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Abstract
The constant technological advances bring new devices to the market every day. Due to this, heterogeneousWireless
Sensor Networks (WSN) are common scenarios in many applications. Neural Network (NN) based models may
implement particular features provided by sensor hardware to collect surrounding environment information. Thus,
a sensor can provide a specific group of features while others do not. In this perspective, it may be required, for
some sensors in a WSN, to be trained and have their data manually categorized, which does not scale, particularly
for large WSN setups. In light of this problem, this paper proposes a Real-Time (RT) auto-calibration framework
to allow WSN devices to collaborate in the training process to enable new uncalibrated devices to join the network.
The method does not need previous knowledge about sensor features. Also, the proposal is validated by practical
experiments evaluating its accuracy in image classification. The provided experimental results demonstrate the
feasibility of the proposed method.
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1 Introduction

NN classification models are normally obtained by training
a designed model with data samples. In other words, a data
set of pre-classified samples must be provided to model train-
ing. Generally, these data sets are obtained by human classi-
fication or based on some already validated reference. This
classical approach is broadly used nowadays in edge devices
Veith et al. [2019]. However, it can be limited in many as-
pects. For instance, manually classifying a large set of sam-
ples can take a long time or require a prohibitive amount
of resources. At the same time, the obtained data set is re-
stricted to the source that generated the classified raw data.
Figure 1 demonstrates this problem by comparing different
drone tracking labels that identify weeds in precision agricul-
ture. Each type of plant provides resources for a particular
leaf family, in this case. However, even though these images
may have the same classification, a model trained with sam-
ples from a single type of leaf may never have been exposed
to some features such as in Figure 1.d due to inadequate sen-
sor calibration and therefore may not be able to categorize
them correctly.
Devices in a WSN are designed to last for a certain time

period. Despite that, devices may be subjected to unexpected
conditions that may reduce their lifespan or eventually reach
the end of their life cycle. Anyway, it is an unavoidable is-
sue that these devices will need to be replaced. However, it
is never guaranteed that the same sensors, microchips, and
other components used in the original devices will be avail-
able at the moment of this replacement. Vendors may discon-

Figure 1. Drone tracking example in precision agriculture

tinue products, prices, standards, and laws may prevent the
use of some components, or unexpected events may result
in a component shortage. As an example, Dunn [2021] dis-
cuss the impacts of the COVID-19 pandemic on the global
supply chains, where the shortage of microchips forced com-
panies to adapt their products to use alternative components
available in the market.
To address this issue, using heterogeneous sensors inWSN
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becomes a promising solution. By allowing the use of differ-
ent sensors, node devices can be replaced more easily and
conveniently. However, sensors must still provide similar
raw data to preserve the original functionality designed for
a given WSN, according to the model trained in the sensor
node for this purpose. Nonetheless, this limitation can be ex-
cused if a new model is trained for each new type of sensor.
By doing so, a specific sensor training data set would be nec-
essary, which, in many cases, would make prohibitive use of
this approach.
Depending on the deployment setup, WSN can be highly

susceptible to network-cloud communication latency. This
could be an issue for systems requiring many message ex-
changes or must comply with RT constraints. From this per-
spective, Fog-based systems can considerably improve this
aspect by providing a faster and more reliable communica-
tion line between the sensor nodes and the system applica-
tions.
This paper addresses this issue by proposing a framework

that allows new node devices inserted a WSN to generate
their training data set samples in reference to other nodes
nearby. With this approach, these new nodes produce their
own custom-calibrated models. To validate this proposal, an
experimental system is implemented that evaluates if the pro-
posed framework provides reliable outcomes. It is possible
to highlight the following main contributions of this work:

• The propose of a RT heterogeneous sensor calibration
framework, where newly deployed sensor nodes can
learn a customized model that interprets their own raw
data;

• A prototype of the proposed framework on a system con-
sisting of Internet of Things (IoT) nodes that simulate
heterogeneous data;

• The investigation of constraints, bottlenecks, perfor-
mance, and limitations aspects of a Fog-based RT sys-
tem implemented with the proposed calibration solu-
tion.

The rest of this article is organized as follows. Section 2 re-
views RT machine learning, wireless positioning estimation,
and WSN architectures. Section 3 describes the proposed
data set generation framework. Section 4 describes a case
study to evaluate the proposed framework, while Section 5
presents and discusses the obtained results. Finally, Section
6 summarizes the main conclusions of this work.

2 Related Works
In many WSN accessing deployed devices is not always a
easy task. For this reason, it is a desirable feature that de-
vices be able to execute calibrations in an automated way.
Sun et al. [2019] approaches this issue by proposing a coop-
erative calibration scheme for mobile WSN based on crowd
sensing, while Rekleitis and Dudek [2005] introduces an au-
tomated calibrationmethod for camera sensor networks were
mobile robots cooperate with camera nodes to obtain a pre-
cise tracking model. Also, Zhang [2008] provides an auto-
matic calibration method for a methane monitoring WSN, in
which other network devices collaborate in the recalibration

process of other recent uncalibrated nodes. Next, Sinha and
Das [2021] use Machine Learning (ML) to detect and self-
calibrate devices of a warehouse temperature sensing system
using similar devices as reference, while Feng et al. [2021]
uses a parallel approach to rapid self-calibrate redundant soft
strain sensors.
Executing machine learning in RT is becoming more im-

portant in time-critical applications and fast-changing envi-
ronments Li et al. [2019]. For this scenario, Baghersalimi
et al. [2021] introduces a RT Federated Learning (FedL)
framework for epileptic seizure detection, while Zhou et al.
[2018] proposes a architecture for RT data processing for
edge robots. These papers provide different solutions for sim-
ilar systems, where edge devices collect local data and col-
laborate with a global model without compromising user pri-
vacy. However, in the extensive description of their works,
RT aspects are briefly described by the authors. Opposite
that, Li et al. [2019] provides a mechanism that balances de-
vices training time and energy consumption to improve the
overall RT performance of the system.
Positioning is a fundamental issue for wireless sensor net-

work operation Fang et al. [2010]. In this area, Barai et al.
[2017] evaluates Received Signal Strength Indicator (RSSI)
techniques to obtain an estimated distance measurement be-
tween device nodes, while Fang et al. [2010] provides a de-
tailed characterization of a wireless device to evaluate the
fundamental factors that contribute to RSSI variability. Also,
Capriglione et al. [2012] verifies, for small WSN, how reli-
able RSSI localization systems are.
Table 1 summarizes the comparison between the most rel-

evant related works found in the literature and this proposal
regarding the calibration of the sensor.

Paper Real-Time Machine
Learning Cooperative

Wireless
Sensor
Networks

Sun et al. [2019] No No Yes Yes
Rekleitis and Dudek [2005] No No Yes No
Zhang [2008] Yes No Yes Yes
Sinha and Das [2021] No Yes Yes Yes
Feng et al. [2021] Yes Yes Yes No
Baghersalimi et al. [2021] No Yes Yes No
This Proposal Yes Yes Yes Yes

Table 1. Summary of the comparison with main related work re-
garding the calibration of the sensor.

Another important aspect studied in the literature review
was the WSN training infrastructures. Regarding this aspect,
a wide variety of architectures is found in the literature. How-
ever, most of them can be classified into one of the following
categories:

• Decentralized: Each device independently performs
training steps on its currentmodel using its local data set.
Next, each device forwards its model updates to another
one-hop neighborhood for a consensus step Savazzi
et al. [2020];

• Cloud-edge (Fog): It uses a cloud-edge structure, each
IoT node offloads and executes training steps, of their
custom model, on Fog while also collaborating in the
training of a global moduleWu et al. [2020];

• Hybrid: Devices share and offload data between close-
by devices based on data similarity. Next, the main
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server samples a portion of these devices and performs
a training stepWang et al. [2021].

In light of this landscape, this work aims to provide a
method capable of calibrating incoming new devices with-
out human interference. It is possible through neural network
collaborative training based on local parameters from the al-
ready calibrated sensors in a wireless sensor network in a Fog
environment.

3 Proposed Solution
The system architecture of the proposed solution is presented
in Figure 2, which can be separated into two parts (Fog
and Field). The Fog part is composed of a main server, re-
sponsible for hosting the framework’s Calibration Applica-
tion (CalApp) and the Pace Controller (PaCo) applications,
and the device access points, while, the field, represents the
WSN devices. Thus, both CalApp and PaCo are executed
on a central server. Before the system’s framework start run-
ning, it is required a minimal infrastructure to be provided:
Fog must be operational while the field must contain an ini-
tial quantity of precalibrated sensor node devices (heteroge-
neous or not).

Figure 2. System Architecture

3.1 Calibration Application
The calibration process is a procedure in which the server
provides an initial neural network model and orchestrates the
execution, including the synchronization data from server to
devices and vice-versa. All calibrated nearby wireless de-
vices can participate in the calibration process as well. This
devices execute their own neural network algorithm to vote
in the predictions that will be applied for calibrating the un-
calibrated device.
Embedded wireless sensor node have, usually, limited pro-

cessing and energy resources. Therefore, executing resource-
ful tasks, such as NN model training, may be impracticable
for most applications. In the proposed framework, CalApp
solves this problem by allowing devices to offload their data
samples and execute model training tasks in a fog hosted sup-
port application. It is responsible for receiving these samples,
training the models, evaluate results and generate the embed-
ded models.

One of the main challenges for RT WSN is guaranteeing
precise time synchronization between wireless devices. To
avoid this problem, inspired in Li et al. [2019], a centralized
system controller (PaCo) was designed. However, in this
case, PaCo is only responsible for managing and coordinat-
ing network devices. Every request and response is sent and
received by it, and since all of them are referred to the same
clock source, all operations that must meet RT constraints
can be evaluated and guaranteed.

3.2 Data Set Generation
In order to produce a customized data set for the new de-
vice model, PaCo selects an odd group of nearby calibrated
devices to classify the raw data of the uncalibrated de-
vice(Figure 3). To do that, PaCo issues a request to all these
devices to, in parallel, generate their samples and offload
them to it. Next, the received predictions are used as votes
to define the raw sample label.

Figure 3. Data Set Generation Process

Since the trained models may not have a perfect prediction
rate, most devices must agree on the same prediction. Due to
this fact, a quorum of 2n+1 calibrated devices must exist to
provide voting by 50% +1 similar votes to achieve a majority.
Also, using an odd number of devices may reduce the num-
ber of uncertain results. It is possible to state that using this
approach, there is no limitation on the maximum number of
devices in the network, i.e., the application can scale indefi-
nitely since new devices will be limited to a small cluster of
calibrated nearby devices.
All samples must be generated simultaneously to guar-

antee that all devices are subjected to the same environ-
ment conditions. Therefore, responses that do not respect
the applied RT deadline are considered invalid and dropped.
Since different types of phenomena present other behaviors
in terms of frequency, for instance, which directly impact
establishing the deadlines, a particular study is required to
establish the applicable timing parameters for a given phe-
nomenon. The study about determining these deadlines is
out of the scope of this paper, which requires an analysis of
the specific use case scenario under concern.
If no valid raw sample is received or classification is

elected, the whole sample is discarded. In case of success,
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the sample-label pair is transferred to CalApp and becomes
part of the training data set for that particular device.

3.3 Device Calibration Process
This section details the calibration process for uncalibrated
device insertion into the network, represented in the steps
depicted in Figure 4. These steps are: Deployment, Calibra-
tion, and Operation. They are described in the following.

Figure 4. Step Cycle Calibration framework

a. Deployment: Initially, every new device must join the
WSN. After joining the network, the sensor has to register
itself to the PaCo, which will include the device in a list of
devices under calibration. With the device registration step
completed, before the calibration process can be initiated, a
neighborhood scanning of at least three operation mode de-
vices must be found in a nearby range of the new device. If
the condition is not met, the device enters standby mode until
the PaCo requests a new scan. In case of success, the uncal-
ibrated device informs PaCo a list of up to n nearby devices
found.
b. Calibration: In this stage, PaCo initiates the data set

generation process. At this moment, it periodically requests
raw data samples to the uncalibrated device until enough
samples are successfully classified. Next, CalApp stipulates
a model and executes the training process for it. After con-
ceiving a trained model, CalApp deploys it to the uncali-
brated device.
c. Operation: After receiving a calibrated model, the de-

vice becomes operational and is added to the population of
available field sensors. At this point, the device is ready to
actively participate in the WSN by responding to sampling
requests while also participating in calibrating other uncali-
brated nodes.

4 Case Study
In order to evaluate the performance and effectiveness of
the proposed framework, an experimental WSN was imple-
mented. In this network, a group of 3 node devices with sim-
ulated heterogeneous cameras participate in the calibration

process of a 4th new device. To simulate image sampling,
each device refers to different data sets of images with a com-
mon list of labels. Results are then obtained by subjecting the
system to other parameters.

4.1 Sensor Nodes
Based on the Espressif ESP32 module Systems, Espressif
[2017], each sensor node was implemented to provide a
request-driven Application Programming Interface (API), al-
lowing the node to be fully remote controlled. This API pro-
vides the following features:

1. Request raw sample (raw image);
2. Request sample (model’s image prediction);
3. Request list of close-by devices;
4. Update model; and
5. Update operation mode (uncalibrated/calibrated).

Initially, every node tries to obtain access to the WSN by
connecting to a predefinedWiFi network. Next, a connection
with theMessageQueuing Telemetry Transport (MQTT) bro-
ker is established, and if successful, the device is fully op-
erational. In parallel, if configured as calibrated mode, the
node starts broadcasting an Access Point (AP) network with
its hard-coded identification number. This AP network only
intends to allow sensor devices to search for other nearby
devices and calculate their approximated distance based on
their current RSSI. Therefore, no connection is accepted by
any node AP.

Real-Time Requests (1 and 2) In order to simulate a cam-
era image acquisition, every RT request (sampling requests)
should contain image data that are considered as the raw im-
age data obtained by that sensor. By receiving a sample re-
quest, the device processes the received image with its cur-
rent model and responds with the calculated result. Raw sam-
ple requests are simply responded to with the same received
image.

Non-Real-Time Requests (3, 4 and 5) A device can be
set into calibrated mode by receiving a model update (4) fol-
lowed by an operationmode change (5). Changing a node op-
eration mode to uncalibrated causes the device to drop its cur-
rent model and disable its AP network. By receiving a list of
nearby devices request, the device responds with a list of up
to 9 closest devices found and their respective distances, ob-
tained using the Curve Fitting Technique Barai et al. [2017].

4.2 Image Sample Simulation
Different sensors may produce different features for the same
environment. For that reason, the data sets used for simulat-
ing data acquisition must provide enough levels of hetero-
geneity. Therefore, four different image classification data
sets were selected (MNIST, EMNIST, FMNIST, and KM-
NIST) to simulate four different camera sensors. Each data
set is separated into 10 classes labeled as numbers from 0 to
9. Also, each image has a resolution of 28×28 pixels. Re-
gardless of which data set the data came from, pictures with
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Figure 5. Heterogeneous Data Sets Classes

the same label are considered samples of the same environ-
ment. Figure 5 shows sample examples for each class and
data set.
Combining the selected data sets, a new set of 50000 sam-

ples was created (Simulation Data Set (SDS)). To do so,
SDS samples are composed of 4 randomly picked, unique
and same-labeled images, one from each data set (SDS train-
ing set). Also, a set of 10000 unique samples (SDS testing
set) for each data set was preserved exclusively for evaluat-
ing the trained model accuracy.

4.3 Deep Learning Neural Network Design

For simplicity, a Deep Learning Neural Network (DLNN)
model structure was used for all node devices. Also, the used
design was referenced to the classic Tensorflow example for
MNIST-like data sets Google Inc. [2021], and no consider-
ations were made upon it. A pre-processing transforms the
image into a uni-dimensional array from 784 bits (28×28)
and normalized. Then, a second dense layer with 512 neu-
rons implements a Rectified Linear Unit (ReLU) activation
function.
Figure 6 shows the proposed structure, which is composed

of four layers equivalent to 118,016 hyperparameters (748 ∗
128 + 128 ∗ 128 + 128 ∗ 10):

1. Input layer 784 neurons;
2. Dense layer 128 neurons using ReLU activation;
3. Output layer 10 neurons (Classes) using Softmax.

Figure 6. Neural Network Model

Also, the Softmax activation function integrated the out-
put layer prediction results, and the output neuron with the
maximum probability is considered the image classification.
The model is trained with a categorical cross-entropy loss
function.
For the initial field devices, a training process of 50,000

samples, 10 epochs, and an Adam optimizer with a learning
rate of 0.001 was executed. The results can be seen in Ta-
ble 2.

Sensor Data Train Test
ID Set Accuracy Accuracy
1 EMNIST 99.51% 98.76%
2 FMNIST 92.15% 88.77 %
3 KMNIST 99.33 % 88.67 %

Table 2. Initial Field Devices Training Results.

4.4 Server Application
A Python Server application was developed to act as PaCo
and CalApp. For this experiment, the application was de-
ployed in an Apple Mac mini (Late 2014) running MacOS
10.14.6 Apple [2021]. After initiated, it requires the user to
provide the RT sampling step deadline and the desired num-
ber of generated samples. Next, PaCo starts sending sam-
pling requests to the three calibrated devices and raw sam-
pling requests for the uncalibrated. The system provides the
simulated sensor data by randomly selecting a SDS sample
at each sampling step. Also, each request contains a unique
identification number so that PaCo can evaluate that dead-
lines are being met. In case of a step success, the selected
sample is removed from the list of available SDS samples.
A step of the data set generation process is considered suc-

cessful if all the following conditions are achieved:

1. At least two calibrated devices responded within the ex-
pected deadline;

2. The uncalibrated device responded within the expected
deadline;

3. The majority of devices, from item 1, agree on the same
image classification.

After acquiring the expected number of samples, PaCo in-
vokes CalApp to execute the device model training. The
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training process is implemented using Keras, a Python open-
source library that simplifies ML implementations. Finally,
the obtained model is sent to the uncalibrated node, and its
operation mode is changed to calibrated.

5 Results
A series of experiments were executed in the implemented
system described as a case study to evaluate themany aspects
of the proposed calibration framework. Different deadlines
are initially applied to verify RT aspects. Next, it was veri-
fied how fast it could converge with other deadlines. Finally,
the model quality is evaluated with the same model trained
with the original data set. In addition, a network overload test
observes how to overload situations can affect the proposed
framework.

5.1 Real-Time Analysis

Figure 7. Response Success Rate for Different Deadlines (1000 Samples)

In this experiment, deadlines from 100ms to 2000ms
(100ms steps) were tested by executing 1000 sample requests
to each device (raw sample requests to the uncalibrated de-
vice). The results (Figure 7) show that, even though raw sam-
ples can obtain successful transactions at a 200ms deadline,
it is impractical for the system to run with deadlines below
600ms since no success is obtained by the calibrated sensors.
After investigating the sampling process, it was veri-

fied that the model prediction process takes, approximately,
417ms to be computed. By comparing the average response
times (Figure 8) with the obtained results, it can be noticed
that the system will tend to a 600ms deadline, and increasing
it will just make the system more tolerant to disturbances.

5.2 Data Set Generation Time
With the results obtained from the RT analysis, a full data set
generation process was simulated based on the probabilities
of RT success of each sensor, as presented in Table 3. The
results showed that the deadline of 800ms would result in the
fastest conversion time for this experiment. For the 600ms
deadline, a lower efficiency was observed, resulting in a long
conversion time. This behavior happens because, with this
deadline, every sampling step is very likely to fail since it is
at the edge of the minimal required deadline, and any extra
network load may delay these packages. Also, it was noticed

Figure 8. Average Response Time for Different Deadlines (1000 Samples)

that, even with considerably reduced efficiency, the 700ms
deadline resulted in a faster conversion time than the 900ms
one. Finally, no performance benefits were seen for higher
deadlines.

Deadline Steps Time Efficiency
[ms] [Hours]

100 - 500 ∞ ∞ 0.00%
600 3727699 621.28 1.34%
700 62491 12.15 80.01%
800 50184 11.15 99.63%
900 50091 12.52 99.81%
1000 50118 13.92 99.76%
1100 50103 15.30 99.79%
1200 50106 16.70 99.78%
1300 50040 18.07 99.92%
1400 50053 19.46 99.89%
1500 50044 20.85 99.91%
1600 50074 22.25 99.85%
1700 50113 23.66 99.77%
1800 50040 25.02 99.92%
1900 50040 26.41 99.92%
2000 50040 27.80 99.92%

Table 3. Data Set Generation Time

5.3 Generated Model Accuracy
A sequence of model training experiments, in relation to
the training set size, were executed with an 800ms deadline.
Next, the results were compared with models trained with the
reference data set (MNIST). The results showed that models
trained with the generated data set behave similarly to the
ones trained by the reference. Most importantly, the gen-
erated data set was sufficient to efficiently predict samples
from the test set, which was never previously introduced to
the model. Figure 9 demonstrates that, for small training sets,
the reference model provided an inferior accuracy. The rea-
son is that the sensor simulation algorithm tries to maintain
a fair distribution between all the available classes, while
the reference data set is a completely random organization.
Therefore, the frameworkmodelmay be presented as a better-
quality data set for smaller training sets. Finally, it is possi-
ble to observe that the proposed model obtains around 90%
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accuracy even with small training sets. Since devices work
consensually, highly populated WSN can obtain an accept-
able accuracy even with a small data set.
Since devices will work consensually for a highly popu-

lated WSN, the model obtained by a small training set may
be sufficient.

Figure 9. Model Accuracy for Different Data Set Sizes

5.4 Network Overload Test
A network overload test was executed to verify how the sys-
tem would behave with increased network traffic. To do so,
the RT analysis was repeated while repeated broadcast UDP
packages were sent, at maximum available network speed,
by another WiFi device. The results showed that, in these
conditions, the framework would fail. After investigating
the acquired results (Figure 10), it was noticed that starting
at the 1200ms deadline, the uncalibrated device could ob-
tain some success rate. However, calibrated devices couldn’t
get enough success rates in any experiment. This happens
because calibrated devices are more susceptible to network
loads since they have less time for network communications
because of their prediction calculation time.

Figure 10. Network Overload Test Response Success Rate for Different
Deadlines (1000 Samples)

A two-response system could be applied to improve the
success rate of these devices. To do so, first, after receiv-
ing the sampling request and collecting the sensor data, the
calibrated device would send a RT confirmation response to
inform PaCo that the imagewas collected by the correct dead-
line. Next, the device calculates the image prediction and
informs PaCo in a Non-RT response message. Even though
this was not implemented in this work, this approach would
result in calibrated devices obtaining a success rate similar to

the uncalibrated device since theywould have similar RT pro-
cesses. It is acceptable that overloads may happen for short
periods, but they should be avoided whenever possible.

5.5 Discussion
The performed experiments validated the proposal by cali-
brating real-world wireless sensors. However, the observed
results indicate the need for a proper network infrastructure
design. The designer must ensure that the implemented net-
work can support deployed field devices and avoid network
overloads. Thus, the model might be suitable for adjusting
the nodes of specific applications, for instance, drones in pre-
cision agriculture or tiny sensor motes in remote domestic
environment monitoring, such as domestic coolers, air con-
ditioning, etc., as the end-users might not have advanced ex-
perience in network configuration.
Also, data traffic must be considered when selecting the

network’s technology. Therefore, in an agricultural scenario,
a Low Power Wide Area Network (LPWAN) network may
not be suitable for applications that suffer from heavy data
overhead (e.g., RGB cameras or other imaging systems).
However, systems with reduced data traffic could benefit
from such technology.

6 Conclusion
This paper proposed an auto-calibration framework for het-
erogeneous WSN in which devices collaborate to generate a
training data set for a new uncalibrated device that wishes
to join the network. A use case scenario was evaluated by a
series of experiments regarding RT constraints, convergence
time, and quality of model design. The framework success-
fully generated a custom data set for the uncalibrated sensor.
The obtained training set was capable of achieving similar
results to a reference model. Finally, overload tests showed
that the system might be subjected to failures by a network
overload. Therefore, a careful design of the WSN infrastruc-
ture is necessary.
No considerations were made regarding battery efficiency

and processing power in this work. The initial inspiration for
executing Deep Learning algorithms was based on the Fed-
erated Learning approach, which supports thousands of de-
vices. Nevertheless, future works can cover this aspect. De-
veloping an accurate and validated database with real-world
sensors would also be another possible future work. In a
WSN, these aspects are essential, and their impact on the
framework should be evaluated in the continuation of this
study. Also, the sample distribution was considered to be
fair distribution. In real-life applications, this might not be
the case. Therefore this issue should be further explored. Fi-
nally, network overloads may result in temporary system fail-
ure, so the communication process should be improved.
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