Application of the Stampacchia lemma to anisotropic degenerate elliptic equations

Hichem Khelifi ${ }^{\bullet} \boxtimes 1$
${ }^{1}$ Laboratory of Mathematical Analysis and Applications, University of Algiers 1, Algeria
${ }^{2}$ Laboratory LEDPNL,HM, ENS-Kouba, Algeria

Received 14 March 2023, Accepted 22 June 2023, Published xx xx 2023

Abstract

In this paper, we prove the existence and regularity of solutions for a class of nonlinear anisotropic degenerate elliptic equations with the data f belonging to certain Marcinkiewicz spaces $\mathcal{M}^{m}(\Omega)$ with $m>1$. We use a generalized Stampacchia Lemma version to establish the main results.

Keywords: Anisotropic problem, Degenerate elliptic, Generalized Stampacchia Lemma, Marcinkiewicz space.
2020 Mathematics Subject Classification: 35J70, 35D30, 35J60.

1 Introduction

Let Ω be a bounded open subset of $\mathbb{R}^{N}(N \geq 2)$. We consider the following problem

$$
\begin{cases}-\sum_{i=1}^{N} \partial_{i}\left[a_{i}(x, u, \nabla u)\right]=f & \text { in } \Omega \tag{1.1}\\ u=0 & \text { on } \partial \Omega\end{cases}
$$

where f belongs to some Marcinkiewicz space $\mathcal{M}^{m}(\Omega)$ with $m>1$. We assume that a_{i} : $\Omega \times \mathbb{R} \times \mathbb{R}^{N} \rightarrow \mathbb{R}$, for all $i=1, \ldots, N$, are Carathéodory functions satisfying the following conditions for almost every $x \in \Omega$, all $s \in \mathbb{R}$, and all $\xi, \eta \in \mathbb{R}^{N}$:

$$
\begin{align*}
& \left|a_{i}(x, s, \xi)\right| \leq \beta\left|\xi_{i}\right|^{p_{i}-1}, \tag{1.2}\\
& {\left[a_{i}(x, s, \xi)-a_{i}(x, s, \eta)\right] \cdot\left(\xi_{i}-\eta_{i}\right)>0, \quad \xi_{i} \neq \eta_{i},} \tag{1.3}\\
& a_{i}(x, s, \xi) \cdot \xi_{i} \geq b(s)\left|\xi_{i}\right|^{p_{i}}, \tag{1.4}
\end{align*}
$$

where β is a positive constant, $b: \mathbb{R} \rightarrow \mathbb{R}$ is a continuous function, such that

$$
\begin{equation*}
\frac{\alpha}{(1+|s|)^{\theta}} \leq b(s) \leq \gamma, \quad \forall 0 \leq \theta<1, \tag{1.5}
\end{equation*}
$$

[^0]where $0 \leq \theta<1$ and α, γ are two positive constants.
Our inspiration for this paper is derived from [8], where the author addressed elliptic problems described by the following model:
\[

$$
\begin{cases}-\operatorname{div}(a(x, u) \nabla u)=f & \text { in } \Omega \tag{1.6}\\ u=0 & \text { on } \partial \Omega,\end{cases}
$$
\]

where

$$
\frac{\alpha}{(1+|s|)^{\theta}} \leq a(x, s) \leq \beta,
$$

with $0<\alpha \leq \beta<\infty$ and $0 \leq \theta<1$. The authors in [8] mainly consider the regularity of u to vary with m : Let $u \in W_{0}^{1,2}(\Omega)$ be a weak solution to (1.6) and $f \in \mathcal{M}^{m}(\Omega)$. Then
(R1) If $m>\frac{N}{2}$, then there exists $L>0$, such that $|u| \leq 2 L$ a.e. in Ω;
(R2) If $m=\frac{N}{2}$, then there exists $\lambda>0$, such that $e^{\lambda|u|^{1-\theta}} \in L^{1}(\Omega)$;
(R3) If $\left(2^{*}\right)^{\prime}<m<\frac{N}{2}$, then $u \in \mathcal{M}^{m^{* *}(1-\theta)}(\Omega)$; with $m^{* *}=\frac{N m}{N-2 m}$.
Let u be an entropy solution of (1.6) and $f \in \mathcal{M}^{m}(\Omega)$. Then
(R4) If $1<m \leq\left(2^{*}\right)^{\prime}$, then $u \in \mathcal{M}^{m^{* *}(1-\theta)}(\Omega)$.
In [3] under the hypotheses $\theta=0$ and $a_{i}(x, s, \xi)=\left|\xi_{i}\right|^{p_{i}-2} \xi_{i}$, the author proved that
(R1) If $m>\frac{N}{\bar{p}}$, then $u \in L^{\infty}(\Omega)$;
(R2) If $m=\frac{N}{\bar{p}}$, then there exists $\lambda>0$, such that $e^{\lambda|u|} \in L^{1}(\Omega)$;
(R3) If $\left(\bar{p}^{*}\right)^{\prime}<m<\frac{N}{\bar{p}}$, then $u \in L^{\frac{m N(\bar{p}-1)}{N-m \bar{p}}}(\Omega)$;
(R4) If $1<m \leq\left(\bar{p}^{*}\right)^{\prime}$, then $u \in W_{0}^{1, p_{i} \frac{m N(\bar{p}-1)}{\overline{(N-m)}}}(\Omega)$.
Existence and regularity results for the problem (1.1) have been obtained in [1] with $f \in$ $L^{m}(\Omega), m \geq 1, a_{i}(x, s, \xi)=\frac{a_{i}(x, \xi)}{(1+|s|)^{\theta\left(p_{i}-1\right)}}$, where $\theta \geq 0$ and $p_{i} \in(1,+\infty)$ for all $i=1, \ldots, N$.

Let Ω be a bounded open set in \mathbb{R}^{N}, where $N \geq 2$ and $1<p_{1} \leq p_{2} \leq \ldots \leq p_{N}$. The natural functional framework of the problem (1.1) is anisotropic Sobolev spaces $W^{1,\left(p_{i}\right)}(\Omega)$ and $W_{0}^{1,\left(p_{i}\right)}(\Omega)$, which are defined by

$$
\begin{aligned}
& W^{1,\left(p_{i}\right)}(\Omega)=\left\{v \in W^{1,1}(\Omega): \partial_{i} v \in L^{p_{i}}(\Omega), i=1, \ldots, N\right\}, \\
& W_{0}^{1,\left(p_{i}\right)}(\Omega)=W^{1,\left(p_{i}\right)}(\Omega) \cap W_{0}^{1,1}(\Omega) .
\end{aligned}
$$

The space $W_{0}^{1,\left(p_{i}\right)}(\Omega)$ can also be defined as the closure of $C_{0}^{\infty}(\Omega)$ in $W^{1,\left(p_{i}\right)}(\Omega)$ with respect to the norm

$$
\|v\|_{W_{0}^{1,\left(p_{i}\right)}(\Omega)}=\sum_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)} .
$$

Now we will recall some lemmas that are known and needed for the subsequent analysis.

Lemma 1.1. [10] There exists a positive constant C, depending only on Ω, such that for $v \in$ $W_{0}^{1,\left(p_{i}\right)}(\Omega), \bar{p}<N$ we have

$$
\begin{equation*}
\|v\|_{L^{r}(\Omega)} \leq C \prod_{i=1}^{N}\left\|\partial_{i} v\right\|_{L^{p_{i}}(\Omega)^{\prime}}^{\frac{1}{N}}, \quad \forall r \in\left[1, \bar{p}^{*}\right] \tag{1.7}
\end{equation*}
$$

where $\bar{p}^{*}=\frac{N \bar{p}}{N-\bar{p}}, \frac{1}{\bar{p}}=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{p_{i}}$.
Definition 1.2. [2] Let Ω be a bounded open subset of \mathbb{R}^{N}. Let $p \geq 0$. The Marcinkiewicz space $\mathcal{M}^{p}(\Omega)$ is the space of all measurable functions $f: \Omega \rightarrow \mathbb{R}$ with the following property: there exists a constant $C>0$ such that

$$
\begin{equation*}
\operatorname{meas}(\{|f|>\lambda\}) \leq \frac{C}{\lambda^{p}}, \quad \forall \lambda>0, \tag{1.8}
\end{equation*}
$$

where meas (E) is the Lebesgue measure of the set E in \mathbb{R}^{N}. The norm of $f \in \mathcal{M}^{p}(\Omega)$ is defined by

$$
\|f\|_{\mathcal{M}^{p}(\Omega)}^{p}=\inf \{C>0:(1.8) \text { holds }\}
$$

It is immediate that the following inclusions hold, $1 \leq q<p<\infty$,

$$
L^{p}(\Omega) \subset \mathcal{M}^{p}(\Omega) \subset L^{q}(\Omega)
$$

A Hölder inequality holds true for $f \in \mathcal{M}^{m}(\Omega), m>1$: there exists $B=B\left(\|f\|_{\mathcal{M}^{m}(\Omega)}, m\right)>0$ such that for every measurable subset $E \subset \Omega$,

$$
\begin{equation*}
\int_{E}|f| d x \leq B|E|^{1-\frac{1}{m}} . \tag{1.9}
\end{equation*}
$$

We now present a generalization of Lemma 4.1 from [9] (see [5]), which can be applied in the analysis of degenerate anisotropic elliptic equations of divergence type.

Lemma 1.3. [8] Let $c, \tau_{1}, \tau_{2}, k_{0}$ be positive constants and $0 \leq \theta<1$. Let $\Phi:\left[k_{0},+\infty\right) \rightarrow[0,+\infty)$ be nonincreasing and such that

$$
\begin{equation*}
\Phi(h) \leq \frac{c h^{\theta \tau_{1}}}{(h-k)^{\tau_{1}}}[\Phi(k)]^{\tau_{2}}, \tag{1.10}
\end{equation*}
$$

for every h, k with $h>k \geq k_{0}>0$. It results that:
(i) if $\tau_{2}>1$, then

$$
\Phi(2 L)=0,
$$

where

$$
\begin{equation*}
L=\max \left\{2 k_{0}, c^{\frac{1}{(1-\theta) \tau_{1}}}\left[\Phi\left(k_{0}\right)\right]^{\frac{\tau_{2}-1}{1^{1-\theta) \tau_{1}}}} 2^{\frac{1}{(1-\theta) \tau_{2}}}\left(\tau_{2}+\theta+\frac{1}{\tau_{2}-1}\right)\right\}, \tag{1.11}
\end{equation*}
$$

(ii) if $\tau_{2}=1$, then for any $k \geq k_{0}$,

$$
\Phi(k) \leq \Phi\left(k_{0}\right) e^{1-\left(\frac{k-k_{0}}{\tau}\right)^{1-\theta}},
$$

where

$$
\tau=\max \left\{k_{0},\left(c e 2^{\frac{(2-\theta) \theta \tau_{1}}{1-\theta}}(1-\theta)^{\tau_{1}}\right)^{\frac{1}{(1-\theta) \tau_{1}}}\right\}
$$

(iii) if $0<\tau_{2}<1$, then for any $k \geq k_{0}$,

$$
\begin{equation*}
\Phi(k) \leq 2^{\frac{(1-\theta) \tau_{1}}{\left(11-\tau_{2}\right)^{2}}}\left\{\left(c_{1} 2^{\theta \tau_{1}}\right)^{\frac{1}{1-\tau_{2}}}+\left(2 c_{2} k_{0}\right)^{\frac{(1-\theta) \tau_{1}}{1-\tau_{2}}} \Phi\left(k_{0}\right)\right\}\left(\frac{1}{k}\right)^{\frac{\tau_{1}(1-\theta)}{1-\tau_{2}}} \tag{1.12}
\end{equation*}
$$

where

$$
c_{1}=\max \left\{4^{(1-\theta) \tau_{1}} c 2^{\theta \tau_{1}}, c_{2}^{1-\tau_{2}}\right\}, \quad c_{2}=2^{\frac{(1-\theta) \tau_{1}}{\left(1-\tau_{2}\right)^{2}}}\left[\left(c 2^{\theta \tau_{1}}\right)^{\frac{1}{1-\tau_{2}}}+\left(2 k_{0}\right)^{\frac{(1-\theta) \tau_{1}}{1-\tau_{2}}} \Phi\left(k_{0}\right)\right] .
$$

Let $k>0$, we will use the truncation T_{k} defined as

$$
T_{k}(s)= \begin{cases}-k, & \text { if } s \leq-k, \tag{1.13}\\ s, & \text { if }-k \leq s \leq k, \quad \text { and } \quad G_{k}(s)=s-T_{k}(s) . \\ k, & \text { if } s \geq k,\end{cases}
$$

2 The main results and their proof

We define the notion of a weak solution to the problem (1.1) as follows:
Definition 2.1. Let $f \in L^{m}(\Omega)$ with $m>\left(\bar{p}^{*}\right)^{\prime}$. We define a weak solution of (1.1) as a function u in $W_{0}^{1,\left(p_{i}\right)}(\Omega)$ satisfying the following identity for all $\varphi \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$:

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u) \partial_{i} \varphi d x=\int_{\Omega} f \varphi d x \tag{2.1}
\end{equation*}
$$

Theorem 2.2. Under the hypotheses (1.2)-(1.5), if $f \in \mathcal{M}^{m}(\Omega)$, with $m>\left(\bar{p}^{*}\right)^{\prime}$ and $u \in W_{0}^{1,\left(p_{i}\right)}(\Omega)$ be a weak solution to (1.1) in the sense of (2.1). Then
(i) If $m>\frac{N}{\bar{p}}$, then there exists a constant L that can depend on the data, such that $|u| \leq 2 L$ a.e. $x \in \Omega$.
(ii) If $m=\frac{N}{\bar{p}}$, then there exists a constant $\lambda>0$ that can depend on the data, such that

$$
e^{\lambda|u|^{1-\theta}} \in L^{1}(\Omega) .
$$

(iii) If $\left(\bar{p}^{*}\right)^{\prime}<m<\frac{N}{\bar{p}}$, then $u \in \mathcal{M}^{\frac{N m(\bar{p}-1)(1-\theta)}{N-\bar{p} \bar{p}}}(\Omega)$.

Proof of Theorem 2.2. Let $h>k>0$. We use $\varphi=T_{h-k}\left(G_{k}(u)\right)$ as a test function in (2.1), we obtain

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u) \partial_{i} T_{h-k}\left(G_{k}(u)\right) d x=\int_{\Omega} f T_{h-k}\left(G_{k}(u)\right) d x \tag{2.2}
\end{equation*}
$$

Note that $\varphi=0$ for $x \in\left\{\left|u_{n}\right| \leq k\right\},|\varphi| \leq h-k$ and

$$
\nabla \varphi= \begin{cases}0, & \text { if }\left|u_{n}\right| \leq k \\ \nabla u_{n}, & \text { if } k<\left|u_{n}\right| \leq h \\ 0, & \text { if }\left|u_{n}\right|>h\end{cases}
$$

then (1.4),(1.5) and (2.2) yield

$$
\begin{equation*}
\alpha \int_{B_{k, h}} \frac{\left|\partial_{i} u\right|^{p_{i}}}{(1+|u|)^{\theta}} d x \leq(h-k) \int_{A_{k}}|f| d x \quad \forall i=1, \ldots, N, \tag{2.3}
\end{equation*}
$$

where

$$
A_{k}=\{x \in \Omega:|u(x)|>k\}, \quad \text { and } \quad B_{k, h}=\{x \in \Omega: k<|u(x)| \leq h\} .
$$

Using Hölder's inequality with exponent m in the right-hand side and the fact that $\frac{1}{(1+|u|)^{0}} \geq$ $\frac{1}{(1+h)^{\theta}}$ if $x \in B_{k, h}$ on the left-hand side of (2.3), we have

$$
\begin{aligned}
\frac{\alpha}{(1+h)^{\theta}} \int_{\Omega}\left|\partial_{i} T_{h-k}\left(G_{k}(u)\right)\right|^{p_{i}} d x & =\frac{\alpha}{(1+h)^{\theta}} \int_{B_{k, h}}\left|\partial_{i} u\right|^{p_{i}} d x \\
& \leq \alpha \int_{B_{k, h}} \frac{\left|\partial_{i} u\right|^{p_{i}}}{(1+|u|)^{\theta}} d x \\
& \leq(h-k)\|f\|_{\mathcal{M}^{m}(\Omega)}\left|A_{k}\right|^{\frac{1}{m^{\prime}}} \\
& \leq C_{1}(h-k)\left|A_{k}\right|^{\frac{1}{m^{\prime}}} \quad \forall i=1, \ldots, N,
\end{aligned}
$$

the above estimate implies

$$
\prod_{i=1}^{N} \frac{1}{(1+h)^{\frac{\theta}{N p_{i}}}}\left(\int_{\Omega}\left|\partial_{i} T_{h-k}\left(G_{k}(u)\right)\right|^{p_{i}} d x\right)^{\frac{1}{N p_{i}}} \leq C_{2} \prod_{i=1}^{N}(h-k)^{\frac{1}{N p_{i}}}\left|A_{k}\right|^{\frac{1}{N p_{i} m^{\prime}}}
$$

hence,

$$
\begin{equation*}
\frac{1}{(1+h)^{\frac{\theta}{p}}} \prod_{i=1}^{N}\left(\int_{\Omega}\left|\partial_{i} T_{h-k}\left(G_{k}(u)\right)\right|^{p_{i}} d x\right)^{\frac{1}{N p_{i}}} \leq C_{2}(h-k)^{\frac{1}{p}}\left|A_{k}\right|^{\frac{1}{\bar{p} m^{\prime}}} \tag{2.4}
\end{equation*}
$$

Applying 1.1 with $v=T_{h-k}\left(G_{k}(u)\right), r=\bar{p}^{*}$, and by (2.4), we find

$$
\begin{align*}
\frac{1}{(1+h)^{\frac{\theta \bar{p}^{*}}{\bar{p}}}}(h-k)^{\bar{p}^{*}}\left|A_{h}\right| & =\frac{1}{(1+h)^{\frac{\theta \bar{p}^{*}}{\bar{p}}}} \int_{\Omega}\left|T_{h-k}\left(G_{k}(u)\right)\right|^{\vec{p}^{*}} d x \\
& \leq C_{2}(h-k)^{\frac{\bar{p}^{*}}{p}} \left\lvert\, A_{k} k^{\frac{\bar{p}^{*}}{\bar{p}} m^{\prime}}\right. \tag{2.5}
\end{align*}
$$

Thus, from (2.5), it follows that for all $h>k \geq 1$

$$
\begin{aligned}
\Phi(h) & \leq C_{3} \frac{(1+h)^{\frac{\theta \bar{p}^{*}}{\bar{p}}}}{(h-k)^{\left(1-\frac{1}{\bar{p}}\right) \vec{p}^{*}}} \Phi(k)^{\frac{\vec{p}^{*}}{p m^{\prime}}} \\
& \leq C_{3} \frac{h^{\theta \frac{\bar{p}^{*}}{\bar{p}}}}{(h-k)^{\bar{p}^{*}\left(1-\frac{1}{p}\right)}} \Phi(k)^{\frac{\vec{p}^{*}}{\bar{p} m^{\prime}}},
\end{aligned}
$$

where $\Phi(k)=\left|A_{k}\right|$. The assumption (1.10) of Lemma 1.3 holds with

$$
c=C_{3}, \quad \tau_{1}=\bar{p}^{*}\left(1-\frac{1}{\bar{p}}\right), \quad \tau_{2}=\frac{\bar{p}^{*}}{\bar{p} m^{\prime}} \quad \text { and } \quad k_{0}=1 .
$$

We use Lemma 1.3, and we have:
(i) If $m>\frac{N}{\bar{p}}$, then $\tau_{2}>1$. We use Lemma $1.3(\mathbf{i})$, and we get $\Phi(2 L)=0$ for some constant L is defined as in (1.11), from which we derive $|u| \leq 2 L$ a.e. $x \in \Omega$.
(ii) If $m=\frac{N}{\bar{p}}$, then

$$
\tau_{2}=\frac{\bar{p}^{*}}{\bar{p} m^{\prime}}=\frac{N(m-1)}{(N-\bar{p}) m}=1 .
$$

By Lemma 1.3 (ii), we obtain

$$
\Phi(k) \leq \Phi(1) e^{1-\left(\frac{k-1}{\tau}\right)^{1-\theta}} \leq|\Omega| e^{1-\left(\frac{k-1}{\tau}\right)^{1-\theta}} \quad \forall k \geq 1,
$$

Hence, if $k \geq 2$ (i.e. $k-1 \geq \frac{k}{2}$), we have

$$
\begin{equation*}
\Phi(k) \leq|\Omega| e^{1-\left(\frac{k}{2 \tau}\right)^{1-\theta}} \leq C_{4} e^{-(2 \tau)^{\theta-1} k^{1-\theta}} . \tag{2.6}
\end{equation*}
$$

We let $\tau^{\theta-1}=2^{2-\theta} \lambda$, by (2.6), we get

$$
\begin{equation*}
\operatorname{meas}\left\{e^{\lambda|u|^{1-\theta}}>e^{\lambda k^{1-\theta}}\right\}=\Phi(k) \leq C_{4} e^{-2 \lambda k^{1-\theta}}, \tag{2.7}
\end{equation*}
$$

choosing $\tilde{k}=e^{\lambda k^{1-\theta}}$ in (2.7), we obtain

$$
\begin{equation*}
\operatorname{meas}\left\{e^{\left.\lambda|u|\right|^{1-\theta}}>\tilde{k}\right\} \leq \frac{C_{4}}{\tilde{k}^{2}}, \quad \forall \tilde{k} \geq e^{\lambda 2^{1-\theta}}=k_{1} . \tag{2.8}
\end{equation*}
$$

Let us now use Lemma 3.11 from [2], which says that a sufficient and necessary condition for $g \in L^{1}(\Omega)$ is

$$
\sum_{k=0}^{\infty} \text { meas }\{|h|>k\}<+\infty .
$$

Finally we choose $g=e^{\lambda|u|^{1-\theta}}$, by (2.8), we deduce that

$$
\begin{aligned}
\sum_{\tilde{k}=0}^{\infty} \operatorname{meas}\left\{e^{\lambda|u|^{1-\theta}}>\tilde{k}\right\} & =\sum_{\tilde{k}=0}^{k_{1}} \operatorname{meas}\left\{e^{\lambda|u|^{1-\theta}}>\tilde{k}\right\}+\sum_{\tilde{k}=k_{1}+1}^{\infty} \operatorname{meas}\left\{e^{\lambda|u|^{1-\theta}}>\tilde{k}\right\} \\
& \leq\left(1+k_{1}\right)|\Omega|+C_{4} \sum_{\tilde{k}=k_{1}+1}^{\infty} \frac{1}{\tilde{k}^{2}} \\
& \leq C_{5}<\infty
\end{aligned}
$$

then $e^{\lambda|u|^{1-\theta}} \in L^{1}(\Omega)$.
(iii) If $\left(\bar{p}^{*}\right)^{\prime}<m<\frac{N}{\bar{p}}$, then $\tau_{2}<1$. We use Lemma 1.3 (iii), and we have for all $k \geq 1$

$$
\begin{aligned}
\Phi(k) & \leq C_{6}\left(\frac{1}{k}\right)^{\frac{\tau_{1}(1-\theta)}{1-\tau_{2}}} \\
& \leq C_{6}\left(\frac{1}{k}\right)^{\frac{N m(\overline{\bar{T}}-1)(1-\theta)}{N-\bar{p} m}},
\end{aligned}
$$

that is $u \in \mathcal{M}^{\frac{N m(\bar{p}-1)(1-\theta)}{N-\bar{p} m}}(\Omega)$ as desired.

If $f \in \mathcal{M}^{m}(\Omega)$, with $1<m \leq\left(\bar{p}^{*}\right)^{\prime}$, then it is possible to give a meaning to the solution for problem (1.1), using the concept of entropy solutions, which has been introduced in [1].

Definition 2.3. A measurable function u is an entropy solution to the problem (1.1) if $a_{i}(x, u, \nabla u) \in$ $L^{1}(\Omega), T_{l}(u)$ belongs to $W_{0}^{1,\left(p_{i}\right)}(\Omega)$ for every $l>0$ and the inequality

$$
\begin{equation*}
\sum_{i=1}^{N} \int_{\Omega} a_{i}(x, u, \nabla u) \partial_{i} T_{l}(u-\varphi) d x \leq \int_{\Omega} f T_{l}(u-\varphi) d x \tag{2.9}
\end{equation*}
$$

holds for every $l>0$ and every $\varphi \in W_{0}^{1,\left(p_{i}\right)}(\Omega) \cap L^{\infty}(\Omega)$.
Theorem 2.4. Let $f \in \mathcal{M}^{m}(\Omega)$ with $1<m \leq\left(\bar{p}^{*}\right)^{\prime}$. Then the problem (1.1) admits at least one entropy solution $u \in \mathcal{M}^{\frac{N m(\bar{p}-1)(1-\theta)}{N-\bar{p} m}}(\Omega)$ in the sense of (2.9).

Proof of Theorem 2.4. The proof is similar to that one of Theorem 1.1 in [6]. Let $h>k>0$. We use $\varphi=T_{k}(u) \in W_{0}^{1,\left(p_{i}\right)}(\Omega) \cap L^{\infty}(\Omega), l=h-k$, as a test function in (2.9). By (1.4) and (1.5), we obtain (2.3). The result follows from the proof of Theorem 2.2 (iii).

Conflict of interest

The author has no conflicts of interest to declare.

Acknowledgments

The author would like to thank the reviewers and the editor for their valuable comments and thoroughness.

References

[1] N. Benaichouche, H. Ayadi, F. Mokhtari and A. Hakem, Existence and regularity results for nonlinear anisotropic unilateral elliptic problems with degenerate coercivity, Journal of Elliptic and Parabolic Equations, 8(2) (2022), 171-195. DOI
[2] L. Boccardo and G. Croce, Elliptic partial differential equations, De Gruyter Studies in Mathematics, Vol. 55, 2014. DOI
[3] A. Di Castro, Existence and regularity results for anisotropic elliptic problems, Advanced Nonlinear Studies, 9(2) (2009), 367-393. DOI
[4] P. Di Gironimo, S. Leonardi, F. Leonetti, M. Macrì and P. V. Pet- ricca, Existence of solutions to some quasilinear degenerate elliptic systems with right hand side in a Marcinkiewicz space, Mathematics in Engineering, 5(3) (2023), 1-23. DOI
[5] H. Gao, H. Deng, M. Huang and W. Ren, Generalizatioins of Stampacchia Lemma and applications to quasilinear elliptic systems, Nonlinear Analysis, 208 (2021), 112297. DOI
[6] H. Gao, M. Huang and W. Ren, Regularity for entropy solutions to degenerate elliptic equations, Journal of Mathematical Analysis and Applications, 491(1) (2020), 124-251. DOI
[7] G. Gao, F. Leonetti and W. Ren, Regularity for anisotropic elliptic equations with degenerate coercivity, Nonlinear Analysis, 187(2) (2019), 393-505. DOI
[8] H. Gao, J. Zhang and H. Ma, A generalization of stampacchia lemma and applications, (2022), DOI
[9] G. Stampacchia, Équations elliptiques du second ordre à coefficients discontinus, Séminaire Jean Leray, 3 (1963), 1-77. URL
[10] M. Troisi, Teoremi di inclusione per spazi di Sobolev non isotropi, Ricerche di Matematica, 18(3) (1969), 3-24. URL

[^0]: ${ }^{\boxtimes}$ Corresponding author. Email: khelifi.hichemedp@gmail.com, h.khelifi@univ-alger.dz

