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Abstract. In this paper, we prove the existence and regularity of solutions for a class of
nonlinear anisotropic degenerate elliptic equations with the data f belonging to certain
Marcinkiewicz spaces Mm(Ω) with m > 1. We use a generalized Stampacchia Lemma
version to establish the main results.
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1 Introduction

Let Ω be a bounded open subset of RN(N ≥ 2). We consider the following problem −
N

∑
i=1

∂i
[
ai(x, u,∇u)

]
= f in Ω,

u = 0 on ∂Ω,
(1.1)

where f belongs to some Marcinkiewicz space Mm(Ω) with m > 1. We assume that ai :
Ω × R × RN → R, for all i = 1, ..., N, are Carathéodory functions satisfying the following
conditions for almost every x ∈ Ω, all s ∈ R, and all ξ, η ∈ RN :

|ai(x, s, ξ)| ≤ β|ξi|pi−1, (1.2)
[ai(x, s, ξ)− ai(x, s, η)].(ξi − ηi) > 0, ξi ̸= ηi, (1.3)
ai(x, s, ξ) · ξi ≥ b(s)|ξi|pi , (1.4)

where β is a positive constant, b : R → R is a continuous function, such that

α

(1 + |s|)θ
≤ b(s) ≤ γ, ∀ 0 ≤ θ < 1, (1.5)
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where 0 ≤ θ < 1 and α, γ are two positive constants.
Our inspiration for this paper is derived from [8], where the author addressed elliptic

problems described by the following model:{
−div(a(x, u)∇u) = f in Ω,
u = 0 on ∂Ω,

(1.6)

where
α

(1 + |s|)θ
≤ a(x, s) ≤ β,

with 0 < α ≤ β < ∞ and 0 ≤ θ < 1. The authors in [8] mainly consider the regularity of u to
vary with m: Let u ∈ W1,2

0 (Ω) be a weak solution to (1.6) and f ∈ Mm(Ω). Then

(R1) If m > N
2 , then there exists L > 0, such that |u| ≤ 2L a.e. in Ω;

(R2) If m = N
2 , then there exists λ > 0, such that eλ|u|1−θ ∈ L1(Ω);

(R3) If (2∗)′ < m < N
2 , then u ∈ Mm∗∗(1−θ)(Ω); with m∗∗ = Nm

N−2m .
Let u be an entropy solution of (1.6) and f ∈ Mm(Ω). Then

(R4) If 1 < m ≤ (2∗)′, then u ∈ Mm∗∗(1−θ)(Ω).

In [3] under the hypotheses θ = 0 and ai(x, s, ξ) = |ξi|pi−2ξi, the author proved that

(R1) If m > N
p , then u ∈ L∞(Ω);

(R2) If m = N
p , then there exists λ > 0, such that eλ|u| ∈ L1(Ω);

(R3) If (p∗)′ < m < N
p , then u ∈ L

mN(p−1)
N−mp (Ω);

(R4) If 1 < m ≤ (p∗)′, then u ∈ W
1,pi

mN(p−1)
p(N−m)

0 (Ω).

Existence and regularity results for the problem (1.1) have been obtained in [1] with f ∈
Lm(Ω), m ≥ 1, ai(x, s, ξ) = ai(x,ξ)

(1+|s|)θ(pi−1) , where θ ≥ 0 and pi ∈ (1,+∞) for all i = 1, ..., N.

Let Ω be a bounded open set in RN , where N ≥ 2 and 1 < p1 ≤ p2 ≤ . . . ≤ pN . The
natural functional framework of the problem (1.1) is anisotropic Sobolev spaces W1,(pi)(Ω)

and W1,(pi)
0 (Ω), which are defined by

W1,(pi)(Ω) =
{

v ∈ W1,1(Ω) : ∂iv ∈ Lpi(Ω), i = 1, ..., N
}

,
W1,(pi)

0 (Ω) = W1,(pi)(Ω) ∩ W1,1
0 (Ω).

The space W1,(pi)
0 (Ω) can also be defined as the closure of C∞

0 (Ω) in W1,(pi)(Ω) with respect
to the norm

∥v∥
W

1,(pi)
0 (Ω)

=
N

∑
i=1

∥∂iv∥Lpi (Ω).

Now we will recall some lemmas that are known and needed for the subsequent analysis.
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Lemma 1.1. [10] There exists a positive constant C, depending only on Ω, such that for v ∈
W1,(pi)

0 (Ω), p < N we have

∥v∥Lr(Ω) ≤ C
N

∏
i=1

∥∂iv∥
1
N
Lpi (Ω)

, ∀r ∈ [1, p∗], (1.7)

where p∗ = Np
N−p , 1

p = 1
N ∑N

i=1
1
pi

.

Definition 1.2. [2] Let Ω be a bounded open subset of RN . Let p ≥ 0. The Marcinkiewicz
space Mp(Ω) is the space of all measurable functions f : Ω → R with the following property:
there exists a constant C > 0 such that

meas({| f | > λ}) ≤ C
λp , ∀λ > 0, (1.8)

where meas(E) is the Lebesgue measure of the set E in RN . The norm of f ∈ Mp(Ω) is
defined by

∥ f ∥p
Mp(Ω)

= inf{C > 0 : (1.8) holds}.

It is immediate that the following inclusions hold, 1 ≤ q < p < ∞,

Lp(Ω) ⊂ Mp(Ω) ⊂ Lq(Ω).

A Hölder inequality holds true for f ∈ Mm(Ω), m > 1: there exists B = B(∥ f ∥Mm(Ω), m) > 0
such that for every measurable subset E ⊂ Ω,∫

E
| f |dx ≤ B|E|1− 1

m . (1.9)

We now present a generalization of Lemma 4.1 from [9] (see [5]), which can be applied in
the analysis of degenerate anisotropic elliptic equations of divergence type.

Lemma 1.3. [8] Let c, τ1, τ2, k0 be positive constants and 0 ≤ θ < 1. Let Φ : [k0,+∞) → [0,+∞)
be nonincreasing and such that

Φ(h) ≤ chθτ1

(h − k)τ1
[Φ(k)]τ2 , (1.10)

for every h, k with h > k ≥ k0 > 0. It results that:

(i) if τ2 > 1, then
Φ(2L) = 0,

where

L = max
{

2k0, c
1

(1−θ)τ1 [Φ(k0)]
τ2−1

(1−θ)τ1 2
1

(1−θ)τ2

(
τ2+θ+ 1

τ2−1

)}
, (1.11)

(ii) if τ2 = 1, then for any k ≥ k0,

Φ(k) ≤ Φ(k0)e
1−

(
k−k0

τ

)1−θ

,

where

τ = max
{

k0,
(

ce2
(2−θ)θτ1

1−θ (1 − θ)τ1

) 1
(1−θ)τ1

}
,
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(iii) if 0 < τ2 < 1, then for any k ≥ k0,

Φ(k) ≤ 2
(1−θ)τ1
(1−τ2)

2

{(
c12θτ1

) 1
1−τ2 + (2c2k0)

(1−θ)τ1
1−τ2 Φ(k0)

}(
1
k

) τ1(1−θ)
1−τ2

, (1.12)

where

c1 = max
{

4(1−θ)τ1 c2θτ1 , c1−τ2
2

}
, c2 = 2

(1−θ)τ1
(1−τ2)

2

[
(c2θτ1)

1
1−τ2 + (2k0)

(1−θ)τ1
1−τ2 Φ(k0)

]
.

Let k > 0, we will use the truncation Tk defined as

Tk(s) =


−k, if s ≤ −k,
s, if − k ≤ s ≤ k,
k, if s ≥ k,

and Gk(s) = s − Tk(s). (1.13)

2 The main results and their proof

We define the notion of a weak solution to the problem (1.1) as follows:

Definition 2.1. Let f ∈ Lm(Ω) with m > (p∗)′. We define a weak solution of (1.1) as a
function u in W1,(pi)

0 (Ω) satisfying the following identity for all φ ∈ W1,(pi)
0 (Ω):

N

∑
i=1

∫
Ω

ai(x, u,∇u)∂i φdx =
∫

Ω
f φdx. (2.1)

Theorem 2.2. Under the hypotheses (1.2)-(1.5), if f ∈ Mm(Ω), with m > (p∗)′ and u ∈ W1,(pi)
0 (Ω)

be a weak solution to (1.1) in the sense of (2.1). Then

(i) If m > N
p , then there exists a constant L that can depend on the data, such that |u| ≤ 2L a.e.

x ∈ Ω.

(ii) If m = N
p , then there exists a constant λ > 0 that can depend on the data, such that

eλ|u|1−θ ∈ L1(Ω).

(iii) If (p∗)′ < m < N
p , then u ∈ M

Nm(p−1)(1−θ)
N−pm (Ω).

Proof of Theorem 2.2. Let h > k > 0. We use φ = Th−k(Gk(u)) as a test function in (2.1), we
obtain

N

∑
i=1

∫
Ω

ai(x, u,∇u)∂iTh−k(Gk(u))dx =
∫

Ω
f Th−k(Gk(u))dx. (2.2)

Note that φ = 0 for x ∈ {|un| ≤ k}, |φ| ≤ h − k and

∇φ =


0, if |un| ≤ k,
∇un, if k < |un| ≤ h,
0, if |un| > h,
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then (1.4),(1.5) and (2.2) yield

α
∫

Bk,h

|∂iu|pi

(1 + |u|)θ
dx ≤ (h − k)

∫
Ak

| f |dx ∀i = 1, ..., N, (2.3)

where
Ak = {x ∈ Ω : |u(x)| > k}, and Bk,h = {x ∈ Ω : k < |u(x)| ≤ h}.

Using Hölder’s inequality with exponent m in the right-hand side and the fact that 1
(1+|u|)θ ≥

1
(1+h)θ if x ∈ Bk,h on the left-hand side of (2.3), we have

α

(1 + h)θ

∫
Ω
|∂iTh−k(Gk(u))|pi dx =

α

(1 + h)θ

∫
Bk,h

|∂iu|pi dx

≤ α
∫

Bk,h

|∂iu|pi

(1 + |u|)θ
dx

≤ (h − k)∥ f ∥Mm(Ω)|Ak|
1

m′

≤ C1(h − k)|Ak|
1

m′ ∀i = 1, ..., N,

the above estimate implies

N

∏
i=1

1

(1 + h)
θ

Npi

(∫
Ω
|∂iTh−k(Gk(u))|pi dx

) 1
Npi

≤ C2

N

∏
i=1

(h − k)
1

Npi |Ak|
1

Npim′ ,

hence,

1

(1 + h)
θ
p

N

∏
i=1

(∫
Ω
|∂iTh−k(Gk(u))|pi dx

) 1
Npi

≤ C2(h − k)
1
p |Ak|

1
pm′ . (2.4)

Applying 1.1 with v = Th−k(Gk(u)), r = p∗, and by (2.4), we find

1

(1 + h)
θp∗

p

(h − k)p∗ |Ah| =
1

(1 + h)
θp∗

p

∫
Ω
|Th−k(Gk(u))|p

∗
dx

≤ C2(h − k)
p∗
p |Ak|

p∗
pm′ . (2.5)

Thus, from (2.5), it follows that for all h > k ≥ 1

Φ(h) ≤ C3
(1 + h)

θp∗
p

(h − k)
(

1− 1
p

)
p∗

Φ(k)
p∗

pm′

≤ C3
hθ

p∗
p

(h − k)p∗
(

1− 1
p

) Φ(k)
p∗

pm′ ,

where Φ(k) = |Ak|. The assumption (1.10) of Lemma 1.3 holds with

c = C3, τ1 = p∗
(

1 − 1
p

)
, τ2 =

p∗

pm′ and k0 = 1.

We use Lemma 1.3, and we have:
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(i) If m > N
p , then τ2 > 1. We use Lemma 1.3 (i), and we get Φ(2L) = 0 for some constant

L is defined as in (1.11), from which we derive |u| ≤ 2L a.e. x ∈ Ω.

(ii) If m = N
p , then

τ2 =
p∗

pm′ =
N(m − 1)
(N − p)m

= 1.

By Lemma 1.3 (ii), we obtain

Φ(k) ≤ Φ(1)e1−( k−1
τ )

1−θ

≤ |Ω|e1−( k−1
τ )

1−θ

∀k ≥ 1,

Hence, if k ≥ 2 (i.e. k − 1 ≥ k
2 ), we have

Φ(k) ≤ |Ω|e1−( k
2τ )

1−θ

≤ C4e−(2τ)θ−1k1−θ
. (2.6)

We let τθ−1 = 22−θλ, by (2.6), we get

meas
{

eλ|u|1−θ
> eλk1−θ}

= Φ(k) ≤ C4e−2λk1−θ
, (2.7)

choosing k̃ = eλk1−θ
in (2.7), we obtain

meas
{

eλ|u|1−θ
> k̃

}
≤ C4

k̃2
, ∀k̃ ≥ eλ21−θ

= k1. (2.8)

Let us now use Lemma 3.11 from [2], which says that a sufficient and necessary condi-
tion for g ∈ L1(Ω) is

∞

∑
k=0

meas{|h| > k} < +∞.

Finally we choose g = eλ|u|1−θ
, by (2.8), we deduce that

∞

∑̃
k=0

meas
{

eλ|u|1−θ
> k̃

}
=

k1

∑̃
k=0

meas
{

eλ|u|1−θ
> k̃

}
+

∞

∑
k̃=k1+1

meas
{

eλ|u|1−θ
> k̃

}
≤ (1 + k1)|Ω|+ C4

∞

∑
k̃=k1+1

1
k̃2

≤ C5 < ∞,

then eλ|u|1−θ ∈ L1(Ω).

(iii) If (p∗)′ < m < N
p , then τ2 < 1. We use Lemma 1.3 (iii), and we have for all k ≥ 1

Φ(k) ≤ C6

(
1
k

) τ1(1−θ)
1−τ2

≤ C6

(
1
k

) Nm(p−1)(1−θ)
N−pm

,

that is u ∈ M
Nm(p−1)(1−θ)

N−pm (Ω) as desired.
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If f ∈ Mm(Ω), with 1 < m ≤ (p∗)′, then it is possible to give a meaning to the solution
for problem (1.1), using the concept of entropy solutions, which has been introduced in [1].

Definition 2.3. A measurable function u is an entropy solution to the problem (1.1) if ai(x, u,∇u) ∈
L1(Ω), Tl(u) belongs to W1,(pi)

0 (Ω) for every l > 0 and the inequality

N

∑
i=1

∫
Ω

ai(x, u,∇u)∂iTl(u − φ)dx ≤
∫

Ω
f Tl(u − φ)dx, (2.9)

holds for every l > 0 and every φ ∈ W1,(pi)
0 (Ω) ∩ L∞(Ω).

Theorem 2.4. Let f ∈ Mm(Ω) with 1 < m ≤ (p∗)′. Then the problem (1.1) admits at least one

entropy solution u ∈ M
Nm(p−1)(1−θ)

N−pm (Ω) in the sense of (2.9).

Proof of Theorem 2.4. The proof is similar to that one of Theorem 1.1 in [6]. Let h > k > 0. We
use φ = Tk(u) ∈ W1,(pi)

0 (Ω) ∩ L∞(Ω), l = h − k , as a test function in (2.9). By (1.4) and (1.5),
we obtain (2.3). The result follows from the proof of Theorem 2.2 (iii).
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