

L Dα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.6)

Proof. By differentiation and performing repeatedly integration by parts, one has

MRL

L Dα
t f (t) =

1
Γ(m− α)

dm

dtm

∫ t

t−L
(t− τ)m−α−1 f (τ)dτ,

= − f (m−1)Lm−α−1(t− L)
Γ(m− α)

+
1

Γ(m− α− 1)
dm−1

dtm−1

∫ t

t−L
(t− τ)m−α−2 f (τ)dτ,

...

= −
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(−α)

∫ t

t−L
(t− τ)−α−1 f (τ)dτ,

setting I = 1
Γ(−α)

∫ t
t−L(t− τ)−α−1 f (τ)dτ, and performing successive integrations by parts

one obtains

I =
f (t− L)L−α

Γ(1− α)
+

1
Γ(1− α)

∫ t

t−L
(t− τ)−α f ′(τ)dτ,

=
f (t− L)L−α

Γ(1− α)
+

f ′(t− L)L1−α

Γ(2− α)
+

1
Γ(2− α)

∫ t

t−L
(t− τ)−α+1 f (2)(τ)dτ,

...

=
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
+

1
Γ(m− α)

∫ t

t−L
(t− τ)−α+m−1 f (m)(τ)dτ,

=
MG

L
Dα

t f (t).

Therefore
MRL

L Dα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
.

�

Remark 3.7. From (3.5) and (3.6) one has

MRL

L Dα
t f (t) =

MC

LDα
t f (t) =

MG

L
Dα

t f (t)−
m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
. (3.7)

In the following parts, one denotes the operators of Caputo and Riemann-Liouville frac-
tional derivative with sliding fixed memory length by M

LDα
t .

3.1 Fractional derivative of some elementary functions

In order to highlight the amazing properties of the fractional derivative with sliding fixed
memory length one consider two elementary functions (the power and exponential functions),
for which one computes their new derivatives.
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3.1.1 New fractional derivative of the power function

Let f (t) = tn, n ∈N∗, α > 0, L > 0 and m is an integer such that m− 1 < α < m.
If n < m, then f (m)(t) = 0, substituting in (3.3) yields M

LDα
t (t

n) = 0.
If n ≥ m then by repeated integrations by parts of the relation (3.3) one obtains

M
LDα

t (t
n) =

n−m

∑
k=0

n!L−α+m+k(t− L)n−m−k

(n−m− k)!Γ(−α + m + k + 1)
. (3.8)

Remark 3.8. (Fractional derivative of a constant function)
If f is a constant function (i.e. f (t) = C for all t ∈ [a− L, b], and C any constant including zero)
then one has

M
LDα

t C = 0.

3.1.2 Fractional derivative of the exponential function

Let f (t) = et =
∞
∑

p=0

tp

p! , α > 0, L > 0 and m is an integer such that m− 1 < α < m.

One has
M
LDα

t et = M
LDα

t

∞

∑
p=0

tp

p!
=

∞

∑
p=0

1
p!

M
LDα

t tp.

From (3.8), one obtains that

M
LDα

t (e
t) =

∞

∑
p=0

p−m

∑
k=0

L−α+m+k(t− L)p−m−k

(p−m− k)!Γ(−α + m + 1 + k)
,

=
∞

∑
p=0

p−m

∑
k=0

L−α+m+k(t− L)p−m−k

(p−m− k)!Γ(k− α + m + 1)
,

=
∞

∑
p=0

p

∑
k=0

L−α+m+k(t− L)p−k

(p− k)!Γ(k− α + m + 1)
,

=
∞

∑
p=0

L−α+m(t− L)p

p!Γ(−α + m + 1)
+

∞

∑
p=0

L−α+m+1(t− L)p

p!Γ(−α + m + 2)
+ . . . ,

=

(
∞

∑
p=0

(t− L)p

p!Γ(−α + m + 1)

)(
∞

∑
k=0

L−α+m+k

Γ(−α + m + 1 + k)

)
,

= et−LL−α+m
∞

∑
k=0

Lk

Γ(−α + m + 1 + k)
,

= et−LLm−αE1,m+1−α(L).

3.2 Derivative of a periodic function

The main result of this paper is stated in the following theorem.

Theorem 3.9. Let α > 0, L > 0 and m an integer such that m− 1 < α < m and f ∈ Cm[a− L, b].
If f is a periodic function with period T, Then M

LDα
t f is a periodic function with the same period T.

Proof. Suppose that f is a periodic function with a period T. The aim of this proof is to
demonstrate that the function g(t) = M

LDα
t f is a periodic function with the same period T (i.e.
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g(t + T) = g(t)).
One has

g(t + T) = M
LDα

t+T f (t + T) =
1

Γ(m− α)

∫ t+T

t+T−L
(t + T − τ)m−α−1 f (m)(τ + T)dτ,

=
1

Γ(m− α)

∫ t

t−L
(t− s)m−α−1 f (m)(s + 2T)ds,

=
1

Γ(m− α)

∫ t

t−L
(t− s)m−α−1 f (m)(s)ds,

= M
LDα

t f (t) = g(t).

Thus, M
LDα

t f is a periodic function with the same period T.
�

3.2.1 Fractional derivative of some fundamental periodic functions

Note first that the functions MG
L Dα

t sin(t) and MG
L Dα

t cos(t) have been calculated in [1].

Example 3.10. (Fractional derivative with sliding fixed memory length of the sine function)
By definition

M
LDα

t f (t) =
MG

LDα
t f (t)−

m−1

∑
k=0

f (k)(t− L)Lk−α

Γ(k− α + 1)
.

Therefore

M
LDα

t sin(t) =
MG

LDα
t sin(t)−

m−1

∑
k=0

dk

dtk (sin(t− L))Lk−α

Γ(k− α + 1)
,

= L−α sin(t− L)E2,1−α(−L2) + L1−α cos(t− L)E2,2−α(−L2)

− L−α
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
sin(t− L)− L1−α

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
cos(t− L),

= L−α sin(t− L)(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
)

+ L1−α cos(t− L)(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
),

= a sin(t− L) + b cos(t− L), (3.9)

where, a = L−α(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
), b = L1−α(E2,2−α(−L2)−

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
).

One notices that, M
LDα

t sin(t) is a periodic function with the period T = 2π. This analytical
result is displayed in figure (3.1), for some values of α and L = 32.1.

Example 3.11. (Fractional derivative of cosine function)
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Figure 3.1: Fractional derivative of the Sine function for L = 32.1 and some values of α.

By definition

M
LDα

t cos(t) =
MG

LDα
t cos(t)−

m−1

∑
k=0

dk

dtk (cos(t− L))Lk−α

Γ(k− α + 1)
,

= L−α cos(t− L)E2,1−α(−L2)− L1−α sin(t− L)E2,2−α(−L2)

− L−α
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
cos(t− L) + L1−α

[m−2
2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
sin(t− L),

= L−α cos(t− L)(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
)

− L1−α sin(t− L)(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
),

= a cos(t− L)− b sin(t− L), (3.10)

where,

a = L−α(E2,1−α(−L2)−
[m−1

2 ]

∑
k=0

(−L2)k

Γ(2k + 1− α)
),

and

b = L1−α(E2,2−α(−L2)−
[m−2

2 ]

∑
k=0

(−L2)k

Γ(2k + 2− α)
).

Obviously M
LDα

t cos(t) is a periodic function with period T = 2π.

3.3 An interpolation property

It is known that the operator of Grünwald-Letnikov fractional derivative with sliding fixed
memory length is an extension of the integer-order operator dm

tm , (see [1]).
The following proposition proves that the Caputo and Riemann-Liouville operators of the
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fractional derivative with sliding fixed memory length verifies this property for α → m, but
not for α→ m− 1.

Proposition 3.12. Let L > 0 and 0 ≤ m− 1 < α < m such that m is an integer number, and let f (t)
having (m + 1) continuous bounded derivatives in [a− L, b]. Then , for all t ∈ [a, b], one has

lim
α→m

M
LDα

t f (t) = f (m)(t),

and
lim

α→m−1
M
LDα

t f (t) = f (m−1)(t)− f (m−1)(t− L).

Proof. One has

lim
α→m

M
LDα

t f (t) = lim
α→m

1
Γ(m− α)

∫ t

t−L
(t− τ)m−α−1 f (m)(τ)dτ,

= lim
α→m

Lm−α f (m)(t− L)
Γ(m− α + 1)

+ lim
α→m

1
Γ(m− α + 1)∫ t

t−L
(t− τ)m−α f (m+1)(τ)dτ,

= f (m)(t− L) +
∫ t

t−L
f (m+1)(τ)dτ,

= f (m)(t).

For α→ m− 1, one has

lim
α→m−1

MC

LDα
t f (t) = lim

α→m−1

1
Γ(m− α)

∫ t

t−L
(t− τ)m−α−1 f (m)(τ)dτ,

=
∫ t

t−L
f (m)(τ)dτ,

= f (m−1)(t)− f (m−1)(t− L).

�

Example 3.13.
Let f (t) = et, then

M
LDα

t et = et−LLm−αE1,m+1−α(L),

Therefore,
lim
α→m

M
LDα

t et = et−LE1,1(L) = et = f (m)(t).

However,

lim
α→m−1

M
LDα

t et = et−LLE1,2(L) = et−L(eL − 1),

= et − et−L = f (m)(t)− f (m−1)(t− L).

Example 3.14.
Let f (t) = tn, one has

M
LDα

t (t
n) =

n−m

∑
k=0

n!L−α+m+k(t− L)n−m−k

(n−m− k)!Γ(−α + m + k + 1)
.



On periodic solutions of fractional-order systems 73

Putting N = n−m and t− L = a, then

lim
α→m

M
LDα

t (t
n) =

N

∑
k=0

n!LkaN−k

(N − k)!k!
,

=
n!
N!

N

∑
k=0

N!LkaN−k

(N − k)!k!
,

=
n!
N!

(a + L)N =
n!

(n−m)!
tn−m,

=
dm

dt
tn = f (m)(t).

However,

lim
α→m−1

M
LDα

t (t
n) =

N

∑
k=0

n!Lk+1aN−k

(N − k)!(k + 1)!
,

=
n!

(N + 1)!

N+1

∑
k=0

(N + 1)!LkaN+1−k

(N + 1− k)!k!
− n!

(n−m + 1)!
(t− L)n−m+1,

=
n!

(N + 1)!
tN+1 − n!

(n− (m− 1))!
(t− L)n−(m−1),

=
n!

(n− (m− 1))!
tn−(m−1) − n!

(n− (m− 1))!
(t− L)n−(m−1),

=
dm−1

dt
tn − dm−1

dt
(t− L)n = f (m−1)(t)− f (m−1)(t− L).

3.4 Comparison between some results of classical fractional-order derivatives and
fractional order derivatives with sliding fixed memory length

The previous results are summarized in the table (3.1), in order to highlight the differences
between classical fractional-order derivative and fractional-order derivative with sliding fixed
memory length.

3.5 Fractional-order autonomous system with exact periodic solution

As previously mentioned, any autonomous fractional-order system expressed in terms of clas-
sical fractional derivatives cannot have any exact periodic solutions [13, 22, 23].
Conversely to these results, one presents some examples showing that fractional-order au-
tonomous systems (linear and nonlinear) expressed in terms of fractional derivatives with
sliding fixed memory length can have exact periodic solutions.

Example 3.15. (Linear fractional-order system)
Let consider the following linear fractional-order autonomous system

M
L Dα

t X(t) = AX(t), (3.11)

where X(t) ∈ R and A =

(
a −b
b a

)
, with a = L−α(E2,1−α(−L2)−

[m−1
2 ]

∑
p=0

(−L2)p

Γ(2p+1−α)
),

b = L1−α(E2,2−α(−L2)−
[m−2

2 ]

∑
p=0

(−L2)p

Γ(2p+2−α)
) .
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Classical fractional derivative Fractional derivative with sliding fixed
C
aDα

t or RL
a Dα

t memory length M
LDα

t

C
a Dα

t f (t) =
RL

aDα
t f (t)−

m−1
∑

k=0

f (k)(a)(t−a)k−α

Γ(k−α+1)
MC

LDα
t f (t) =

MR

LDα
t f (t)

lim
α→m

RL
a Dα

t f (t) = lim
α→m

C
a Dα

t f (t) = f (m)(t) lim
α→m

M
L Dα

t f (t) = f (m)(t)

lim
α→m−1

RL
a Dα

t f (t) = f (m−1)(t), lim
α→m−1

M
L Dα

t f (t)

lim
α→m−1

C
a Dα

t f (t) = f (m−1)(t)− f (m−1)(a) = f (m−1)(t)− f (m−1)(t− L)

RL
0 Dα

t (t
n) = C

0Dα
t (t

n) = Γ(n+1)
Γ(n−α+1) tn−α M

LDα
t (t

n) =
n−m
∑

k=0

n!L−α+m+k(t−L)n−m−k

(n−m−k)!Γ(−α+m+k+1)

RL
a Dα

t C = C
Γ(1−α)

(t− a)α , 0,
C
aDα

t C = 0 M
LDα

t C = 0
RL
a Dα

t sin t = t1−αE2,2−α(−t2) M
a Dα

t sin t = a sin(t− L) + b cos(t− L).

Table 3.1: Comparison between some results of classical fractional-order derivatives and frac-
tional order derivatives with sliding fixed memory length.

- For L = 2kπ, where k is a non-zero integer. The vector function X(t) = c
(

cos(t)
sin(t)

)
, c ∈ R

is an exact 2π−periodic solution for the system (3.11).
By definition,

M
2kπDα

t X(t) = c
( M

2kπDα
t cos(t)

M
2kπDα

t sin(t)

)
.

Then, from (3.9) and (3.10) one obtains

M
2kπDα

t X(t) = c
(

a cos(t− 2kπ)− b sin(t− 2kπ)

a sin(t− 2kπ) + b cos(t− 2kπ)

)
,

= c
(

a −b
b a

)(
cos(t− 2kπ)

sin(t− 2kπ)

)
,

= cA
(

cos(t− 2kπ)

sin(t− 2kπ)

)
,

= AX(t).

Therefore, X(t) = c
(

cos(t)
sin(t)

)
is an exact 2π−periodic solution of (3.11) with L = 2kπ.

- For L = π
2 , one has

M
π
2

Dα
t X(t) = c

(
a cos(t− π

2 )− b sin(t− π
2 )

a sin(t− π
2 ) + b cos(t− π

2 )

)
,

= c
(

a sin(t) + b cos(t)
−a cos(t) + b sin(t)

)
,

= c
(

b a
−a b

)(
cos(t)
sin(t)

)
,

= cB
(

cos(t)
sin(t)

)
,

= BX(t),
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with B =

(
b a
−a b

)
, A. Thus, X(t) = c

(
cos(t)
sin(t)

)
is not solution of (3.11), but it is an

exact 2π−periodic solution of the system M
π
2

Dα
t X(t) = BX(t).

Example 3.16. (The predator-prey model with Holling type II response function)
All population species possess the property of heredity, which means the passing on traits
from parents to their offspring, either through asexual reproduction or sexual reproduction.
The offspring cells or organisms acquire the genetic information of their parents through
heredity. This property makes fractional differential systems models more efficiently regard-
ing some specific problems than ordinary differential ones.
Motivated by this fact, we introduce the fractional version of the Holling-Tanner model [21]
as follows {

Dαx = r1x(1− x
K )−

qxy
m+x ,

Dαy = r2y(1− y
γx ).

(3.12)

Where D. denotes a standard fractional-order derivative operator and α ∈ [0, 1] is the fractional-
order related to the hereditary property of the population (a value of α close to an integer
number means that the population has a weak hereditary property), x(t) ≥ 0 and y(t) ≥ 0 are
the density of prey and predator populations at time t respectively. The parameters r1 and r2

are the intrinsic growth rates, K represents the carrying capacity of the prey, q is the maximum
number of preys that can be eaten per predator per unit of time, m is the saturation value (it
corresponds to the number of preys necessary to achieve one half the maximum rate q), γ is a
measure of the quality of the prey as a portion of food for the predator.

Since exact analytical resolution of this nonlinear system is unavailable, one resorts to
qualitative and numerical study. For this purpose the parameters are set to r1 = 1, r2 =

0.2, K = 25, q = 6
7 , m = 1 and γ = 0.95, the system (3.12) has two equilibrium points

E0 = (25, 0) and E1 ≈ (7.1429, 6.7857).

• The characteristic polynomial of the Jacobian matrix evaluated at E0 is given by

P(λ) = λ2 + a1λ + a2 = λ2 + 0.8λ− 0.2.

So a2 = −0.2 < 0, then according to Proposition 1 in [7] E0 is unstable for all α ∈ [0, 2).

• The characteristic polynomial of the Jacobian matrix evaluated at E1 is given by

P(λ) = λ2 − 0.1409λ + 0.0747.

So a1 ≈ −0.1409 and a2 ≈ 0.0747 > 0.

Applying Hopf-Like Bifurcation theory [2–4] and using Proposition 1 in [7], one obtains
the Hopf-Like bifurcation value

α∗ =
2
π

cos−1(
−a1

2
√

a2
) ≈ 0.8341.

The fixed point E1 losses its stability, and a periodic motion (S−asymptotically periodic
for the classical fractional derivative and exact periodic for fractional derivative with
sliding fixed memory length) appears.
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Figure 3.2: Time evolution and phase portrait of system (3.12) for α = 0.9 (a,b)
S−asymptotically T−periodic solution with T ≈ 27.2 for classical fractional operator. (c,d)
Exact T−periodic solution for the fractional derivative operator with sliding fixed memory
length. (e,f) Comparison between the two solutions.

To illustrate these results, one solves the system (3.12) numerically by developing a Matlab
code using a discretization technique based on the formula (3.7).
Choosing a value for α greater than α∗, for example, α = 0.9, one compares the solution
of (3.12) in terms of classical fractional operator and its solution in terms of the fractional
operator with sliding fixed memory length L = 30. The two trajectories are start from the
same initial point X0 = (2.64, 4.88), belonging to the attracting limit cycle. The results are
shown in Fig. 3.2.
An S−asymptotically T−periodic solution with T ≈ 27.2 is obtained for classical fractional
operator as shown in Fig. 3.2(a,b), and an exact T−periodic solution is obtained for the
fractional derivative operator with sliding fixed memory length as shown in Fig. 3.2(c,d).

4 Conclusion

In this article, one modifies the Caputo and Rieman-Liouville fractional-order derivatives by
fixing the memory length and varying the lower terminal of the derivative. It is shown that
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the modified fractional derivative operator preserves the periodicity. Consequently, periodic
solutions can be obtained in fractional-order systems expressed in terms of the new operator.
Two examples are investigated to highlight this property for a linear system provides an
analytic expression of an exact periodic solution is computed and for another nonlinear system
for which exact periodic solutions are obtained using qualitative and numerical methods.
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