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Abstract This work presents an interdisciplinary assessment examining air quality tracking in urban environments.
This application is well suited to be approached with wireless sensor networks’ paradigm in their overall variations.
The proposed modeling application takes advantage of Vehicle Sensor Networks (VSN) by embedding sensor nodes
in public transportation, addressing this study case with bus lines so that the mobiles spread the sampling activity
through many different places visited during the route. Simultaneously, it alleviates power management restrictions,
packaging dimensions (size and weight), and general maintenance issues. We perform environmental modeling
based on real data considering temporal and spatial multivariate behavior on observed phenomena. We consider the
city of São Paulo in our case study and parse the asserted data to create a multivariate map of samples, showing the
behavior of five different air pollutants from fossil-fueled vehicles (CO, O3, PM10, NO2 and SO2) simultaneously
while it also varies in time. Furthermore, the experiment considers a detailed description of roads, bus lines, vehicle
itineraries, and general traffic information. The input data that has unformatted or missing information due to being
sourced from real sensors is handled to create the map mentioned above. Our methodology addresses the following:
1) the mentioned environmental simulation, 2) the deployment of mobile sensor nodes and performing sensing
process, 3) the implementation of network activity and delivery of collected data, 4) visualization of monitored
environment based on gathered data using Voronoi Diagrams to fill blank data at non-reached areas. Finally, our
VSN-based approach improved 126 times lower error and 11 times higher coverage compared to conventional
monitoring with air quality stations.
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1 Introduction

The world around us has various phenomena monitored by
devices provided with sensing, processing, and communica-
tion capabilities. While cooperatively working in an area
of interest, such devices comprise a wireless sensor network
(WSN), Akyildiz et al. (2002). This study evaluates a solu-
tion considering different physical phenomena that wireless
sensor networks observe. In this context, the challenge of
monitoring urban areas regarding subjects such as air quality
and meteorological conditions rises as notoriously relevant
research opportunities, Rashid and Rehmani (2016); Yi et al.
(2015).
We refer to the resulting output from various phenomena

sensing processes as multivariate data. This result occurs be-
cause each monitored variable’s samples are collected and
stored simultaneously by different sensors in the same node.
Generally, the air quality monitoring (sensors) is as close as
possible to themain emitters. To reach a better coverage area,
we proposed embedding sensor nodes in public transporta-
tion – Kaivonen and Ngai (2020) – such as bus lines and
trains. Simultaneously, they visit many different places dur-
ing the route. This mobility pattern simplifies the sampling,
power management, number of packages, and other general
maintenance issues. Additionally, vehicle sensors improve
the identification of pollutants dispersion in the presence of
wind or rain.

Despite the advantages previously mentioned, these con-
ditions aggravate redundancy issues due to urban traffic dy-
namics, Yi et al. (2015) (i.e., store repeatedly samples from
the same place when the vehicle is in a traffic jam or high spa-
tial similarity data at closer neighborhoods). An important as-
pect to highlight after taking amore in-depth look at available
solutions is to realize the lack of an approach that handles
multivariate sampling at distributed, noisy, and adverse be-
haved conditions, as typically seen under realistic urban en-
vironments. Simultaneously, data sampling techniques are
well suited to solve redundancy problems, as discussed in
VSN (Vehicle Sensor Networks) known constraints. Some
of thementioned techniques comprise variable reporting rate:
Devarakonda et al. (2013); Hu et al. (2011); Wang and Chen
(2017), node clustering: Khedo et al. (2010); Ma et al.
(2008), data fusion: Devarakonda et al. (2013); Hu et al.
(2011); Khedo et al. (2010); Ma et al. (2008), and reconstruc-
tion of lost data: Wang and Chen (2017).
Thus, the aspects mentioned above drive us to state the

following research question: “What is the impact of using a
VSN-based solution to monitor the air quality that observes
multiple phenomena simultaneously?”. The solution must
consider a multivariate data set as input and raise additional
complexities compared to univariate ones. We used a Spa-
tiotemporal real data set of available multivariate samples
collected by ten stationary air quality stations in the experi-
mental validation methodology. These samples are air pol-
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lution variables with some correlation with each other. With
these data, we perform a multivariate interpolation to obtain
a visualization covering the entire range of simulated envi-
ronments at each unit of area in the field. An event-based
simulation will put vehicle traffic over this previously gener-
ated field to evaluate the network behavior, restrictions, and
parameters. The simulation strategy will make car-mounted
sensors read the table with stated field data.
Real data requires pre-processing to fix NA samples at the

temporal axis at the modeling stage. On the other hand, look-
ing at the spatial point of view, the lack of entire series for
some variables at station coordinates (irregular data avail-
ability) requires a second additional pre-processing step to
predict these missing points and perform the multivariate in-
terpolation. This step involves a sequence of manual proce-
dures and consumes significantly more implementation time.
The methods described in Section 5 discuss the adopted strat-
egy to handle this data and prepare it for reconstruction.
The statement of expected contributions achieved at this

research work goes through a generalization purpose ad-
dressing evaluation methods and experimentation scenarios
featured closely at Hu et al. (2009), Hu et al. (2011) and
Wang and Chen (2017). Moreover, we intended 1) to provide
a simulation framework that covers realistic use cases along-
side a precise environmental model, 2) to raise a relevant sub-
set of experimentation conditions and formulate guidelines
for execution on real scenarios, 3) to bring up side-by-side in
comparison, considering the experiment results, the behav-
ior of a classical strategy by static monitoring (air quality
stations) alongside the presented VSN approach looking on
its intrinsic operation principle.
We can ensure a bottom line by developing a simula-

tion environment that looks at urban pollution agents from
a multivariate perspective. The main achievement of this
study is that all referred researches work with univariate data,
whereas we propose to expand the evaluation to a multi-
variate domain. We focus on observing the behavior of each
monitored variable individually and the correlation among
them. We consider real data input collected from air qual-
ity stations and assess the effort to handle a VSN application
with this complex data type. We evaluate our model con-
sidering the absolute value of relative error and global field
coverage metrics.

2 Urban Air Pollution Review

2.1 Health impacts and human effects

The addressed research in this work touches on an interdisci-
plinary subject since the case study’s object relates to pollu-
tant gases’ harmful effects. First, to highlight the importance
of awareness regarding the human body’s adverse impact, we
will briefly explain the most recurrently targeted pollutants
in related work. After that, we will present the concentration
thresholds for safe breathing – U.S. Environmental Protec-
tion Agency (2018c) – and the potential health damage in
case of overexposure.
Critical organs such as the heart and brain receive a re-

duced amount of oxygen transported in the bloodstream,

whereas breathing a high CO concentration in the air. Breath-
ing air with a very high CO level can lead to confusion, dizzi-
ness, loss of consciousness, and death. It is more likely to
occur in an enclosed environment, even though it could also
happen outdoors.
When the CO levels elevate in an outdoor environment,

they can be of critical concern for people with a specific
heart condition, which reduces the blood oxygen transported
to their hearts in situations, U.S. Environmental Protection
Agency (2016a).
A group of highly reactive gases known as nitrogen ox-

ide (NOx) is composed of nitric acid, nitrous acid, and Ni-
trogen Dioxide (NO2), commonly formed from burning fuel
and used as the indicator for other nitrogen oxides. NO2 at an
elevated concentration can irritate the human respiratory sys-
tem and aggravate respiratory diseases and symptoms such
as coughing or difficulty breathing. Some symptoms may re-
sult in hospital admission. Long exposures to high concentra-
tions of Nitrogen Dioxide can also cause serious effects, such
as increased susceptibility to respiratory infections. In addi-
tion, conditions such as asthma and age-related ones present
a greater risk if submitted to high concentrations of NO2,
which forms ozone and particulate matter in case of reacting
with other chemicals in the air and can occur to other NOx.
Both reaction products may also cause harmful effects on the
respiratory system, U.S. Environmental Protection Agency
(2016b).
Chemical reactions between oxides of nitrogen (NOx) and

volatile organic compounds (VOC) generate tropospheric or
ground-level ozone when pollutants emitted by vehicles and
other sources chemically react submitted to sunlight. Hot
sunny days in urban environments are most likely to reach
unhealthy Ozone levels, even though it can also occur dur-
ing colder weather. This gas can also be transported by wind,
therefore reaching rural areas. Breathing ozone can trigger
several health problems, including coughing and chest pain,
which may harm lung tissue. Other effects include emphy-
sema and asthma, leading to increased medical care, U.S. En-
vironmental Protection Agency (2018a).
SO2 is the component of the most significant concern, and

we use it as the indicator for the larger group of gaseous sulfur
oxides (SOx). Other gaseous SOx (such as SO3) are found
in the atmosphere at concentrations much lower than SO2.
Short-term exposure to SO2 can harm the human respiratory
system and make breathing difficult. People with asthma,
particularly children, are sensitive to these effects of SO2,
U.S. Environmental Protection Agency (2019).
Particulate matter (particle pollution, or PM) is a mixture

of liquid droplets in the air and solid particles. PM contains
microscopic solids or liquid droplets that can be detected us-
ing an electron microscope. If inhaled from a source such
as construction sites and unpaved roads, they cause serious
health problems. Particles with less than 2.5 micrometers in
diameter can get deep into your lungs, and some may even
get into the human bloodstream, U.S. Environmental Protec-
tion Agency (2018b).
We commonly found the most elevated air concentrations

of lead around lead smelters. Once inhaled, lead spreads
through the blood and accumulates in the bones. Depending
on the exposure level, it can adversely affect various systems,
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such as the cardiovascular, immune, reproductive, and devel-
opmental systems. Lead exposure is also very likely to affect
the blood capacity for oxygen-carrying. The effects most it-
erant in modern populations are neurological in children and
cardiovascular in adults. Infants and young children are sus-
ceptible to lead even in low concentrations, contributing to
future behavioral problems, learning deficits, and lowered
IQ. U.S. Environmental Protection Agency (2017).
There are two categories into which we can divide mo-

bile sources of air pollution: On-road vehicles, such as mo-
torcycles and cars, and non-road ones and engines, such
as aircraft, heavy equipment, marine vessels, and others:
SMOG (Ground-level ozone), particle pollution, roadway air
pollution zone, polluted air U.S. Environmental Protection
Agency (2016c).

2.2 Air Quality Index
The Air Quality Index is a standard from U.S. Environmen-
tal Protection Agency. Related literature widely adopt this
standard as an evaluation metric Al-Ali et al. (2010); De-
varakonda et al. (2013); Kaivonen andNgai (2020); Völgyesi
et al. (2008); Wang and Chen (2017); Yi et al. (2015) and
consists of a six-level scale containing reference values to
pollutants concentration and risk descriptors for each level.
A color scheme is also considered to ease the understanding,
explained as follows:

Good – AQI ≤ 50 – Green: Outdoor air is safe to breathe.
Moderate – 51 ≤ AQI ≤ 100 – Yellow : Susceptible indi-

viduals should consider limiting prolonged or heavy out-
door exertion.

Unhealthy for sensitive groups – 101 ≤ AQI ≤ 150 –
Orange: People with heart or lung disease (such as
asthma), children, older adults, people who are active
outdoors (including outdoor workers), people with
specific genetic variants, and people with diets limited
in certain nutrients should reduce prolonged or heavy
outdoor exertion.

Unhealthy – 151 ≤ AQI ≤ 200 – Red: Sensitive people
should avoid prolonged or heavy exertion; everyone
else should reduce them.

Very unhealthy – 201 ≤ AQI ≤ 300 – Purple: Sensitive
people should avoid all outdoor exertion; everyone
else has to reduce outdoor exertion.

Hazardous – AQI ≥ 301 – Maroon: Everyone should
avoid all outdoor exertion.

The pollutants considered at AQI evaluation are carbon
monoxide (CO), nitrogen dioxide (NO2), sulfur dioxide
(SO2), ozone (O3) and particulate matter (PM 2.5 and PM
10). For each pollutant, the index Ip is given by Equation 1.
The AQI is the maximum value of Ip among all pollutants in
a single packet of samples for a specific location.

Ip = IHi − ILo

BPHi − BPLo
× (Cp − BPLo) + ILo (1)

Where,
Ip = the index for pollutant p;

Cp = the truncated concentration of pollutant p;
BPHi = the concentration breakpoint that is greater than or
equal to Cp;
BPLo = the concentration breakpoint that is less than or
equal to Cp;
IHi = the AQI value corresponding to BPHi;
ILo = the AQI value corresponding to BPLo;

3 Related Work
WSN-based air quality monitoring solutions are an already
mature subject matter in literature. In the following discus-
sion, we give a solid bottom line to advance with proposed
open points regarding handling multivariate data assessed in
this research work.
Völgyesi et al. (2008) present a simple vehicle network

that consists of collected data and views in a web-based appli-
cation. It describes the hardware architecture, memory em-
ployed, sensor specifications, and data traffic interfaces. The
experiment consists of car-mounted sensors running in a real
environment and evaluating AQI through monitoring of O3,
CO, and NO2. These nodes have GPS and Bluetooth tech-
nologies. In this study case, the node sends the sampled data
via Bluetooth to an intermediary gateway (in that instance,
a standalone notebook) with an internet connection, respon-
sible for forwarding data to the cloud server that handles it.
The solution provides amap visualization to the final user/ob-
server.
At Ma et al. (2008), the authors propose a sophisticated

air pollution monitoring system that considers a wide range
of aspects regarding urban areas, generating a broad set of
information about the city. The experiment consists of a full
network simulation alongside report guidelines to implement
in the real environment with car-mounted and static sensors.
They perform an entire simulation while guiding to apply the
real situation with car-mounted sensors and static sensors
that measure O3, SO2 and NOx, and Benzene. The appli-
cation implements a hierarchical P2P network architecture
formed by the mobile and stationary sensors, making full
use of the roadside devices to fix the stationary nodes and
the public vehicles to carry the mobile sensors. Similar and
recent works are Puiu et al. (2022); Angelevska et al. (2021).
Hu et al. (2009) present a standard VSN application imple-

mented to perform micro-climate monitoring. They report
the design method of a hardware prototype node; this node
is attached to the tested vehicle to network the mobile capa-
bility. The application integrates a map service to show the
collected data. The experiment consists of car-mounted sen-
sors in a real environment observing the CO2 concentration.
Sensor nodes have GPS and Cellular connections. The proto-
type device issued at hand is decoupled in two parts, placed
inside (GSM and GPS module) and outside (CO2 sensor) of
the vehicle. There’s a Zigbee-based intra-vehicle wireless
exchange of the sensed data before uploading it to the server.
At the sampling level, nodes perform an adaptive reporting
rate based on the overall variance of CO2 concentration at
sampling alongside a local data aggregation by a simple av-
erage.
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An in-depth sequel of Hu et al. (2009), where the sub-
ject matter shows a detailed problem characterization, is pre-
sented at Hu et al. (2011). A network simulation evaluates
applications’ behavior by looking at estimated error and mes-
sage traffic metrics. In our experimentation, we validate it
through a complete network simulation that keeps the reports
of implementation guidelines in realistic scenarios. Further-
more, they improve the network strategy by adding a V2V
communication between the mobile sensors to save cellu-
lar bandwidth by performing data aggregation on forwarded
sensor readings. Considering the overall aspects considered
on it, the nature of this work shows a mature simulation
methodology that fits as an excellent bottom line at our re-
search. Similar and recent works are Shakhov and Sokolova
(2021); Shakhov et al. (2022).
The work addressed in Al-Ali et al. (2010) describes the

hardware architecture, amount of memory employed, sen-
sor specifications, and data traffic interfaces. It explains
the cloud server, which centralizes the data and overall func-
tional requirements for the application. It also approaches the
layers of software architecture, highlighting the implementa-
tion level of physical layer functions. The application’s top
layer features the evaluation of the Air Quality Index and the
interface with map service.
Khedo et al. (2010) discuss an air pollution monitoring

system through a traditional static wireless sensor network.
They propose a novel data aggregation technique called Re-
cursive Converging Quartiles to avoid redundancies at the
top level. They explain all network architecture components
and highlight the duplication of elimination policy at routing
and node clustering algorithms. The experiment consists of a
simulation-only application of a traditional, static, and multi-
hop-based WSN. In this paper, there’s no explicit mention of
air sensors employed. Instead, the variable of interest is a vir-
tual abstraction of Air Quality Index samples. Besides, they
also implement node clustering and data fusion techniques.
Following this line, the article by Devarakonda et al.

(2013) describes the mobile schema, the cloud server appli-
cation, and the involved costs of development for two differ-
ent proposed hardware prototypes to measure pollution. Re-
ferred to as Mobile Sensing Box (MSB) and Personal Sens-
ing Device (PSD), these equipment are respectively suited
to be attached to the vehicle and carried by the user in the
context of a collaborative sensor network. This application
also offers a web-based portal that evaluates Air Quality In-
dex and displays it as a heat map. They equip the sensor
nodes with GPS, Cellular, and Bluetooth connection. Net-
work topology comprises public transportation-based VSN
and a Community Sensor Network (CSN) through a collab-
orative approach. Carbon Monoxide and Particulate Matter
are the observed pollution indicators. Data aggregation is
performed at the top-level base station to improve accuracy
regarding the data processing, variable sampling concerning
the vehicle, and spatial gradient speed.
Having a solid intersection with the subject addressed

in this article, the survey from Yi et al. (2015) centralizes
many relevant characteristics regarding the specific air pol-
lution problem monitored through WSN technologies. They
explain networks’ differences, advantages, and drawbacks
based on static nodes, community sensors, vehicle mobility,

and conventional stationary base stations, alongside states of
better suits for each purpose, such as cost efficiency, mainte-
nance, and data quality. Similar works are Pavani and Rao
(2017); Yi et al. (2015).
Wang and Chen (2017) propose a probabilistic strategy to

handle adaptive sampling of cars and balance the trade-off
between monitoring accuracy and communication cost with
data traffic. Referred to as EDGE (Efficient Data Gather-
ing and Estimation), it works with a dynamic grid partition
based on the variation of pollutant concentration to compute
and set the rate by consulting other nodes close to its current
grid sector. This simulation comprises sophisticated mobil-
ity and pollutant dispersion models and advances in method-
ology and metrics previously stated in Hu et al. (2011). Sim-
ilar and recent works are Kumar et al. (2022); Barthwal and
Acharya (2022)
Finally, Kaivonen and Ngai (2020) reports an experimen-

tal study with physical sensors attached to public transporta-
tion and describes this hardware prototype’s development in
detail. It discusses typical real-life challenges such as noise
onmeasurements, numeric sensor precision, the efficiency of
cellular connection and packet loss rate, and the limitation of
coverage with fixed bus routes. Car-mounted sensor nodes
provide communication with GPS and Cellular connection.
We consider NO2 and CO to assess the Air Quality Index
while measuring temperature, humidity, and pressure as com-
plementary data. Similar and recent works are Shakhov et al.
(2022); Qin et al. (2022).
Table 1 shows a side-by-side comparison (ordered by pub-

lication year) with the main aspects considered in related
work. Looking at sensors and methods, abbreviations respec-
tively for ”Compression”, ”Aggregation”, ”Reporting”, and
”Multivariate Data Handling”. We highlight that our pro-
posal handles multiple simultaneous phenomena (MDH,
Multivariate Data Handling) at the reconstruction step of
environment, thereby taking into account the impact of spa-
tial correlation between different sensed variables. Besides
that, we also consider all components for evaluating the Air
Quality Index. Regarding overall aspects, it is relevant to
highlight that a combination of real data inputs and sim-
ulated environment for experimentation is only noticed
in our proposal. Another observation is that there’s no ex-
plored opportunity to evaluate sensor-level sampling algo-
rithms (also multivariate) in this kind of scenario.

4 Environmental Application Design
Let the overall behavior be denoted by

N V∗ V V ′ V ′′

D D′

P S

R

Ψ ω

R (2)

whereN denotes the environment and the process to be mea-
sured, P is the phenomenon of interest, and V∗ is the time-
space domain. If a complete and uncorrupted observation is
possible, it can devise a set of rules (R), leading to ideal de-
cisions (D)Aquino et al. (2012); Vasconcelos et al. (2018).
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Table 1. Summary of related work.

Sensors and methods

Article Air Sensors/Indicators Processing on Application Level

(per year) AQI COx O3 PM NOx SOx Compr.* Aggreg.* Adaptive Rep.* MDH*

proposal x x x x x x
Völgyesi et al. (2008), (2008) x x x x x

Ma et al. (2008), (2008) x x x x
Hu et al. (2009), (2009) x x

Al-Ali et al. (2010), (2010) x x x x x x
Khedo et al. (2010), (2010) x
Hu et al. (2011), (2011) x x x

Devarakonda et al. (2013), (2013) x x x x x
Wang and Chen (2017), (2017) x x x

Kaivonen and Ngai (2020), (2020) x x x

Overall aspects

Article Experimentation Input Source Network Topology

(per year) Real Env. Simulation Real Data Simulation Static Clustered V2I V2V

proposal x x x
Völgyesi et al. (2008), (2008) x x x x

Ma et al. (2008), (2008) x x x x x
Hu et al. (2009), (2009) x x x

Al-Ali et al. (2010), (2010) x x x
Khedo et al. (2010), (2010) x x x x
Hu et al. (2011), (2011) x x x x

Devarakonda et al. (2013), (2013) x x x
Wang and Chen (2017), (2017) x x x x

Kaivonen and Ngai (2020), (2020) x x x

Replicate this overall behavior for every phenomenon Pi |
i = {1, . . . , n}, where n is the number of the different phe-
nomena under observation, thereby considering its multivari-
ate manifestation.
Furthermore, S is the set of sensors where S =

{S1, . . . , Sk} and k is the number of sensors available on net-
work. In this case, sensors are mobile and navigate through
the monitored area. Each sensor provides measurements
of the phenomenon and produces a report in the domain
Vi,j | 1 ≤ i ≤ n and 1 ≤ j ≤ k (n is the number of the dif-
ferent phenomenon under observation and k is the number of
sensors, as mentioned previously). Thereby, the global visu-
alization of sensing activity resulting from the combination
of all sets of phenomena covered by every sensor, we denote
as V = {V(1,1), . . . , V(n,k)}.
Dealing with all the data is expensive regarding power,

communication bandwidth, and storage capacity. Thus, usu-
ally, the application handles actions to output a reduced data-
set (V′) obtained from a data sampling or fusion strategy (Ψ)
over its entire observed domain (V). Then, after reconstruct-
ing the set V′′ from V ′ applying a reconstruction technique
ω, we can use the same set of rules R to make decisions D′.

4.1 Area of Interest
The process described in Diagram 3 is the ”zero” step in
our modeling approach, which refers to our environment

(N ) definition. To perform this, we use the raw data set
to extract the environment N and phenomena of interest
Pi | i = {1, ..., n}. The practical implementation of this
step is described at section 5.1 and 5.2.

N P (3)

Initially, based on the raw data set, we generate the model
for the area under experimentation and apply the library
GeoBR, Lima et al. (2002) as support to import the requested
maps. For this case study, we defined the city of São Paulo
as an area of interest. Afterward, we perform general-
purpose matrix/table handling features, available at R Plat-
form – RCore Team (2014), implemented as scripted sequen-
tial procedures. The adopted data set is from Environmental
Sanitation Technology Company1 allows us to set 10 districts
within the city with air quality stations and measurements
available, listed below:

• Cambuci
• Centro
• Congonhas
• Horto Florestal
• Ibirapuera
• Lapa
• Moóca

1https://cetesb.sp.gov.br/

https://cetesb.sp.gov.br/


Environmental Modeling and Traffic Simulation: A multivariate approach to monitor urban air pollutant agents. Vasconcelos and Aquino 2023

• P. D. Pedro II
• Pinheiros
• São Miguel Paulista
• Santana
• Santo Amaro

We set the arrangement for station coordinates following
the real locations of the districts in which they are named.
Figure 1 illustrates the map outputs containing these points.
It also proposed a detailed description of roads, bus lines,
vehicle itineraries, and general traffic information to achieve
proper modeling at the network and application simulation
stage.

Figure 1. Exported map of São Paulo with air quality stations on real ap-
proximate locations.

4.2 Phenomenon Observation
Considering the structure in mapped raw data, we identify a
set of samples stored from each air quality station’s sensed
physical variable. This stream reports an observation at the
exact location of stations. The first stage of the model con-
struction is shown in the sub-process on Diagram 4

N V∗

D

P

R (4)

To achieve an adequate representation of the phenomenon
under ideal sensing conditions (V∗), we will perform a
multivariate reconstruction: multivariate ordinary cokrig-
ing, Pebesma and Heuvelink (2016), to interpolate non-
monitored blank areas at this reference set. Thus, setting
up a simulated environment while taking its behavior closer
to a real one since a continuous measurement of every sin-
gle point inside a metropolitan area is an unfeasible task.
Finally, snapshots of the field, showing the overall state at
each instant, complete the physical process. A practical in-
stance for domain V∗ was achieved following the process
described at section 5.2.

4.3 Network Settings

The network sub-process and sensing activity is covered at
Diagram 5, where S = {S1, S2, ..., Sk} and k is the number
of active nodes in the network. Considering the multivariate
manifestation of monitored physical process, we assume a
sensor Sk as Sk(P ) where P = {P1, P2, ..., Pn} and n is
the number of observed variables. As explained before, V is
the domain that reports the resultant set from sensing activity.

N V∗ VP S (5)

Addressing the research background under urban zones,
we can highlight alternative monitoring solutions approach-
ing vehicle sensor networks: Yi et al. (2015); Hu et al.
(2011); Devarakonda et al. (2013). The presented case study
in this article takes advantage of bus lines as mobile sensing
units, Kaivonen and Ngai (2020), that ride through the city
while collecting the data.
The planned network setup considers a vehicle sensor net-

work with a V2I communication, using a cellular network to
upload the sensed data to a cloud server. This approach is
recurrently observed in referenced work along with this arti-
cle.
A sensor Sk is embedded in a single device as a car-

mountedmobile node and can navigate through the area and
collect data from variables {P1, P2, . . . Pn}.

4.4 Sensing Data Processing

Following statements from Section 4, the sub-process of
overall behavior (Diagram 2) that refers to the stage of data
collection and processing is represented at Diagram 6 below:

V V ′ V ′′Ψ ω (6)

Remembering that V is the domain that reports the resul-
tant set from sensing activity. V′ is a reduced instance of V
after the action of reduction algorithm Ψ. V′′ is the rebuilt
field after input V′ to a technique which fills blank spaces ω.
In our case study, the process ω consists of assembling a

Voronoi Diagram, and the reduction algorithm Ψ is not ap-
plied. Hence the step that comprises the generation of V′

was skipped.

4.5 Evaluation

Let the data reconstruction and evaluation rule set be denoted
by

N V∗ . . . V ′′

D D′

P

R R (7)

Where “. . .” represents the whole sub-process sequence
from Diagram 6 (processing the sensed data). We apply the
rulesR over the reconstructed data. The first rule considered
to evaluate the performance at each scenario is the Absolute
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Value of Relative Error (ϵ̂) Frery et al. (2010), which is de-
fined as follows:

ϵ̂ = 1
L

S∑
x,y

∣∣∣∣V∗(x, y) − V′′(x, y)
V∗(x, y)

∣∣∣∣ ,

whereS is the set of (x,y) coordinates that belong to the inter-
nal area of Figure 1, parsed as valid inputs to reconstruction
technique. L is the length of set S. V∗ is the field that repre-
sents the environment and was initially simulated. V′′ is the
rebuilt field. Moreover, by the fact that input data that gener-
ates V∗ was pre-processed to handle all NA measurements,
it can always ensure the definition of ϵ̂ since V∗(i, j) ̸= 0.
We set the unavailable locations (blank spaces from non-

visited areas) using Voronoi diagrams Aurenhammer (1991).
The Voronoi diagram allows a fair comparison, consider-
ing the coverage estimation based on fixed sensors (Voronoi
among monitoring stations location) and the mobile sensors
(Voronoi among vehicles trajectory location). For example,
without the Voronoi, the environment variables values used
in the comparison will be only the monitoring station’s loca-
tion. The other ones will be zero.
Let the location of sensors (S) as a set of n points in an

area. Then, the Voronoi diagram is the dominance of Sp over
Sq is the subset (or sub-area) of the plane closer to Sp than
Sq . Formally,

dom(Sp, Sq) = {x ∈ R2|ρ(x, Sp) < ρ(x, Sq)},

where ρ represents the Euclidean distance function and x rep-
resents a given point in the R2 plane. In this problem, the
seeds in the diagram represent the locations visited by the
busses (VSN strategy) and air quality station locations (Con-
ventional monitoring strategy), and the dominance is the sub-
areas (Voronoi cells) covered by each seed. Thus, this area
composes V′′ for each monitoring approach.

4.6 Methodology and Implementation
This experiment comprises three main stages: i) generation
of pollutant maps; ii) traffic simulation; iii) environment as-
sembly. In the first step, we import the raw data set to create
the pollutant maps so every coordinate from the city area has
a well-defined sample for each timestamp. Section 5 details
this procedure.
The second step is to set up the traffic simulation. At this

stage, a set of sequential tasks comprises a routine to fetch
map files and split them into six bounding boxes. This ac-
tion avoids scalability problems due to large file sizes. After
that, cars, buses, and their respective routes are generated and
executed with different traffic intensity levels. This step’s
primary outcome is to export the bus traces with visited map
coordinates during the route. This procedure is detailed in
Section 5.3.
Finally, the third step is to assemble the overall environ-

ment by matching the measurements at each map coordinate
and the exported trace with coordinates visited during the
bus lines. This way, it is possible to evaluate the field cover-
age by looking at howmany coordinates the solution covered
over time. Section 5.4.1 details this procedure.

5 Multivariate Pollutant Map Gener-
ation

The pollutant input data is provided as a set of files contain-
ing real samples from air quality stations placed in São Paulo
from Jan-01-2005 to Dec-31-2005. Those dates were consid-
ered according to their availability at the moment where the
execution of the simulated environment happened, working
as a validated proof of concept and expansible to apply more
recent data in future works.
There are natural limitations to using vehicular sensors for

air quality monitoring because it is not viable to use the same
number of sensors used in a fixed environmental station in a
vehicle. However, other applications use satisfactorily mo-
bile sensors, from airplanes and boats to smartphones De-
varakonda et al. (2013); Kaivonen and Ngai (2020). In
our application, there are about 15 different variables report-
ing information, such as wind speed and direction, atmo-
spheric stability, temperature, humidity, and other classes
of pollutants are available. Thus, we reduce these variables
from 15 to 5, considering the pollutant agents from burning
fossil-fueled vehicles. We selected as input data of Carbon
Monoxide (CO); Particulate Matter (PM10); Nitrogen Diox-
ide (NO2); Ground-level Ozone (O3), and Sulfur Dioxide
(SO2).
We organize the raw data by variable (sensor) at each file:

grouping all stations which have this sensor available on this
list, where the columns are for miscellaneous information
and measurements (resulting in five records with a similar
structure as illustrated in table 2). On the other hand, rows
repeat the date and time for samples on each listed station
resulting in a noticeable redundancy amount.
We handle these data according to the following steps: 1)

filter by station ID, date, time, and samples; 2) Summarize
all data in a single file, whereas the columns are labeled by
a combination of station ID (as a prefix) and each respective
sensor, alongside date and timestamp (table 5). Alongside
the overall rearrangements, we also handle the format issues
observed in raw data (i.e., comma instead of the dot at mea-
surements representation and miscellaneous date format).
The date length was reduced to two weeks, enough to run

the simulations and allow feasible processing with available
computing resources. An important point to consider is the
usual occurrence of unavailable data due to sensor fails or
maintenance, which corroborates the reduction performed.
Finally, for validation purposes, we choose the interval of
oct-15-2005 to oct-22-2005 through visual inspection, and
we select an appropriate subset.

5.1 Dataset Handling
Finally, we provide an outline of the map from São Paulo at
package GeoBR, Lima et al. (2002) that is, the input points
to the prediction process alongside each air quality station’s
coordinates, placed at this step (as seen in Figure 1).

5.2 Prediction
Considering the data structure, we perform the prediction
step in two directions, explained in the subsections below.
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Table 2. Raw data.

Sensor (i.e.: O3)
Station ID Date Time (h) Sample Station Name

1 01/01/2005 01:00 39,22 P. D. Pedro II
1 01/01/2005 02:00 23,85 P. D. Pedro II
1 01/01/2005 03:00 29,68 P. D. Pedro II

...
2 01/01/2005 01:00 30,85 Santana

...
47 31/12/2005 00:00 7,44 Horto Florestal

Table 3. Selecting gray to handle NA.

Date Time (h) Station-Sensor(1,...,n)

1-CO 1-PM10 ... 4-PM10 ... 47-O3

2005-10-15 00:00 0.71 8.52 ... 12.08 ... 18.69
... ... ... ... ... ... ... ...

2005-10-19 02:00 0.79 31.39 ... NA ... 12.46
... ... ... ... ... ... ... ...

2005-10-21 23:00 0.62 4.32 ... 13.94 ... 16.19

Besides that, Figure 2 shows the ratio between the real data
initially available (raw data) and samples predicted using the
raw data as input withmethods presented in subsections 5.2.1
and 5.2.2.

10413

9792

603 Amount of samples at each condition:

1st Prediction step: Merged Gaussians

2nd Prediction step: Multivariate Cokriging

Raw data

Figure 2. Amount of real and predicted samples.

5.2.1 About univariate time series

The first direction is to gather the variables one by one at
each column (that shows samples of a sensor within a single
station). This step aims to fill the blank spaces caused byNA
occurrences keeping the overall behavior. For that, we take
the actions described as follows.

1. Assert each single column (example at Table 3) as
a matrix (example at Table 4) with hours (0h–
23h) × days (15–22);

2. Test normality (Shapiro-Wilk) for everyone, evaluate
mean µ and standard deviation σ by two times, for the
entire row and for the whole column that crosses on the
current NA cell (at hour × days matrix);

3. Generate a merged normal curve parsing the parameters
µ1, µ2, σ1, σ2 and sample a random value from this dis-
tribution.

4. After that, this procedure should deliver a Table with
NA samples fixed for every variable (standalone pollu-
tant sensor, illustration at Table 5).

5.2.2 About overall multivariate measurements

All five pollutant sensors (CO, PM10, NO2, O3, SO2) are
not available on every station. For this reason, there is a lack

Table 4. Entire 4-PM10 column asserted as hour × days matrix
(before prediction).

Station 4-PM10

15-Oct 16-Oct ... 19-Oct ... 21-Oct

01h 12.08 48.39 ... NA ... 14.06
02h 8.53 36.77 ... NA ... 9.93
03h 28.64 46.46 ... NA ... 16.22
... ... ... ... ... ... ...
23h 61.69 33.12 ... 11.66 ... 6.56
00h 60.20 16.20 ... 11.95 ... 13.94

Table 5. Summarized data after handling.

Date Time Station-Sensor(1,...,n)

(h) 1-CO ... 4-PM10 ... 47-O3

15-Oct 01:00 0.71 ... 12.08 ... 18.69
15-Oct 02:00 0.67 ... 8.53 ... 10.56
15-Oct 03:00 0.79 ... 28.64 ... 12.46
... ... ... ... ... ... ...

21-Oct 23:00 0.59 ... 6.56 ... 17.03
21-Oct 00:00 0.62 ... 13.94 ... 16.19

of measurement at some input coordinates for reconstruction.
This absence of data disturbs the prediction for the multivari-
ate phenomena process, so all points should be available on
each station’s coordinates.
Table 6 describes the arrangement of sensor availability,

where variables colored on green shades are missing. At the
first turn, we interpolate the entire map based on CO, PM10,
and O3 at available stations {1, 3, 5, 16, 27} and assign to
missing stations the predicted data at respective coordinates.
After that, repeat the similar process to NO2 and SO2 accu-
mulating the new predicted samples at the previous turn se-
quentially.
With missing points fixed, we parse the data as input to

multivariate ordinary cokriging (supported by R package
Gstat, Pebesma and Heuvelink (2016)) to interpolate the en-
tire map area, this assembled field represents V∗ from Sec-
tion 4. Finally, we use the same technique to fix missing
stations (Table 6).
Finally, the achieved outcome is a set of five tables (one for

each pollutant). Each table is assembled by placing columns
with a list of valid coordinates from the map area. Each row
in this table represents the entire map area in a particular
timestamp.
In other words, each row in this table represents the en-

tire map area in a particular timestamp, where x, y (two-
Table 6. Prediction of missing data.

Station Sensors

(ID) 1st Turn Prediction 2nd 3rd

1 CO PM10 O3 NO2 SO2
2 CO PM10 O3 NO2 SO2
3 CO PM10 O3 NO2 SO2
4 CO PM10 O3 NO2 SO2
5 CO PM10 O3 NO2 SO2
8 CO PM10 O3 NO2 SO2
12 CO PM10 O3 NO2 SO2
16 CO PM10 O3 NO2 SO2
27 CO PM10 O3 NO2 SO2
47 CO PM10 O3 NO2 SO2
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Table 7. Pollutant summary table representing V∗.

Pollutant Pi

Date Time (h) Coordinates(x,y)

(5,3) (6,3) (7,3) ... (11,22) (11,23)

2005-10-15 00:00 1.75 1.75 1.75 ... 1.74 1.76
2005-10-15 01:00 1.76 1.77 1.77 ... 1.75 1.77
2005-10-15 02:00 1.78 1.79 1.78 ... 1.72 1.75

... ... ... ... ... ... ... ...
2005-10-21 23:00 1.57 1.58 1.58 ... 1.37 1.41

dimensional) coordinates are disassembled in a vector shape
(one-dimensional) to fit as table columns and, afterward, ex-
port them as a .csv file. Note that the highlighted gray row at
Table 7 generates the visualization illustrated in the map of
Figure 3.

Figure 3. Multivariate pollution map of CarbonMonoxide (CO) at a certain
timestamp.

5.3 Traffic Simulation
The pollution map described in the previous Section (Table
7) is the general structure used as the baseline in our experi-
ments.
The subsequent stage from building and executing our sim-

ulation framework consists of setting up the urban traffic be-
havior. To run this experimentation, we adopt the Simulator
of Urban MObility – SUMO, Lopez et al. (2018). At this
stage, we assess three sub-steps in the following subsections.

5.3.1 Fetch and build maps and roads

The starting point for building the simulation structure is to
define a map tool compatible with SUMO. For this task, we
use the Open Street Maps API2, that suits these requirements.
This map database can be reached through a web wizard

through a visual user interface or integrated with a batch
script to automate the download and building process. In our
case study, the parsed boundaries cover the outline of the São
Paulo area under the following coordinates:

South Latitude: −24.01
South Longitude: −46.83
North Latitude: −23.35
North Longitude: −46.36

2https://www.openstreetmap.org/

Table 8. Raw trace file of bus routes generated at traffic simulation.

Bounding Box xmin ymin xmax ymax

1 0.00 0.00 24131.19 24378.38
2 24131.19 0.00 48233.20 24482.42
3 0.00 24378.38 24248.61 48987.30
4 24131.19 24482.42 48379.80 49342.09
5 0.00 48987.30 24280.14 73614.98
6 24131.19 48379.80 48358.66 72962.93

Besides that, we split the downloaded map into six parts,
making a grid with 3 × 2 shape. This action is necessary
due to the unfeasible resource usage (CPU, RAM, and Disk)
when we use a single huge map area as input for traffic simu-
lation. An additional improvement is that every single part of
the split map (hereafter referred to as bounding box) can be
executed as independent instances and allow the paralleliza-
tion of experiments, hence taking advantage of CPU multi-
threading.

Figure 4. Illustration of map bounding boxes.

Furthermore, there is an intrinsic tricky detail in the men-
tioned procedure. The six independent bounding boxes split-
ting the area imply an offset correction for each one since
they will show relative coordinates starting from x=0 and
y=0. The offset matrix for coordinate fixing is illustrated in
Table 8.

5.3.2 Generate description files for vehicles routes

When the roads and highway structures are appropriately
in place, the subsequent step is to generate vehicle routes.
SUMO simulator supports other vehicle types, such as sub-
ways, city rails, and trolley cars, but we do not consider them
so far.
The vehicle generation comprises bus stops and prior de-

fined lines for public transportation. This information is
available in maps built at the subsection 5.3.1. During the
simulation, the buses will loop on those defined routes and
be analyzed in realistic environments. On the other hand, for
small passenger cars, the application performs an insertion
with random routes and starting places for each. As a result,
these vehicles disappear from the simulation after reaching
the end of their routes.
It is relevant to highlight that the vehicle generation (Fig-

ure 5) mostly happens during the graphic’s ascending part.
This behavior occurs because a parameter limits the maxi-
mum amount of vehicles to the set points mentioned in sub-

 https://www.openstreetmap.org/
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section 5.4. The simulator only actuates to generate new ve-
hicles when the older ones disappear after they finish their
respective routes.
We consider each day as an independent seed that ran-

domly sets the route, starting, and endpoint of each passenger
vehicle ride (departure/arrival). In this way, we can meet ad-
equate experimentation representativeness.

Figure 5. Vehicle generation at SUMO Simulator under different traffic
conditions.

5.4 Run urban mobility simulation
After getting ready all previous settings, the main goal at this
last sub-step is to generate the output traces, where the visited
coordinates at each bus line will be displayed.
We generate three different traffic intensities (referred

to respectively as light, average, and heavy traffic), lim-
iting each bounding box at 15000, 30000, and 60000 ve-
hicles. Since there are six bounding boxes to cover the
city outline fully, each scenario’s resulting vehicle amount
is 90000, 180000, and 360000. From that, approximately
12000 busses are running inside the entire map area.
Finally, we consider the range of 7 days adopted for the

simulations with a phenomenon refresh rate of 1 sample per
hour for generated data. We consider each day as an inde-
pendent seed that randomly sets the route, starting, and end-
point of each passenger vehicle ride (departure/arrival). In
this way, we can meet adequate experimentation representa-
tiveness.

5.4.1 Environment Assembly

The last stage of experimentation consists of putting together
the output from two previous ones (multivariate pollution
maps from Section 5 and bus routes trace from Section 5.3).
We base the environmental assembly application in R Sta-
tistical Language, where we handle the trace file to match
coordinates with pollution maps.
We note an additional point of complexity since the down-

loaded maps from OSM API come with geo-referenced co-
ordinates on WGS84 format (latitude/longitude or directly
converted to an arbitrary x, y notation). To match the trace
coordinates with multivariate pollution maps, we perform an

intermediary step of scaling from the default OSM coordi-
nate format to our 25 × 25 defined scale. This procedure is
illustrated in Figure 6.

Figure 6. Matching the city area with scaled 25 × 25 pollutant map.

Initially, the raw trace is exported as a .xml file and looks
like the Table 9. After the scaling described above, we gen-
erate from a halfway structure that suits two purposes: i)
the previously mentioned data compatibility to calculate the
overall field coverage; ii) evaluate how many sectors are vis-
ited by the busses concerning traffic intensities. This infor-
mation can be assessed as a performance metric for our appli-
cation since it provides information about how the vehicles
behave in different traffic conditions. Table 12 illustrates this
structure.
Finally, we match the map coordinates with the down-

loaded area under the following conditions: (i) If there is at
least one bus inside a single sector from the 25×25 map, we
consider it covered, (ii) we disregard points outside the area,
i. e., only locations inside the city.

Table 9. Raw trace file of bus routes generated at traffic simulation.

Timestamp Bus ID(1,...,n) Coordinates(x,y)

0s 1 (11140.66, 19814.56)
0s 2 (4667.23, 6571.91)
... ... ...

900s 1 (10125.04, 20243.59)
900s 2 (3024.51, 5135.84)
... ... ...

1800s 1 (9043.16, 18450.32)
... ... ...

2700s 1 (8486.62, 17651.08)
... ... ...

5400s n (850.87, 19199.05)

6 Results

6.1 Preliminary Assumptions
Initially, we perform all the required data handling on traces
and phenomena information. The following actions aim to
achieve a performance assessment of overall field coverage
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Table 10. Converted trace data with coordinates scaled as 25 × 25.

Timestamp Bus ID(1,...,n)

0 1 2 3 ... n − 1 n

0s (5,8) (3,8) (4,6) (5,8) ... (6,8) (7,7)
900s (6,8) (3,8) (4,7) (5,8) ... (5,8) (7,8)
1800s (7,8) (3,8) (5,7) (6,7) ... (3,6) (6,9)
... ... ... ... ... ... ... ...

5400s (7,8) (3,9) (5,8) (7,7) ... (4,7) (6,8)

and error rate from measurements at both approaches: Sam-
pling on conventional weather stations or aided by a VSN
network with sensor nodes mounted on public transportation
(bus lines). Table 11 shows the considered parameter set.

Table 11. Simulation parameters

Parameter Values

Pollutant Variables CO, PM10, O3, NO2, SO2
Pollutant Map Scale 25 × 25 size units
Map Area 132 squared size units
Number of Busses 12k
Traffic Density Light (90k), Average (180k) , Heavy (360k)
VSN Sample Rate 900s (15 minutes)
Simulated time 7 days (random seeds for each one)

6.2 Summary for Global Field Coverage
This performance assessment looks at the coordinates where
each weather station is located or visited from each bus line.
The obtained coordinates from this procedure are weighted
under two directions: (i) concerning the broad set of map
coordinates and (ii) about traffic intensities over the day.
Table 12 shows the trace from bus lines in a 1-hour win-

dow. There is one instance of this table for each traffic
intensity (see Table 11). It is assigned to the respective
hour of the day (Table 13). After that, we shape all vis-
ited coordinates as a plain list (eliminating repeated ones)
and count how many are covered to 132 squared units of
the entire map, generating the percentages seen in Table
14. Global Coverage is achieved under this weighted sum
Light(s) × 6

24 + Average(s) × 12
24 + Heavy(s) × 6

24 (where
s is the day/seed).

Table 12. Trace data from bus lines (scaled as 25 × 25).

Timestamp Bus ID(1,...,n)

0 1 2 3 ... n − 1 n

0s (5,8) (3,8) (4,6) (5,8) ... (6,8) (7,7)
900s (6,8) (3,8) (4,7) (5,8) ... (5,8) (7,8)
1800s (7,8) (3,8) (5,7) (6,7) ... (3,6) (6,9)
2700s (7,8) (3,9) (5,7) (7,7) ... (4,6) (6,8)
3600s (7,8) (3,9) (5,8) (7,7) ... (4,7) (6,8)

Considering the presented strategy, after a 7-day run with
random and independent seeds for each day, our VSN ap-
plication achieved a global field coverage of 86.55%, on
average.
On the other hand, the conventional stations are only

aware of phenomenon data on their current sector, taking
into account the 132 sectors (see Table 11) covered by the

Table 13. Traffic intensity day times.

Time Traffic Intensity

(h) Light Average Heavy

0h - 6h x
6h - 7h x
7h - 9h x
9h - 11h x
11h - 13h x
13h - 17h x
17h - 19h x
19h - 0h x

Table 14. VSN summarized coordinates list to evaluate Global Cov-
erage.

Day Traffic Intensity (× Coords List) Global Coverage Global Coverage

(seed) Light Average Heavy (VSN) (Stations)

1 87.12% 86.36% 87.12% 86.74%
2 86.36% 86.36% 86.36% 86.36%
3 86.36% 86.36% 86.36% 86.36%
4 86.36% 86.36% 87.12% 86.55% 7.5%
5 87.12% 86.36% 87.12% 86.74%
6 86.36% 86.36% 86.36% 86.36%
7 87.12% 86.36% 87.12% 86.74%

map area and the available amount of 10 stations. The regu-
lar monitoring system achieves a theoretical global field
coverage of 7,5%.

6.3 Summary for Absolute Value of Relative
Error

In the current section, we assess the sampled data representa-
tiveness by evaluating the Absolute Value of Relative Error
(detailed in Section 4).
Figures 7, 9, 13, 15, 11 show the behavior of error met-

ric for each pollutant. Taking as the example at the bottom
of Figure 8(c), we see an information loss at the continuous
dark red area in comparison with 8(a) and 8(b). This behav-
ior occurs due to the lack of spatial reachability in stationary
sensing, which was mitigated by the VSN approach. We can
also notice the same behavior at similar ones. Figure 8 illus-
trates side-by-side the performance for VSN and stationary
sensing with reference data (V∗), taking CO as an example.
The figure shows lighter colors for higher measurements and
darker for lowermeasurements from samples in a normalized
scale from zero to one.

6.3.1 Summary for Carbon Monoxide

Looking at the Carbon Monoxide pollution map, the average
Absolute Value of Relative Error along the entire time series
(Figure 7) is

• VSN average error: 0.25%
• Conventional Stations average error: 31.57%

This result means an improvement on the order of 126
times lower error about the regular monitoring system. Fig-
ure 8 shows the resulting behavior of each monitoring strat-
egy.
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Figure 7. Error rate evaluated through 7 days from VSN and Conventional
Stations (CO).

CO Pollution Map

(a) Reference.

CO Pollution Map

(b) VSN.

CO Pollution Map

(c) Stations.

Figure 8. Side-by-side performance comparison between sampling with
VSN and Conventional Stations for Carbon Monoxide.

6.3.2 Summary for Particulate Matter

Looking at the Particulate Matter pollution map, the average
Absolute Value of Relative Error along the entire time series
(Figure 9) is

• VSN average error: 0.36%
• Conventional Stations average error: 35.93%

This result means an improvement on the order of 99.8
times lower error about the regular monitoring system. Fig-
ure 10 shows the resulting behavior of each monitoring strat-
egy.

6.3.3 Summary for Nitrogen Dioxide

Looking at the Nitrogen Dioxide pollution map, the average
Absolute Value of Relative Error along the entire time series
(Figure 11) is

• VSN average error: 0.48%
• Conventional Stations average error: 34.03%

This result means an improvement in 70 times lower error
about the regular monitoring system. Figure 12 shows the
resulting behavior of each monitoring strategy.

Figure 9. Error rate evaluated through 7 days from VSN and Conventional
Stations (PM10).

MP10 Pollution Map

(a) Reference.

MP10 Pollution Map

(b) VSN.

MP10 Pollution Map

(c) Stations.

Figure 10. Comparison between sampling with VSN and Conventional Sta-
tions for PM10.

6.3.4 Summary for Ground-level Ozone

Looking at the Nitrogen Dioxide pollution map, the average
Absolute Value of Relative Error along the entire time series
(Figure 13) is

• VSN average error: 0.32%
• Conventional Stations average error: 32.27%

This result means an improvement on the order of 100
times lower error about the regular monitoring system. Fig-
ure 14 shows the resulting behavior of each monitoring strat-
egy.

6.3.5 Summary for Sulfur Dioxide

Looking at the Sulfur Dioxide pollution map, the average
Absolute Value of Relative Error along the entire time series
(Figure 15) is

• VSN average error: 2.02%
• Conventional Stations average error: 13.33%

This result means an improvement on the order of 6.59
times lower error concerning the regular monitoring system.
Figure 16 shows the resulting behavior of each monitoring
strategy.
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Figure 11. Error rate evaluated through 7 days from VSN and Conventional
Stations (NO2).

NO2 Pollution Map

(a) Reference.

NO2 Pollution Map

(b) VSN.

NO2 Pollution Map

(c) Stations.

Figure 12. Comparison between sampling with VSN and Conventional Sta-
tions for NO2.

6.3.6 Discussion

In summary, we can see an improvement in the order of 126,
99.8, 100, 70, and 6.59 times lower error, respectively, for
CO, PM10, O3, NO2 and SO2 concerning the regular mon-
itoring system. Furthermore, we can observe that the error
difference between the two approaches decreases according
to data availability displayed in Table 6. Note that the SO2
sensor is available at only two stations (IDs 5 and 8), and
this limited number of input samples causes an artificial ho-
mogeneity on predicted data for this variable, which pulls the
AVRE measurements closer with other sensors.
Even with this limitation of data availability that disturbs

the prediction of variables with few inputs, our proposal de-
livers a noticeable improvement (659% at the worst case
from SO2) on overall application behavior comparison to
conventional strategy. Moreover, since only two sensors for
an entire city is quite an extreme restriction, any data set
with more sensors available is enough to mitigate this lim-
itation, showing that the proposed model is robust even with
extremely constrained input data.

7 Conclusion and Final Remarks
The presented article has explored the problem of air quality
monitoring while taking a more in-depth investigation into
the modeling of complex environments. Beyond that, it de-

Figure 13. Error rate evaluated through 7 days fromVSN and Conventional
Stations (O3).

O3 Pollution Map

(a) Reference.

O3 Pollution Map

(b) VSN.

O3 Pollution Map

(c) Stations.

Figure 14. Comparison between sampling with VSN and Conventional Sta-
tions for O3.

livers contributions that improve the view of how correlated
multivariate phenomena behave.

We developed a network simulation environment to vali-
date the consistency of proposed modeling and methodolo-
gies, thereby assessing the obtained research outcomes as
close as possible to real-life scenarios. The results show that
approachingmultivariate-based processing techniques is a vi-
able path to predict realistic behaviors of correlated physical
processes accurately.

Besides that, the approached Vehicle Sensor Network sup-
ported by public transportation (bus lines) showed consid-
erably higher performance than the regular monitoring sys-
tem based on conventional air quality stations, behaving with
low error rates and about 11.5 times higher global coverage.
Overall observed performance indicates that the proposed ap-
plication in this case study is suitable for real-world scenar-
ios.

As future directions, we consider evaluating different
classes of data processing algorithms and improving envi-
ronmental modeling with variables not considered at the last
turn, such as wind speed/direction, temperature, and humid-
ity data on evaluation.
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Figure 15. Error rate evaluated through 7 days fromVSN and Conventional
Stations (SO2).

SO2 Pollution Map

(a) Reference.

SO2 Pollution Map

(b) VSN.

SO2 Pollution Map

(c) Stations.

Figure 16. Comparison between sampling with VSN and Conventional Sta-
tions for SO2.

Acknowledgements

Declarations

Authors’ Contributions
All authors contributed to the writing of this article, read and ap-
proved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Akyildiz, I., Su, W., Sankarasubramaniam, Y., and Cayirci,
E. (2002). Wireless sensor networks: a survey. Com-
puter Networks, 38(4):393–422. DOI: 10.1016/S1389-
1286(01)00302-4.

Al-Ali, A.-R., Zualkernan, I., and Aloul, F. (2010). A
mobile GPRS-sensors array for air pollution monitor-
ing. IEEE Sensors Journal, 10(10):1666–1671. DOI:
10.1109/JSEN.2010.2045890.

Angelevska, B., Atanasova, V., and Andreevski, I. (2021).
Urban air quality guidance based on measures categoriza-
tion in road transport. Civil Engineering Journal-Tehran,
7(2):253–267. DOI: 10.28991/cej-2021-03091651.

Aquino, A., Junior, O., Frery, A., Albuquerque, E., and Mini,
R. (2012). Musa: multivariate sampling algorithmforwire-
less sensor networks. IEEE Transactions on Computers,
63(4):968–978. DOI: 10.1109/TC.2012.229.

Aurenhammer, F. (1991). Voronoi diagrams: A survey of
a fundamental data structure. ACM Computing Surveys,
23:345–405. DOI: 10.1145/116873.116880.

Barthwal, A. and Acharya, D. (2022). Performance analysis
of sensing-based extreme value models for urban air pol-
lution peaks. Modeling Earth Systems And Environment,
8(3):4149–4163. DOI: 10.1007/s40808-022-01349-y.

Devarakonda, S., Sevusu, P., Liu, H., Liu, R., Iftode, L.,
and Nath, B. (2013). Real-time air quality monitor-
ing through mobile sensing in metropolitan areas. In
ACM International Workshop on Urban Computing. DOI:
10.1145/2505821.2505834.

Frery, A., Ramos, H., Alencar-Neto, J., Nakamura, E., and
Loureiro, A. (2010). Data driven performance evaluation
of wireless sensor networks. Sensors, 10(3):2150–2168.
DOI: 10.3390/s100302150.

Hu, S.-C., Wang, Y.-C., Huang, C.-Y., and Tseng, Y.-
C. (2009). A vehicular wireless sensor network for
co2 monitoring. In IEEE Sensors. DOI: 10.1109/IC-
SENS.2009.5398461.

Hu, S.-C., Wang, Y.-C., Huang, C.-Y., and Tseng, Y.-C.
(2011). Measuring air quality in city areas by vehicular
wireless sensor networks. Journal of Systems and Soft-
ware, 84(11):2005–2012. DOI: 10.1016/j.jss.2011.06.043.

Kaivonen, S. and Ngai, E. (2020). Real-time air pol-
lution monitoring with sensors on city bus. Digi-
tal Communications and Networks, 6(1):23–30. DOI:
10.1016/j.dcan.2019.03.003.

Khedo, K., Perseedoss, R., Mungur, A., et al. (2010). A wire-
less sensor network air pollution monitoring system. Inter-
national Journal of Wireless Mobile Networks, 2(2):31–
45. DOI: 10.48550/arXiv.1005.1737.

Kumar, G. J. R., Agbulu, G. P., Rahul, V, T., Natarajan, V,
A., and Gokul, K. (2022). A cloud-assisted mesh sensor
network solution for public zone air pollution real-time
data acquisition. Journal Of Ambient Intelligence And Hu-
manized Computing. DOI: 10.1007/s12652-022-03704-4.

Lima, P., Câmara, G., and Queiroz, G. (2002). Geobr:
Syntactic and semantic interchange of spatial data (in
portuguese). Available at: http://www.dpi.inpe.br/
gilberto/papers/geobr_geoinfo2002.pdf.

Lopez, P. A., Behrisch, M., Bieker-Walz, L., Erdmann, J.,
Flötteröd, Y.-P., Hilbrich, R., Lücken, L., Rummel, J.,
Wagner, P., and Wießner, E. (2018). Microscopic traf-
fic simulation using sumo. In 21st IEEE International
Conference on Intelligent Transportation Systems, pages
2575–2582. IEEE. DOI: 10.1109/ITSC.2018.8569938.

Ma, Y., Richards, M., Ghanem, M., Guo, Y., and Hassard,
J. (2008). Air pollution monitoring and mining based on
sensor grid in london. Sensors, 8(6):3601–3623. DOI:
10.3390/s80603601.

https://doi.org/10.1016/S1389-1286(01)00302-4
https://doi.org/10.1016/S1389-1286(01)00302-4
https://ieeexplore.ieee.org/document/5483217
https://www.civilejournal.org/index.php/cej/article/view/2634
https://ieeexplore.ieee.org/document/6305448
https://doi.org/10.1145/116873.116880
https://doi.org/10.1007/s40808-022-01349-y
https://doi.org/10.1145/2505821.2505834
https://doi.org/10.3390/s100302150
https://ieeexplore.ieee.org/document/5398461
https://ieeexplore.ieee.org/document/5398461
https://doi.org/10.1016/j.jss.2011.06.043
https://doi.org/10.1016/j.dcan.2019.03.003
https://doi.org/10.48550/arXiv.1005.1737 
https://doi.org/10.1007/s12652-022-03704-4
http://www.dpi.inpe.br/gilberto/papers/geobr_geoinfo2002.pdf
http://www.dpi.inpe.br/gilberto/papers/geobr_geoinfo2002.pdf
https://ieeexplore.ieee.org/document/8569938
https://doi.org/10.3390/s80603601


Environmental Modeling and Traffic Simulation: A multivariate approach to monitor urban air pollutant agents. Vasconcelos and Aquino 2023

Pavani, M. and Rao, T. (2017). Urban air pollution monitor-
ing using wireless sensor networks: a comprehensive re-
view. International Journal of Communication Networks
and Information Security, 9(3):439–449. DOI: 10.17762/i-
jcnis.v9i3.2708.

Pebesma, E. and Heuvelink, G. (2016). Spatio-temporal in-
terpolation using gstat. RFID Journal, 8(1):204–218. DOI:
10.32614/RJ-2016-014.

Puiu, S., Udristioiu, M. T., and Velea, L. (2022). Air pol-
lution management: A multivariate analysis of citizens’
perspectives and their willingness to use greener forms
of transportation. International Journal Of Environmen-
tal Research And Public Health, 19(21). DOI: 10.3390/i-
jerph192114613.

Qin, X., Do, T. H., Hofman, J., Bonet, E. R., La Manna, V. P.,
Deligiannis, N., and Philips, W. (2022). Fine-grained ur-
ban air quality mapping from sparse mobile air pollution
measurements and dense traffic density. Remote Sesing,
14(11). DOI: 10.3390/rs14112613.

R Core Team (2014). R: A Language and Environment for
Statistical Computing. R Foundation for Statistical Com-
puting. Available at:http://www.R-project.org/.

Rashid, B. and Rehmani, M. H. (2016). Applications of wire-
less sensor networks for urban areas: A survey. Journal
of network and computer applications, 60:192–219. DOI:
10.1016/j.jnca.2015.09.008.

Shakhov, V., Materukhin, A., Sokolova, O., and Koo, I.
(2022). Optimizing urban air pollution detection systems.
Sensors, 22(13). DOI: 10.3390/s22134767.

Shakhov, V. and Sokolova, O. (2021). On modeling
air pollution detection with internet of vehicles. In
15th International Conference on Ubiquitous Informa-
tion Management and Communication. DOI: 10.1109/IM-
COM51814.2021.9377350.

U.S. Environmental Protection Agency (2016a). Basic infor-
mation about carbon monoxide (co) outdoor air pollution.
Available at:https://www.epa.gov/co-pollution/
basic-information-about-carbon-monoxide-co-
outdoor-air-pollution#Effects.

U.S. Environmental Protection Agency (2016b). Ba-
sic information about no2. Available at:https://
www.epa.gov/no2-pollution/basic-information-
about-no2#Effects.

U.S. Environmental Protection Agency (2016c). How
mobile source pollution affects your health. Available at:
https://www.epa.gov/mobile-source-pollution/
how-mobile-source-pollution-affects-your-
health.

U.S. Environmental Protection Agency (2017). Ba-
sic information about lead air pollution. Avail-
able at:https://www.epa.gov/lead-air-
pollution/basic-information-about-lead-
air-pollution#health.

U.S. Environmental Protection Agency (2018a).
Ground-level ozone basics. Available at:https:
//www.epa.gov/ground-level-ozone-pollution/
ground-level-ozone-basics#effects.

U.S. Environmental Protection Agency (2018b).
Particulate matter (pm) basics. Available at:

https://www.epa.gov/pm-pollution/particulate-
matter-pm-basics#effects.

U.S. Environmental Protection Agency (2018c). Tech-
nical assistance document for the reporting of daily
air quality – the air quality index (aqi). Available
at:https://www.airnow.gov/sites/default/files/
2020-05/aqi-technical-assistance-document-
sept2018.pdf.

U.S. Environmental Protection Agency (2019). Sulfur diox-
ide basics. Available at:https://www.epa.gov/so2-
pollution/sulfur-dioxide-basics#effects.

Vasconcelos, I., Martins, I., Figueiredo, C., and Aquino, A.
(2018). A data sample algorithm applied to wireless sensor
network with disruptive connections. Computer Networks,
146:1–11.

Völgyesi, P., Nádas, A., Koutsoukos, X., and Lédeczi, Á.
(2008). Air qualitymonitoringwith sensormap. In 2008 In-
ternational Conference on Information Processing in Sen-
sor Networks. DOI: 10.1109/IPSN.2008.50.

Wang, Y.-C. and Chen, G.-W. (2017). Efficient data gath-
ering and estimation for metropolitan air quality moni-
toring by using vehicular sensor networks. IEEE Trans-
actions on Vehicular Technology, 66(8):7234–7248. DOI:
10.1109/TVT.2017.2655084.

Yi, W., Lo, K., Mak, T., Leung, K. S., Leung, Y., and Meng,
M. L. (2015). A survey of wireless sensor network based
air pollution monitoring systems. Sensors, 15(12):31392–
31427. DOI: 10.3390/s151229859.

https://doi.org/10.17762/ijcnis.v9i3.2708
https://doi.org/10.17762/ijcnis.v9i3.2708
https://journal.r-project.org/archive/2016/RJ-2016-014/RJ-2016-014.pdf
https://doi.org/10.3390/ijerph192114613
https://doi.org/10.3390/ijerph192114613
https://doi.org/10.3390/rs14112613
http://www.R-project.org/
https://doi.org/10.1016/j.jnca.2015.09.008
https://doi.org/10.3390/s22134767 
https://ieeexplore.ieee.org/document/9377350
https://ieeexplore.ieee.org/document/9377350
https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#Effects
https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#Effects
https://www.epa.gov/co-pollution/basic-information-about-carbon-monoxide-co-outdoor-air-pollution#Effects
https://www.epa.gov/no2-pollution/basic-information-about-no2#Effects
https://www.epa.gov/no2-pollution/basic-information-about-no2#Effects
https://www.epa.gov/no2-pollution/basic-information-about-no2#Effects
https://www.epa.gov/mobile-source-pollution/how-mobile-source-pollution-affects-your-health
https://www.epa.gov/mobile-source-pollution/how-mobile-source-pollution-affects-your-health
https://www.epa.gov/mobile-source-pollution/how-mobile-source-pollution-affects-your-health
https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health
https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health
https://www.epa.gov/lead-air-pollution/basic-information-about-lead-air-pollution#health
https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#effects
https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#effects
https://www.epa.gov/ground-level-ozone-pollution/ground-level-ozone-basics#effects
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#effects
https://www.epa.gov/pm-pollution/particulate-matter-pm-basics#effects
https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
https://www.airnow.gov/sites/default/files/2020-05/aqi-technical-assistance-document-sept2018.pdf
https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#effects
https://www.epa.gov/so2-pollution/sulfur-dioxide-basics#effects
https://ieeexplore.ieee.org/document/4505501
https://ieeexplore.ieee.org/document/7822926
https://doi.org/10.3390/s151229859

	Introduction
	Urban Air Pollution Review
	Health impacts and human effects
	Air Quality Index

	Related Work
	Environmental Application Design
	Area of Interest
	Phenomenon Observation
	Network Settings
	Sensing Data Processing
	Evaluation
	Methodology and Implementation

	Multivariate Pollutant Map Generation
	Dataset Handling
	Prediction
	About univariate time series
	About overall multivariate measurements

	Traffic Simulation
	Fetch and build maps and roads
	Generate description files for vehicles routes

	Run urban mobility simulation
	Environment Assembly


	Results
	Preliminary Assumptions
	Summary for Global Field Coverage
	Summary for Absolute Value of Relative Error
	Summary for Carbon Monoxide
	Summary for Particulate Matter
	Summary for Nitrogen Dioxide
	Summary for Ground-level Ozone
	Summary for Sulfur Dioxide
	Discussion


	Conclusion and Final Remarks

