
Journal of Internet Services and Applications, 2022, 12:1, doi: 10.573/jisa.2022.2342
 This work is licensed under a Creative Commons Attribution 4.0 International License.

NFV-COIN: Unleashing The Power of In-Network Computing
with Virtualization Technologies
Giovanni Venâncio [Federal University of Paraná | gvsouza@inf.ufpr.br]
Rogério C. Turchetti [Federal University of Santa Maria | turchetti@redes.ufsm.br]
Elias P. Duarte Jr. [Federal University of Paraná | elias@inf.ufpr.br]
Received 18 November 2021 • Accepted 26 July 2022 • Published 18 November 2022

Abstract
Network Functions Virtualization (NFV) allows the implementation in software of middleboxes traditionally avail-
able as specialized hardware. Network services can be implemented as SFCs (Service Function Chains) based on
virtualization technologies that run on commodity hardware. Although most virtualized functions have classic mid-
dlebox functionalities (e.g. firewalls or intrusion detectors) NFV technology can be used to leverage the network
to provide novel types of services to end-users. Actually, NFV can be very convenient to deploy traditional end-
user services in the network, in the paradigm that has been called Computing In the Network (COIN). This article
discusses the requirements to deploy COIN services using NFV technologies, which we call NFV-COIN. We also
present case studies and an NFV-COIN architecture that is compliant with the NFV-MANO reference model.

Keywords: Network Function Virtualization, Computing In the Network, In-Network Computing, Network Virtualiza-
tion

1 Introduction
NFV (Network Functions Virtualization) allows the replace-
ment of traditional hardware-based middleboxes by Virtual-
ized Network Functions (VNFs), which are executed on off-
the-shelf hardware (Chiosi et al., 2012). The advantages of
NFV in comparison with the traditional alternative include
greater flexibility and ease of management, at a lower cost
and with less space and energy requirements (Han et al.,
2015; Mijumbi et al., 2016). VNFs can be instantiated on
demand, then used, and finally finished when they are no
longer needed. Furthermore, VNFs can have their resources
dynamically adjusted according to the demand, making effi-
cient use of system resources. Figure 1 illustrates a compar-
ison between a traditional network and an NFV-based net-
work. While hardware-based middleboxes make traditional
networks more complex to manage, troubleshoot and deploy
new services, NFV technology was developed as a way to
address these issues.

NFV-based NetworksTraditional Networks

VPN Router IPTV

Firewall DPI NAT

Virtualization Layer

vFirewall vDPI vNAT

Figure 1. Comparison between a traditional network and an NFV-based net-
work.

A single off-the-shelf server (hardware) is all that is
needed to provide multiple services, instead of having to ac-
quire/operate multiple servers (hardware), one per service. It
is not necessary to get more hardware to provide new ser-
vices. Although most VNFs implement classic middleboxes,

such as firewalls or intrusion detectors, NFV technology can
be used to provide novel, innovative services offered by the
network itself. In this way, services that are normally exe-
cuted on end-user hosts can be entirely executed within the
network, in the paradigm that has been called Computing In
the Network (COIN) (Zeng et al., 2021). COIN is seen in the
context of an edge-cloud continuum of applications and ser-
vices, that seamlessly integrates in-network computing and
network processing in a single framework. The very archi-
tecture of 5G and future 6G networks should benefit from
COIN as an enabler of novel applications such as the Inter-
net of Things, self-driving vehicles and distributed virtual re-
ality.

It is not hard to anticipate the synergy of the union of NFV
and COIN technologies. In this work besides discussing an
NFV-COIN architecture, several case studies are presented.
As early as 2015 (Turchetti andDuarte, 2015), anNFV-COIN
service was implemented based on the classic failure detec-
tors of distributed systems; that work was later expanded
(Turchetti and Duarte Jr, 2017). Consensus was another dis-
tributed service implemented with NFV-COIN (Venâncio
et al., 2021), used to maintain the consistency of a group
of SDN (Software-Defined Networks) controllers. In yet an-
other effort, the network was augmented with the ability to
natively offer reliable and ordered broadcast services (Venân-
cio et al., 2019).

An alternative way to implement services in the network
is to use programmable hardware (Tokusashi et al., 2019).
In 2016, Soulé et. al. (Dang et al., 2016, 2020) imple-
mented the Paxos consensus algorithm on a switch using P4.
Other so called INC (In-Network Computing) services im-
plemented with programmable hardware include data stor-
age systems (Bressana et al., 2020); an INC-based caching
system called IncBricks (Liu et al., 2017); and a distributed
data partition/aggregation application (Sapio et al., 2017).

https://orcid.org/0000-0001-7620-3793
mailto:gvsouza@inf.ufpr.br
https://orcid.org/0000-0002-5242-5057
mailto:turchetti@redes.ufsm.br
https://orcid.org/0000-0002-8916-3302
mailto:elias@inf.ufpr.br

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

Table 1. A summary of INC and NFV-COIN services.
Service Reference/Year NFV-COIN Hardware INC Performance
Failure Detector (Turchetti and Duarte, 2015) ✓ Reduced CPU and memory usage
Failure Detector (Turchetti and Duarte Jr, 2017) ✓ Reduced CPU and memory usage
Consensus (Dang et al., 2016) ✓ Increased throughput; Reduced latency
Consensus (Dang et al., 2020) ✓ Increased throughput
Consensus (Venâncio et al., 2021) ✓ Increased throughput; Reduced response time/CPU usage
Network Cache (Liu et al., 2017) ✓ Reduced request latency; Increased throughput
Aggregation (Sapio et al., 2017) ✓ Reduced bandwidth usage; Reduced computation time
Aggregation (Lao et al., 2021) ✓ Improved throughput; Efficient switch resource usage
Reliable Broadcast (Venâncio et al., 2019) ✓ Fair tradeoff between throughput and latency
Data Storage (Bressana et al., 2020) ✓ Increased throughput; Low latency overhead
Transaction Triaging (Jepsen et al., 2021) ✓ Increased throughput; Reduced computation time
Telemetry (Misa et al., 2021) ✓ Improved scalability with respect to traffic and query pro-

cessing

Those services were implemented using technologies such as
ASICs (Application Specific Integrated Circuits) and FPGA
(Field Programmable Gate Array). In (Misa et al., 2021) net-
work telemetry operations are scheduled on programmable
switches to improve the scalability of network-wide teleme-
trywith respect to dynamic traffic and query loads. Telemetry
traditionally relies in part on in-network band and computa-
tion (Marques et al., 2019).
Compared to NFV-COIN, services implemented in hard-

ware can present higher performance. On the other hand,
NFV-COIN is certainly a better choice to deploy larger soft-
ware systems that usually are executed on end-hosts. NFV-
COIN inherits all the advantages of NFV over the hardware-
based alternative: the major of which is certainly its flexibil-
ity to implement and manage new services. There is a reduc-
tion of both CAPital and OPerational EXpenditures (CAPEX
& OPEX). It is also much easier to make new network ser-
vices available: they can be simply published/downloaded
from an Internet marketplace. To stop offering a service
that is not needed anymore: just kill the corresponding pro-
cesses. NFV-COIN can save energy, space, and computing
resources. Nevertheless, we envision applications for both
approaches.
The main difference between traditional SFCs and NFV-

COIN services is that traditional SFCs are typical middle-
box network services that have always been executed in the
network. On the other hand NFV-COIN services are tradi-
tionally executed by end-users on their facilities, either as
middleware or applications. Thus, from the point of view of
end-users, the main advantage is the ease to simply use a ser-
vice that is offered by the network itself, instead of having to
implement or obtain and maintain/execute the service them-
selves. Some services can even be redesigned to use network
information to provide new functionalities, an example is the
NFV-FD failure detector mentioned above, which uses infor-
mation exchanged by lower network layer protocols to detect
link failures. Table 1 presents a summary of in-network ser-
vices developed either with programmable hardware or NFV.
The NFV-MANO reference architecture (NFV MANage-

ment and Orchestration) (Quittek et al., 2014) has been
widely adopted as the standard to deploy and integrate vir-
tual network services from different vendors and developers.
NFV-COIN should be not only fully compliant with NFV-
MANO, but also provide an interface to allow sophisticated
types of interactions with end-user applications. It is neces-

sary to precisely define how NFV-COIN services are offered,
configured, maintained, and accessed. Thus an NFV-COIN
architecture must include (i) an application interface that al-
lows the end-user to invokeNFV-COIN services; on the other
side, i.e. the network, it is necessary to have (ii) the system
interface that allows access to NFV-COIN services; and, (iii)
a systemmodule to support the creation, operation and provi-
sion of NFV-COIN services, in addition to promoting secure
access to those services.
The remainder of this article is organized as follows. Sec-

tion 2 gives an overview of the NFV-MANO reference archi-
tecture. Section 3 introduces NFV-COIN and describes three
case studies. Section 4 addresses research challenges and re-
quirements for a generic NFV-COIN architecture. The con-
clusions follow in Section 5.

2 NFV-MANO: An Overview

In order to standardize the deployment, execution, and man-
agement of NFV-based services, as well as to allow the in-
teroperability of a broad range of VNFs from different de-
velopers, the ETSI has coordinated efforts that led to the
NFV-MANO (NFV Management and Orchestration) refer-
ence architecture (Quittek et al., 2014). The MANO archi-
tecture is primarily responsible for the lifecycle, orchestra-
tion, and management of virtualized services. In addition,
NFV-MANO provides standardized communication inter-
faces and abstracts the computational resources needed to ex-
ecute VNFs, providing the support for running VNFs from
different vendors (ETSI, 2015). Figure 2 shows the main
blocks of the reference architecture, which are described
next: the NFV Infrastructure (NFVI), the VNFs, and the
NFV-MANO block itself.

NFV Infrastructure (NFVI)
Virtual

Compute
Virtual

Storage
Virtual

Network

Virtualization Layer

Physical Layer
Compute Storage Network

Virtualized Network Functions (VNFs)

VNF VNF VNF VNF VNF

NFV Management and
Orchestration (NFV-MANO)

NFV Orchestrator (NFVO)

VNF Manager (VNFM)

Virtualized Infrastructure
Manager (VIM)

Figure 2. NFV-MANO reference architecture.

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

The NFVI block represents the virtualized infrastructure
onwhich VNFs are instantiated, executed, andmanaged. The
NFVI consists of a Physical Layer and a Virtualization Layer.
The Physical Layer consists of computational resources, such
as Compute, Storage, and Network. Physical resources are
further abstracted as virtual elements through the Virtualiza-
tion Layer, which is composed of a hypervisor that creates
virtualized devices as Virtual Machines (VMs) or as contain-
ers. This allows each VNF to run independently and enforces
isolation. TheVNFs inFigure 2 represent the virtual network
function instances that are executing on the NFVI.
The VNFs block represents the instances of virtualized el-

ements that support the execution of the network functions
that are running on the NFVI. VNFs have well-defined com-
munication and management interfaces. Each VNF has an
associated VNF Descriptor (VNFD). A VNFD is a template
responsible for specifying a VNF in terms of operational
and deployment requirements (Quittek et al., 2014). In ad-
dition to the VNFD, each VNF has a corresponding Element
Management System (EMS). An EMS performs the typical
FCAPS (Fault, Configuration, Accounting, Performance, Se-
curity)Management for one or several VNFs. This block also
includes the SFCs – network services that are compositions
of multiple VNFs.
The NFV-MANO block consists of three modules: NFVO,

VNFM, and VIM, described next. The first module is the
NFVOrchestrator (NFVO), which manages and orchestrates
the resources allocated to the virtualized infrastructure. The
NFVO also manages the lifecycle of network services, thus
allowing the composition of VNFs on SFCs (Service Func-
tion Chains). In addition, the NFVO performs other tasks,
such as increasing or decreasing computational resources ac-
cording to demand, managing policies, validating and autho-
rizing NFVI requests, among others.
The second module is the VNFManager (VNFM), respon-

sible for supervising the lifecycle of VNFs, including VNF
instantiation, deletion, configuration, and scheduling. To per-
form its functionalities, the VNFM makes use of the VNFD.
The VNFM is also responsible for the monitoring of VNF
resources.
Finally, the Virtualized InfrastructureManager (VIM) con-

trols andmanages the virtualized infrastructure resources (i.e.
compute, storage, and network). The VIM, which typically
is based on a cloud platform (e.g., OpenStack (OpenStack,
2022)), is primarily responsible for providing and managing
virtual resources. Some of the tasks performed by the VIM
include: creation, deletion, and reconfiguration of virtual de-
vices.

3 Computing In the Network with
NFV

NFV technology has been used to support the creation and
operation of services that run in the network and provide an
interface for end-users. Figure 3 represents a generic archi-
tecture of a virtualized network. The figure shows at the top a
set of physical servers located in the network. These servers
are endowed with a virtualization layer, which provides de-
vices such as virtual machines and containers that abstract

physical resources (e.g., Compute, Storage, Network). Arbi-
trary network services can be built with VNFs running on this
environment. The figure shows both examples of new NFV-
COIN services and traditional network functions that have
been usually deployed as VNFs, including firewalls, proxies,
packet inspectors, among others. The NFV-COIN services
are accessed by end-users from their networks shown at the
bottom of the figure.

Network

VM VMContainer

Virtualization Layer

Compute Storage Network

Firewall Proxy

VM VMContainer

Virtualization Layer

Compute Storage Network

End-user Networks

DPI NFVinc 1 NFVinc 2 NFVinc 3

...

Network

VM VMContainer

Virtualization Layer

Compute Storage Network

Firewall Proxy

VM VMContainer

Virtualization Layer

Compute Storage Network

End-user Networks

DPI NFV-COIN 1 NFV-COIN 2 NFV-COIN N

...

Figure 3. A generic virtualized network.

Next, we illustrate the potential of using NFV technology
to build COIN services through three case studies. The first
NFV-COIN service implements a failure detector. The sec-
ond service implements consensus, applied to maintain the
consistency of a distributed SDN control plane. Finally, the
third case study presents a service that allows the network to
offer reliable and ordered broadcast as native services.

3.1 Failure Detection as an NFV-COIN Ser-
vice: NFV-FD

Failure detectors were originally proposed to help solve con-
sensus in asynchronous distributed systems in which pro-
cesses can fail by crashing (Chandra and Toueg, 1996). Asyn-
chronous systems do not have timing guarantees, i.e. the time
it takes for a message to reach the destination or to execute
a task is not known in advance. Consensus is a fundamen-
tal problem of distributed systems that allows processes to
agree on a single value, given a set of multiple initial values.
Consensus must ensure agreement even if some processes
fail. However, Lynch Fischer et al. (1985) and others proved
the impossibility of consensus in asynchronous distributed
systems with crash failures as early as 1985. In order to get
around this impossibility, unreliable failure detectors were
proposed as an abstraction to provide process state informa-
tion (correct/suspect). Chandra and Toueg proved that, de-
pending on the properties of the failure detector, consensus
is possible in an asynchronous system with crash faults. Fail-
ure detectors are implemented by monitoring the processes.
Usually, processes send heartbeat messages periodically. If
the failure detector does not receive one (or more) of those
messages within a suitable time interval, the process is sus-
pected of having failed.
An NFV-based failure detector has been proposed

(Turchetti and Duarte Jr, 2017) which is deployed as an NFV-
COIN service. The solution, called NFV-FD (NFV Failure
Detector) shown inFigure 4, uses information obtained from

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

an SDN controller – in this case an OpenFlow controller
(McKeown et al., 2008) – to monitor processes and deter-
mine their status (i.e., correct or suspected of having crashed).
One of the main components of NFV-FD is a packet fil-
ter called FDMod, which is applied to the packets received
by the controller, and selects packets that have information
about the monitored processes. FDMod inspects packets by
examining header fields and sends selected packets to NFV-
FD that can update the status of the monitored processes.
NFV-FD also detects failures of communication links. For

that, the OpenFlow topology discovery mechanism (Link
Layer Discovery Protocol – LLDP) is used. The switches
themselves send LLDP-type packets to inform any changes
of the network topology. All LLDP packets are captured, fil-
tered and processed by FDMod, which then sends the rel-
evant information to the NFV-FD. For example, message
port s2-eth2 changed: DOWN indicates that the eth2 port of
switch s2 is down. NFV-FD in turn checks if there are pro-
cesses connected through this port andmarks those processes
as unreachable.
Experimental results comparing NFV-FD with an alterna-

tive in which the failure detector is implemented in the con-
troller itself (not as a standaloneVNF) show that although the
detection time of NFV-FD is slightly longer (about 120ms),
there is a lower impact on the performance of the controller.
When NFV-FD is executed within the controller, the CPU
usage increases from 2.67% up to 4.49%. Therefore, plac-
ing the network function within the controller adds the corre-
sponding resource requirements to the controller. Thus, the
NFV approach allows the controllers to run only their native
tasks, allowing a higher rate of flow requests.

3.2 Consensus as an NFV-COIN Service:
VNF-Consensus

By default, the SDN control plane is centralized, which raises
issues in terms of availability, scalability and performance
(Canini et al., 2015). Although a distributed control plane can

Figure 4. NFV-FD architecture.

solve the problem, achieving consistent synchronization be-
tween multiple SDN controllers is not a trivial task. Existing
solutions employ the controllers themselves to perform the
synchronization tasks, or alternatively synchronize the data
plane. In (Venâncio et al., 2021) the VNF-Consensus service
is proposed to implement the Paxos consensus algorithm and
to maintain the consistency of a distributed control plane that
consists of multiple SDN controllers. VNF-Consensus does
not require any modification of the data plane or the SDN
protocol (in this case, again OpenFlow).

Figure 5. VNF-Consensus architecture.

Figure 5 shows how VNF-Consensus works. To ensure
the consistency of the distributed control plane, before a new
OpenFlow rule is installed on some switch of the data plane,
it is replicated to all SDN controllers. The controller that first
receives the new rule starts VNF-Consensus which executes
the Paxos algorithm to guarantee that all controllers get the
rule. The data plane can then be consistently updated with
that rule. In this way, if any controller fails, any other con-
troller can take over, since they have exactly the same view
of the network.
Experimental results show that using VNF-Consensus is

more efficient than having the controllers themselves run
consensus to guarantee the consistency of the distributed con-
trol plane. When using VNF-Consensus, the controller CPU
usage drops from 62.1% to around 34.4%. Hence, the con-
troller is able to handle a larger number of requests: around
53% more. At the same time, the latency to install a con-
sistent rule over multiple controllers decreases significantly:
up to 18.5%. Finally, when using the VNF approach, the
throughput is about 3.6 times higher than the corresponding
classic strategy when comparing with scenarios under heav-
ier loads.

3.3 Reliable and Ordered Broadcast as an
NFV-COIN Service: NFV-RBCast

Reliable broadcast is one of the most important abstractions
for the development of distributed systems Hadzilacos and
Toueg (1993). A source process can use reliable broadcast to
send a message that is guaranteed to be correctly delivered
by all correct processes, even if the source fails. Other broad-
cast abstractions also guarantee the order in which messages
are delivered. The most common ordered broadcast abstrac-
tions are FIFO (First-In First-Out), causal and atomic broad-
cast. FIFO broadcast guarantees that messages are delivered

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

according to the order in which they were broadcast by the
source process. Causal broadcast guarantees the causality of
message delivery. Finally, atomic broadcast guarantees that
all messages are delivered by all correct processes in the
same total order. The orders can be combined, so it is pos-
sible for example to have atomic FIFO broadcast or causal
atomic broadcast.
Traditionally, end-users either implement broadcast within

the distributed applications that need this type of service or,
alternatively install/maintain middleware with this function-
ality. The NFV-RBCast (Venâncio et al., 2019) solution uses
NFV-COIN technology to allow the network itself to pro-
vide reliable and ordered broadcast as native services. NFV-
RBCast currently features reliable broadcast, atomic broad-
cast, FIFO atomic broadcast and causal atomic broadcast. Ap-
plications access the broadcast primitives through an API
called RBCast.
NFV-RBCast guarantees the order in which messages are

delivered by using a sequencer which is implemented as a
VNF, called VNF-Sequencer, shown in Figure 6. From the
standard operation of the OpenFlow protocol, whenever a
switch receives a packet that does not have a matching en-
try in the flow table, the packet is forwarded to the controller
using a packet_in message. If the packet_in message indi-
cates that the flow is of the NFV-RBCast service, the con-
troller installs a rule in the switch so that all packets of this
flow are forwarded to the VNF-Sequencer. Upon receiving
those packets, the VNF-Sequencer executes the sorting algo-
rithm specified. VNF-Sequencer inserts a sequence number
into each packet, which is next forwarded to the destination
processes. Upon receiving a broadcast packet, the destination
process delivers the message to the application taking into ac-
count the sequence number inserted by VNF-Sequencer.

Host

Application

RBCast

Host

Application

RBCast

Host

Application

RBCast

SD
N

. . .

SDN
Controller

VNF-Sequencer

Virtualization Layer

Figure 6. NFV-RBCast architecture.

Experimental results show that VNF-Consensus achieves
a throughput of up to 15.000 messages/second for atomic
broadcast executed by 50 processes. The delivery latency of
atomic broadcast was up to 32% higher than that of reliable
broadcast, which is expected since atomic broadcast guaran-
tees the total order of messages.

4 An NFV-COIN Architecture
In this section we discuss the requirements of an architec-
ture to support NFV-COIN services. NFV-COIN leverages
NFV technology to allow the deployment of COIN services.
It is important to keep in mind that these are network na-
tive services they are meant to be accessed by end-users. As

shown inFigure 7, the architecture must include a UserMod-
ule, which runs on the end-user host. This module must pro-
vide an API for end-users to access the NFV-COIN services,
called user NFV-COIN API. This API can be implemented
as a library with primitives to allow access and management
of the NFV-COIN services, enabling their creation, configu-
ration, usage, monitoring and deletion. The NFV-COIN API
must also allow users to integrate multiple services to their
local applications in a transparent and unified way.
Figure 7 also shows the NFV Module which runs in the

network and consists of a traditional NFV system, plus an
NFV-COIN Supervisor (NFVS). The NFVS can be seen as a
gateway to the NFV-COIN services, and consists of a Broker,
a ConfigurationAgent andMonitoringModule, described be-
low. Furthermore, the NFV-COIN Services API provides the
interface that allows access to the NFVS and NFV-COIN ser-
vices within the network. The User Module communicates
with the NFV Module through the interfaces provided by
the NFV-COIN API that runs on an end-user host and NFV-
COIN Services API in the network.
As an example of these APIs, the NFV-FD failure detec-

tor must include in the NFV-COIN service API a primitive
to output the list of processes suspected of having crashed,
while the NFV-COIN user API must have a primitive to in-
voke that function. Other NFV-FD API primitives include
those for adding and removing processes of the list of pro-
cesses to be monitored. The VNF-Consensus user API must
include primitives to propose and decide values. The NFV-
RBCast user API must have primitives for the different types
of broadcasts supported, such as for atomic broadcast or for
reliable broadcast, among others. There is also a primitive to
deliver a message to the end-user application.
The NFV-COIN Services API thus allows end-user appli-

cations to access the NFV-COIN services through the User
API. Thus both APIs could be implemented for instance
as REST (REpresentational State Transfer) interfaces, that
make it easy to integrate heterogeneous applications and
systems from different vendors. As shown in the examples
above, the NFV-COIN Services API consists of sets of prim-
itives which are defined case-by-case for each NFV-COIN
service, there is no general set of primitives that can be
adopted for all services. Thus the NFV-COIN Services API
should also provide a discovery service, returning to the end-
user a catalog with the NFV-COIN services available. The
Services API must be generic enough in the sense that: (i)
it allows end-user applications to access the NFV-COIN ser-
vices available on the network through standard calls; (ii) the
API should support different types of virtualization technolo-
gies, such as NFV, SDN, and also cloud computing; (iii) the
API must be compatible with most programming languages,
allowing interoperability between different developers.
The NFV Module in turn consists of the original compo-

nents of the NFV-MANO architecture (i.e., NFVO, VNFM,
VIM), and also includes the physical infrastructure on which
services are virtualized (i.e., the NFVI), the virtualized ser-
vices themselves and also the NFVS (NFV-COIN Supervi-
sor) mentioned above. The NFVS is the main component of
the NFV-COIN architecture, and its functionalities can be or-
ganized in three different modules: the Broker, Configura-
tion Agent and Monitoring Module, in addition to the afore-

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

NFV ModuleUser Module

NFV-COIN Services

N
FV

I

...

Physical Resources

Virtual Resources

Physical Resources

Service 1

NFV-MANO

NFV Orchestrator (NFVO)

VNF Manager (VNFM)

Virtualized Infrastructure
Manager (VIM)

Service 2 Service N

NFV-COIN API
Client App NFV-COIN Supervisor (NFVS)

Broker

N
FV

-C
O

IN
 S

er
vi

ce
s

AP
I

Network

Configura�on
Agent

Monitoring Module
NFV-COIN API

Client App

NFV-COIN API
Client App

Service Monitoring Agents

...

Figure 7. An NFV-COIN architecture.

mentioned NFV-COIN Services API.

The NFVS acts as a gateway between the end-user (the
application, actually), the virtualized services and the virtu-
alization layer. All requests made by the application through
the user NFV-COIN API are received by the NFV-COIN Ser-
vices API. The NFV-COIN Services API forwards requests
to the Broker, which is responsible for parsing requests and
establishing the traffic between the application and the cor-
responding NFV-COIN services.

The Broker is responsible for receiving and processing re-
quests sent by the NFV-COIN Services API. Requests can be
then forwarded to the NFV-MANO system for accomplish-
ing tasks such as instantiating a new NFV-COIN service, or
monitoring, deleting or making some reconfiguration of an
existing service. Requests can also be scheduled for future ex-
ecution when they cannot/should not be executed instantly.

The NFVS must also have a Configuration Agent (CA),
responsible for both the general configuration of the NFV-
COIN services and the configuration of each user session, in-
cluding guaranteeing that the communication between each
user and service is secure. Users must be authorized and all
communication with NFV-COIN services must be authenti-
cated and confidentiality must be guaranteed as well. In ad-
dition, the CA creates a dedicated virtual network for each
user, allowing individual instances of the virtualized services
to be created. This approach ensures isolation, thus privacy
and security; in addition, as there is no competition for re-
sources, it prevents bottlenecks from arising even when the
number of users increases. The CA also maintains informa-
tion about users and their respective connections on a local
database, including e.g., the services each user is connected
to, which virtual network is associated with which user and
the respective active connections.

Finally, the NFVS also features a Monitoring module, to
monitor the state of instantiated services, also providing in-
formation about the system itself, including the NFVI and
the communication channels. The Monitoring module must
support arbitrary metrics such as CPU utilization, bandwidth
(in/out) and memory utilization. Note that this module must
be able to monitor NFV-COIN services that consist of multi-
ple geographically separated functions, as well as the under-
lying network. Thus e.g. it should be able to detect network
faults that can lead to NFV-COIN service failures.

4.1 NFV-COIN Architecture: Operations
Next we describe operations of the NFV-COIN architecture
to allow NFV-COIN services to be provided, managed and
accessed: (i) operations for the creation of secure, authen-
ticated connections between end-users and NFV-COIN ser-
vices; (ii) operations related to the communication of end-
users and NFV-COIN services; (iii) operations related to the
management of NFV-COIN services. These different types
of operations are described next.

Connecting with NFV-COIN Services

After an application invokes anNFV-COIN service, a session
is created between user and service. Before that, the user may
have called the discovery function of NFV-COIN Services
API, in order to obtain a list of the services available on the
network. A connection request is forwarded to the Broker,
which sends amessage to the CAmodule to establish a secure
connection between user and service.
In the first step in which a new session is created, the

CA makes a request to the NFV-MANO system to set up a
new virtual network for the user. This ensures isolation and
security. The second step consists of the authentication of
both parts. Finally, in the third step, the Broker registers the
session on the CA local database. After the session is cre-
ated, the Broker makes a request to instantiate the invoked
NFV-COIN services. To do so, NFV-MANO creates a new
instance of the required service on the user’s virtual network.
The Broker waits until the instantiation has completed, then
returns a message to the application informing that the ser-
vice is available.

Communicating with NFV-COIN Services

After the connection is established, the end-user application
can communicate with the NFV-COIN service either directly
or through the NFV-COIN Services API, a choice that de-
pends mainly on performance issues. Although the direct
communication is more efficient, the NFV-COIN Services
API can be more convenient as it provides a REST-like in-
terface that provides a set of primitives that can be obtained
as a result of the discovery call. On the other hand, the direct
communication can be the best choice for instance when high
volumes of data must be transferred. The direct communica-
tion is established by the Broker. The application communi-

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

cates using the proper NFV-COIN user API primitives. The
Broker also needs to create the routes across the end-user vir-
tual network so that the application can reach the NFV-COIN
service.

Managing the NFV-COIN Services

The NFV-COIN Services API provides a number of opera-
tions for service management. Examples include operations
for reconfiguration, such as auto-scaling that allows a service
to have its assigned resources or even the number of running
instances increased or reduced depending on the load. Some
operations involve other modules of the architecture, others
are executed directly on the virtualized service.
Note that the Broker is concerned with the services – not

the VNFs, which are a responsibility of NFV-MANO itself.
Thus the Broker is not responsible for the lifecycle of the
corresponding VNFs/SFCs, but for the management of the
NFV-COIN services themselves. For instance, consider the
failure detector service (NFV-FD) described above. The Bro-
ker is responsible for performance monitoring and, depend-
ing on the number of processes being monitored by NFV-FD
its assigned resources can be increased and/or decreased.

5 Conclusion
This article explores a novel alternative for the provision of
arbitrary services within/by the network (i.e., COIN: Com-
puting In the Network) based on NFV technology. The main
difference of NFV-COIN services from traditional virtual-
ized network services is that they are invoked by end-user
applications through primitives provided by an API. In the
article, before discussing an NFV-COIN architecture, three
NFV-COIN services were presented as case studies: NFV-
FD, VNF-Consensus and NFV-RBCast. These services have
already been implemented and clearly demonstrate the feasi-
bility of deploying COIN services with NFV technology.
An NFV-COIN architecture is described as an extension

to the NFV-MANO reference model that allows services to
be easily invoked/integrated by end-user applications. The
architecture consists four main components: (i) an applica-
tion API, with primitives to allow the end-user to invoke an
NFV-COIN service; (ii) the NFV-COIN API, which runs in
the network and provides the interface from requests to ser-
vices; (iii) the NFVS, the NFV-COIN Supervisor, a system
module to support the creation, operation and provision of
NFV-COIN services, in addition to promoting secure access
to those services; (iv) the NFV-COIN services themselves.
There are multiple challenges that must be tackled until

NFV-COIN can become a reality in production networks.
Although we discussed an architecture in the paper, much
work has to be done until a complete, unifying architecture
that supports highly different NFV-COIN services is avail-
able. Performance is always an issued for systems based on
multiple software layers. Although there are alternatives for
example in hardware, pursuing the implementation of per-
formant NFV-COIN services is a formidable challenge that
can bring significant advantages. Last but not least, depend-
ability issues must also be solved. NFV-COIN services will

only be widely adopted on production networks if they can
provide the availability levels required. However, there is no
doubt that leveraging networks to offer arbitrary services on
demand which are built with virtualization technologies is
worth investigating.

Acknowledgements
This work was partially supported by the Brazilian Research
Council (CNPq) grant 308959/2020-5, FAPESP/MCTIC/CGI
2021/06923-0 and CAPES ”Código de Financiamento” 001

References
Bressana, P., Zilberman, N., Vucinic, D., and Soulé, R.
(2020). Trading latency for compute in the network. In
Proceedings of the 2020 Workshop on Network Applica-
tion Integration/CoDesign, NAI@SIGCOMM 2020, Vir-
tual Event, USA, August 14, 2020, pages 35–40. ACM.
DOI: 10.1145/3405672.3405807.

Canini, M., Kuznetsov, P., Levin, D., and Schmid, S. (2015).
A distributed and robust SDN control plane for transac-
tional network updates. In IEEE Conference on Com-
puter Communications (INFOCOM). DOI: 10.1109/IN-
FOCOM.2015.7218382.

Chandra, T. D. and Toueg, S. (1996). Unreliable failure de-
tectors for reliable distributed systems. Journal of ACM,
43(2). DOI: 10.1145/226643.226647.

Chiosi, M., Clarke, D., Willis, P., Reid, A., Feger, J., Bu-
genhagen, M., Khan, W., Fargano, M., Cui, C., Deng,
H., et al. (2012). Network functions virtualisation: An
introduction, benefits, enablers, challenges and call for
action. Available at: http://course.ipv6.club.tw/
SDN/nfv_white_paper.pdf.

Dang, H. T., Bressana, P., Wang, H., Lee, K. S., Zilber-
man, N., Weatherspoon, H., Canini, M., Pedone, F., and
Soulé, R. (2020). P4xos: Consensus as a network ser-
vice. IEEE/ACM Transactions on Networking. DOI:
10.1109/TNET.2020.2992106.

Dang, H. T., Canini, M., Pedone, F., and Soulé, R.
(2016). Paxos made switch-y. ACM SIGCOMM
Computer Communication Review, 46(2):18–24. DOI:
10.1145/2935634.2935638.

ETSI, N. (2015). Network functions virtualization (nfv)
infrastructure overview. Avilable at: https://www.
etsi.org/deliver/etsi_gs/nfv-inf/001_099/
001/01.01.01_60/gs_nfv-inf001v010101p.pdf.

Fischer, M. J., Lynch, N. A., and Paterson, M. S. (1985). Im-
possibility of distributed consensus with one faulty pro-
cess. Journal of the ACM (JACM), 32(2):374–382. DOI:
10.1145/3149.214121.

Hadzilacos, V. and Toueg, S. (1993). Fault-tolerant broad-
casts and related problems. In Distributed systems
(2nd Ed.), pages 97–145. Addison-Wesley. Available
at: https://dl.acm.org/doi/abs/10.5555/302430.
302435.

Han, B., Gopalakrishnan, V., Ji, L., and Lee, S. (2015). Net-
work function virtualization: Challenges and opportuni-

https://dl.acm.org/doi/10.1145/3405672.3405807
https://ieeexplore.ieee.org/document/7218382”
https://ieeexplore.ieee.org/document/7218382”
https://dl.acm.org/doi/10.1145/226643.226647
http://course.ipv6.club.tw/SDN/nfv_white_paper.pdf
http://course.ipv6.club.tw/SDN/nfv_white_paper.pdf
https://ieeexplore.ieee.org/document/9095258
https://dl.acm.org/doi/10.1145/2935634.2935638
https://www.etsi.org/deliver/etsi_gs/nfv-inf/001_099/001/01.01.01_60/gs_nfv-inf001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-inf/001_099/001/01.01.01_60/gs_nfv-inf001v010101p.pdf
https://www.etsi.org/deliver/etsi_gs/nfv-inf/001_099/001/01.01.01_60/gs_nfv-inf001v010101p.pdf
https://doi.org/10.1145/3149.214121
https://dl.acm.org/doi/abs/10.5555/302430.302435
https://dl.acm.org/doi/abs/10.5555/302430.302435

NFV-COIN: Unleashing The Power of In-Network Computing with Virtualization Technologies Venâncio et al. 2022

ties for innovations. IEEE Communications Magazine,
53(2):90–97. DOI: 10.1109/MCOM.2015.7045396.

Jepsen, T., Lerner, A., Pedone, F., Soulé, R., and Cudré-
Mauroux, P. (2021). In-network support for transac-
tion triaging. Proceedings of the VLDB Endowment,
14(9):1626–1639. DOI: 10.14778/3461535.3461551.

Lao, C., Le, Y., Mahajan, K., Chen, Y., Wu, W., Akella,
A., and Swift, M. (2021). ATP: In-network aggregation
for multi-tenant learning. In 18th USENIX Symposium
on Networked Systems Design and Implementation (NSDI
21), pages 741–761. Available at: https://www.usenix.
org/system/files/nsdi21-lao.pdf.

Liu, M., Luo, L., Nelson, J., Ceze, L., Krishnamurthy, A.,
and Atreya, K. (2017). Incbricks: Toward in-network com-
putation with an in-network cache. In Proceedings of the
Twenty-Second International Conference on Architectural
Support for Programming Languages and Operating Sys-
tems, pages 795–809. DOI: 10.1145/3037697.3037731.

Marques, J. A., Luizelli, M. C., Tavares da Costa Filho, R. I.,
and Gaspary, L. P. (2019). An optimization-based ap-
proach for efficient network monitoring using in-band net-
work telemetry. Journal of Internet Services and Applica-
tions, 10(1):1–20. DOI: 10.1186/s13174-019-0112-0.

McKeown, N., Anderson, T., Balakrishnan, H., Parulkar,
G., Peterson, L., Rexford, J., Shenker, S., and Turner, J.
(2008). Openflow: enabling innovation in campus net-
works. ACMSIGCOMMcomputer communication review,
38(2):69–74. DOI: 10.1145/1355734.1355746.

Mijumbi, R., Serrat, J., Gorricho, J. L., Bouten, N., Turck,
F. D., and Boutaba, R. (2016). Network Function
Virtualization: State-of-the-Art and Research Challenges.
IEEE Communications Surveys Tutorials, 18(1). DOI:
10.1109/COMST.2015.2477041.

Misa, C., Durairajan, R., Rejaie, R., and Willinger, W.
(2021). Revisiting network telemetry in coin: A case for
runtime programmability. IEEE Network, 35(5):14–20.
DOI: 10.1109/MNET.201.2100064.

OpenStack (2022). Openstack. https://www.openstack.
org/. Accessed: 2022.

Quittek, J., Bauskar, P., BenMeriem, T., Bennett, A., Besson,
M., and et al (2014). Network Functions Virtualisation
(NFV); Management and Orchestration. GS NFV-MAN
001 V1.1.1. Available at: http://www.etsi.org/
deliver/etsi{_}gs/NFV-MAN/001{_}099/001/01.
01.01{_}60/gs{_}nfv-man001v010101p.pdf.

Sapio, A., Abdelaziz, I., Aldilaijan, A., Canini, M., and Kal-
nis, P. (2017). In-network computation is a dumb idea
whose time has come. In Proceedings of the 16th ACM
Workshop on Hot Topics in Networks, pages 150–156.
DOI: 10.1145/3152434.3152461.

Tokusashi, Y., Dang, H. T., Pedone, F., Soulé, R., and Zilber-
man, N. (2019). The case for in-network computing on de-
mand. In Proceedings of the Fourteenth EuroSys Confer-
ence 2019, pages 1–16. DOI: 10.1145/3302424.3303979.

Turchetti, R. C. and Duarte, E. P. (2015). Implementation of
failure detector based on network function virtualization.
In 2015 IEEE International Conference on Dependable
Systems and Networks Workshops, pages 19–25. IEEE.
DOI: 10.1109/DSN-W.2015.30.

Turchetti, R. C. and Duarte Jr, E. P. (2017). Nfv-fd: Imple-
mentation of a failure detector using network virtualiza-
tion technology. International Journal of Network Man-
agement, 27(6):e1988. DOI: 10.1002/nem.1988.

Venâncio, G., Turchetti, R. C., Camargo, E. T., and Duarte Jr,
E. P. (2021). Vnf-consensus: A virtual network function
for maintaining a consistent distributed software-defined
network control plane. International Journal of Network
Management, 31(3):e2124. DOI: 10.1002/nem.2124.

Venâncio, G., Turchetti, R. C., and Duarte, E. P. (2019). Nfv-
rbcast: Enabling the network to offer reliable and ordered
broadcast services. In 2019 9th Latin-American Sym-
posium on Dependable Computing (LADC), pages 1–10.
IEEE. DOI: 10.1109/LADC48089.2019.8995681.

Zeng, D., Ansari, N., Montpetit, M.-J., Schooler, E. M., and
Tarchi, D. (2021). Guest editorial: In-network computing:
Emerging trends for the edge-cloud continuum. IEEE Net-
work, 35(5):12–13. DOI: 10.1109/MNET.2021.9606835.

https://ieeexplore.ieee.org/document/7045396
https://doi.org/10.14778/3461535.3461551
https://www.usenix.org/system/files/nsdi21-lao.pdf
https://www.usenix.org/system/files/nsdi21-lao.pdf
https://doi.org/10.1145/3037697.3037731
https://link.springer.com/article/10.1186/s13174-019-0112-0
https://doi.org/10.1145/1355734.1355746
https://ieeexplore.ieee.org/document/7243304
https://ieeexplore.ieee.org/document/9606824
https://www.openstack.org/
https://www.openstack.org/
http://www.etsi.org/deliver/etsi{_}gs/NFV-MAN/001{_}099/001/01.01.01{_}60/gs{_}nfv-man001v010101p.pdf
http://www.etsi.org/deliver/etsi{_}gs/NFV-MAN/001{_}099/001/01.01.01{_}60/gs{_}nfv-man001v010101p.pdf
http://www.etsi.org/deliver/etsi{_}gs/NFV-MAN/001{_}099/001/01.01.01{_}60/gs{_}nfv-man001v010101p.pdf
https://dl.acm.org/doi/10.1145/3152434.3152461
https://dl.acm.org/doi/10.1145/3302424.3303979
https://ieeexplore.ieee.org/document/7272546
https://onlinelibrary.wiley.com/doi/10.1002/nem.1988
https://onlinelibrary.wiley.com/doi/10.1002/nem.2124
https://ieeexplore.ieee.org/document/8995681
https://ieeexplore.ieee.org/document/9606835

	Introduction
	NFV-MANO: An Overview
	Computing In the Network with NFV
	Failure Detection as an NFV-COIN Service: NFV-FD
	Consensus as an NFV-COIN Service: VNF-Consensus
	Reliable and Ordered Broadcast as an NFV-COIN Service: NFV-RBCast

	An NFV-COIN Architecture
	NFV-COIN Architecture: Operations

	Conclusion

