
Journal of Internet Services and Applications, 2023, 14:1, doi: 10.5753/jisa.2023.3000
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Data Compression in LoRa Networks: A Compromise between
Performance and Energy Consumption
Javan Ataíde de Oliveira Júnior [Western Parana State University, Campus Cascavel | ja-
vanataide10@gmail.com]
Edson Tavares de Camargo [Federal University of Technology – Paraná, Campus Toledo | ed-
son@utfpr.edu.br]
Márcio Seiji Oyamada [Western Parana State University, Campus Cascavel | mar-
cio.oyamada@unioeste.br]

 Western Parana State University - Campus Cascavel, Rua Universitaria 2069, Cascavel -PR, 85819-110

Received: 01 November 2022 • Accepted: 15 May 2023 • Published: 18 July 2023

Abstract The Internet of Things (IoT) end devices have major limitations related to hardware and energy autonomy.
Generally, the highest energy consumption is related to communication, which accounts for up to 60% of consump-
tion depending on the application. Among the strategies to optimize the energy consumed by communication, data
compression methods are one of the most promising. However, most data compression algorithms are designed for
personal computers and need to be adapted to the IoT context. This study aims to adapt classical algorithms, such
as LZ77, LZ78, LZW, Huffman, and Arithmetic coding, and to analyse their performance and energy metrics in IoT
end devices. The evaluation is performed in a device with an ESP32 processor and LoRa modulation. The study
makes use of real datasets derived from two IoT applications. The results show compression rates close to 70%, a
three-fold increase in the number of messages sent, and a reduction in energy consumption of 22%. An analytical
model was also developed to estimate the gain in the battery life of the device using the adapted algorithms.

Keywords: Internet of Things, data compression, energy consumption, LoRa

1 Introduction

Due to technological advances, the Internet of Things (IoT)
market is expected to reach trillions of dollars in the com-
ing years (Statista, 2020), which means it will expand its
range of applications to include sensors, healthcare applica-
tions, industry applications, and smart cities (Perera et al.,
2015). However, most IoT end devices have limited power
sources due to the characteristics of their applications. This
fact imposes restrictions on both the processing capacity and
the communication bandwidth (Samie et al., 2017).
In the context of data communication, wireless networks

called Low Power Wide Area (LPWAs) have low power con-
sumption, low transmission rates, and long-range character-
istics. LPWA networks, such as LoRa and Narrowband IoT
(NB-IoT) technology, have been applied both in cities and
in rural environments (Gu et al., 2020). Despite these char-
acteristics, data transmission consumes most of the energy
due to the high energy of the radio used for transmission. In
some cases, the energy cost of communication reaches 60%
of the device’s energy consumption (Sadler and Martonosi,
2006). It is estimated that the energy cost to send and receive
a single bit of information is equivalent to 1,000 instructions
performed on a given processor (Marcelloni and Vecchio,
2008). Thus, due to the large proportion of energy consumed,
data compression is among the various “edge computing” ap-
proaches currently proposed to reduce energy consumption
in the process of sending data. The term edge computing
refers to using the computational resources of the devices
to process the data at the edge instead of transmitting to the

centralized cloud. The approach can improve issues related
to response time and energy savings. However, most of the
main compression algorithms need to be adapted when used
in IoT end devices due to hardware restrictions (Sadler and
Martonosi, 2006).
This study aims to adapt the classic algorithms - Arith-

metic, Huffman, LZ77, LZ78 and LZW - for IoT devices
to analyse metrics that can be critical in determining the
compression algorithm to be used in a real application. The
metrics evaluated are heap memory, battery, the energy con-
sumption of the method, peak current, energy gain and pro-
cessing time. The exploration of these measures can serve as
a parameter for applications that want to use data compres-
sion to increase energy gain or increase network throughput,
based on more than the rate of compression as a criterion for
choosing the method.
The use of transmission exchange by computation at

the edge has been investigated in several studies (Maurya
and Singh, 2011), (Sacaleanu et al., 2018), (Sadler and
Martonosi, 2006), (Al-kadhim et al., 2021). However, each
author evaluates a particular measure of interest, such as
compression rate (Sadler and Martonosi, 2006), energy gain
(Sacaleanu et al., 2018), processing time or memory usage
(Maurya and Singh, 2011). The main contribution of this
study is to evaluate a set of metrics, usually absent in most
related studies, and perform correlational analysis between
the measurements. Another contribution is the analysis of
the impact of the number of messages and energy consumed
on different LoRa spreading factors.
This research uses as a case study a node composed of

https://doi.org/10.5753/jisa.2023.3000
https://orcid.org/0000-0003-4294-853X
mailto:javanataide10@gmail.com
mailto:javanataide10@gmail.com
https://orcid.org/0000-0002-6520-9142
mailto:edson@utfpr.edu.br
mailto:edson@utfpr.edu.br
https://orcid.org/0000-0002-6354-8917
mailto:marcio.oyamada@unioeste.br
mailto:marcio.oyamada@unioeste.br

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

an ESP32 end device with LoRa modulation. Two datasets
were used: one refers to the monitoring of the heating of
concrete blocks in large buildings, and the other refers to
object tracking data containing GPS coordinates (Camargo
et al., 2021). The use of two different datasets is due to
the facts presented in the works in (Sadler and Martonosi,
2006),(Vander Byl et al., 2009). According to both, the data
content impacts measures such as the compression rate. Re-
sults obtained demonstrate that the LZW,Huffman and Arith-
metic algorithms reached a compression rate of 69%, 61%
and 55%, respectively, for the first dataset. In terms of en-
ergy consumption, the data compression could result in an
energy consumption reduction up to 22%, using the LZW al-
gorithm. Findings for the second dataset indicated that it was
possible to reduce the network throughput by 95% with the
LZW, Huffman and Arithmetic algorithms.
To present the results in this study, the text is structured

as follows: Section 2 presents a background of LoRa mod-
ulation and the relative studies involving data compression
and IoT devices. Section 3 presents the adopted methodol-
ogy and details the compression algorithms used in this work.
Section 4 presents the results of the research, and Section 5
details the analytic energymodel proposed in this work based
on the results collected. Section 6 provides the conclusion.

2 Background
This section provides a brief overview of LoRa and Lo-
RaWAN and presents the related work.

2.1 LoRa and LoRaWAN
The LoRa modulation from Semtech is an emerging Low-
Power Wide Area Network (LPWAN) for IoT applications.
LoRa uses a modulation technique derived from Chirp
Spread Spectrum (CSS) modulation (Sinha et al., 2017; Bor
et al., 2016), and exhibits characteristics such as long-range,
high robustness, and low energy consumption (Bor et al.,
2016).
LoRa devices have four main parameters: Spreading Fac-

tor (SF), Bandwidth (BW), Carrier Frequency (CF), and Cod-
ing Rate (CR) (Bor et al., 2016). One of the main features of
LoRa is the ability to exchange the data transmission rate
for a higher sensitivity within the bandwidth of the chan-
nel, thus achieving a variable data transmission rate just by
changing the spreading factor to optimize the network perfor-
mance (Semtech Corporation, 2015). A higher SF increases
the signal-to-noise ratio (SNR) and consequently increases
robustness and signal range. However, air time and energy
consumption for data transmission increase, and the number
of bits transmitted in the message decrease (Bor et al., 2016).
The air time required to transmit a packet with a payload
of 10 bytes in SF12 is about 25 larger compared to SF7, as
shown in Table1.
The air time refers to the time it takes for a packet sent

from a particular transmitter to reach the receiver (Aras et al.,
2017). In LoRa communication, this time difference is due
to the technique that uses the chirp signal to spread the trans-
mitted signal by varying the frequency. The duration of the

chirp signal is directly related to the spreading factor used by
the device. A higher SF means achieving a longer data trans-
mission distance and a lower baud rate, resulting in a longer
signal transmission time (Ahmar et al., 2019).

Table 1. Air time according to SF for a payload of 10
bytes (Semtech Corporation, 2019)

SF Time (ms)
7 41
8 72
9 144
10 288
11 577
12 991

The LoRa physical layer may be used with any Media Ac-
cess Control (MAC) layer. However, LoRaWAN is the cur-
rently proposed MAC, which operates a network in a simple
star or star-of-star topology and consists of nodes and one or
more gateways used to transfer data between devices to Lo-
RaWAN servers (Semtech Corporation, 2023). One of the
advantages of this protocol is that it is optimized for devices
with limited power (Sinha et al., 2017).

Devices using the LoRaWAN protocol must follow re-
gional standards established by each country, such as op-
erating frequencies, bandwidth, and maximum message
size. The LoRaWAN Alliance provides regional parameters
for different regulatory regions worldwide (LoRa Alliance,
2021).
In Brazil, where the experiments were conducted, devices

can operate in regions defined by LoRaWAN as AU915-928
or EU433. Devices using these regions have 64 uplink chan-
nels with a bandwidth of 125 KHz interleaved at 200 KHz,
starting at 902.5 MHz to 927.8 MHz, and can use SF from
12 to 7. The size of the payload depends on the SF and band-
width chosen. In this work, a bandwidth of 125 KHz and SF
from 12 to 7 were used, and the maximum payload is con-
sidered in the most restrictive scenario of LoraWAN. In this
case, the payload ranges from 51 bytes for SF12 to 222 bytes
for SF7, as shown in Table 2 (LoRa Alliance, 2021).

Table 2. Maximum payload in different SF (LoRa Alliance, 2021)

SF Payload (Bytes)
12 51
11 51
10 51
9 115
8 222
7 222

2.2 Related Work
The data compression in the IoT enables the use of new tech-
niques focused on the optimization for IoT devices. Due
to the limitations of the devices, new algorithms for com-
pression have been proposed or adapted to make them feasi-
ble (Sadler and Martonosi, 2006). In particular, exchanging

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

transmission for edge computation has been applied in sev-
eral studies. However, each author has focused on a singular
measure of interest, be it compression rate, energy gain, com-
putational or memory cost; thus, no study verifies the over-
all impact in an integrated way of different metrics such as
compression rate, execution time, memory usage, and energy
consumption. In the literature, there are several adaptations
of classical algorithms to IoT devices.
In (Maurya and Singh, 2011), the authors proposed a loss-

less compression algorithm to reduce the computational cost
and the memory usage, considering that the data are stored
in the device. They proposed the Median Predictor-based
Data Compression (MPDC). The MPDC can be divided into
three stages. The first consists of collecting the current sen-
sor reading plus three previous values. The second is the
median predictor that predicts the median value, selects the
highest and lowest value and calculates the deviation from
the current value in relation to the median. The third con-
sists of encoding the deviation value using a static Huffman
table. Using the algorithm, compression rates of up to 67%
(7500 bits) were obtained. Although the authors reported a
reduction in energy consumption, the value of this reduction
was not quantified, nor were the memory footprint and exe-
cution times provided.
In (Sacaleanu et al., 2018), the authors performed data

compression using a LoPy module with LoRa radio. With
a focus on reducing energy consumption, they used the delta
or residual model (difference between one data collected and
another) and coded it with a static Huffman table, similar
to that used in (Maurya and Singh, 2011). The objective
of this study was to compare the energy cost for the trans-
mission of these compressed data via three transmission net-
works: ZigBee, Enhanced ShockBurst and LoRa (each mod-
ulation used a platform different but with the same compres-
sion algorithm). According to (Sacaleanu et al., 2018), when
analysing the costs with and without compression, in the
LoRa network, up to 31% in energy savings were gained.
However, the study did not measure data such as processing
time, memory and other compression algorithms.
In (Marcelloni and Vecchio, 2008), the lossless entropy

compression (LEC) algorithm was proposed. The LEC
explores a modified version of the exponential-Golomb
code, which consists of dividing the alphabet and numbers
into groups whose sizes increase exponentially. Unlike
exponential-Golomb coding, in which codewords are gener-
ated as a combination of single and binary codes, for the LEC,
codification is performed using the Huffman static table, sim-
ilar to (Maurya and Singh, 2011) and (Sacaleanu et al., 2018).
The compressor was applied to correlated data (data that tend
to be similar) of temperature and humidity and reached 70%
and 62% compression rates, respectively. The authors ap-
plied the algorithm to noncorrelated data, where theoretically
it would not have good results, but it was able to achieve
compression rates close to 70%, thus showing the validity
and reliability of the LEC. However, the study focused on
comparing the compression rate and measuring energy con-
sumption analytically, which resulted in a 32% decrease in
energy consumption.
In (Samie et al., 2017), a lossy compression algorithmwas

proposed for biosignal applications. The proposed method

uses Huffman coding and the delta model. To avoid creating
a table that is too large, only a few delta values are stored in
the Huffman table, allowing the delta to be encoded to search
for a value close to its value in the table, within an error limit.
According to the results, the proposed methodology obtained
a compression rate of 75% in some cases. Aiming to evalu-
ate energy consumption, there was an increase in energy ef-
ficiency, increasing the lifespan of the device from 7 days
using the state-of-the-art algorithm to 10 days of autonomy.
The total energy consumption was calculated by summing
the main parts of the device’s operation, such as the energy
consumed to sendmessages and the processor in normal state
or deep sleep.
In (Sadler and Martonosi, 2006), a compression method

focused on IoT in delay-tolerant systems, the LZW sensor (S-
LZW) and some variations of it, are proposed. According to
(Sadler and Martonosi, 2006), the S-LZW alone cannot take
advantage of the existing characteristics in sensor data since
the data tend to be repetitive at short intervals. Based on the
prerogative to optimize these patterns, the authors proposed
the S-LZW mini cache (S-LZW-MC) as a variation of the S-
LZW. The mini-cache is a hash-indexed dictionary with size
N, where N is a power of 2 that stores the recently used and
created dictionary entries. According to the results presented
in (Sadler and Martonosi, 2006), the dictionary with 32 and
64 entries had the best performance in the tests, with gains
of 12.9% and 14.7% in the compression rate when compared
to the S-LZW in the SS dataset. Therefore, to evaluate the
energy gain using the S-LZW-MC algorithm with 32 inputs,
experiments were performed using three radio types (XTend,
CC2420 and CC1000) in which four benchmarks were com-
pressed. According to the results, the S-LZW-MC was able
to reduce energy consumption by 1.6 to 1.7 times.
In (Al-kadhim et al., 2021), two compression algorithms

were used to maximize and evaluate the energy gain. The
method is called the adaptive data compression scheme
(ADCS). This method consists of two algorithms, the S-LZW
and the S-LEC, which are selected according to the interest
of the application. The authors also proposed an automatic
mode that selects the compression algorithm based on the en-
ergy gain of the application. For the proposed study, the best
gains were considering the S-LEC. The main purpose of this
study is to reduce power consumption using the proposed al-
gorithm. As a result, the authors achieved a reduction of 33%
in energy when the algorithm used S-LZW and 40% when S-
LEC was used. The number of operations performed by the
processor was also evaluated, which indicated greater use in
the S-LEC algorithm, estimating the increase of useful life
at 50%. Despite the results, measures such as memory were
not discussed, and the energy values were estimated using
analytical models.
In (Mishra et al., 2022), the authors evaluate the run-length

encoding (similar to LZ77) and Huffman encoding. The
authors also propose a hybrid approach that combines run-
length andHuffman coding to compress the data. To evaluate
the compression ratio and power consumption, the authors
propose an analytical model based on the MCP TIMSP430
microcontroller. It is important to mention that it is a simple
microcontroller and in the analytical model, the authors have
considered a fixed number of cycles per instruction (CPI) for

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

each instruction class. The authors evaluate the compression
using the input data of different sizes from 300 to 1500 bits,
but they do not describe the content or the symbol distribu-
tion. For the energy estimation, they assume a fixed cost for
transmitting a bit that is not associated with a specific tech-
nology. The authors reported a compression ratio for a data
input of 300 bits of approximately 83% for the run-length al-
gorithm, 78% for the hybrid approach using a combination
of run-length and Huffman, and 66% with the Huffman algo-
rithm.
This study implemented the classic Huffman, Arithmetic,

LZ77, LZ78, and LZW algorithms, adapting them to the
LoRa network and the device used, focusing on the algo-
rithm and not on data modeling. To adapt the algorithms,
some techniques described in the related studies were used,
such as the dictionary limitation proposed in the S-LZW by
(Sadler and Martonosi, 2006). It is also noteworthy that this
study analysed a set of performance variables absent in most
of the related studies. The variables analysed were compres-
sion rate (CR), execution time (ET), memory usage (heap,
stack) (GM), global energy gain (considering the use in a real
scenario) (GE), energy gain between the methods (analysing
only the energy spent for compression), peak current and
modulation (Mod). Table 3 presents a comparison between
the related studies highlighting the variables addressed by
each study. Variables that did not appear in any of the studies
are omitted from the table.

Table 3. Comparison between the related works

GE CR Mod Hardware Compression method
(Sadler and Martonosi, 2006) 40% 70% - MSP430x1611 S-LZW
(Marcelloni and Vecchio, 2008) - 70% - MSP430 LEC
(Vander Byl et al., 2009) - 86% - TelosB device Wavelet-Hybrid
(Maurya and Singh, 2011) - 67% - Simulation MPDC
(Samie et al., 2017) 48% 75% BLE Mód. ECG Approximation Compressor
(Sacaleanu et al., 2018) 30% - LoRa Board LoPy Huffmann Static
(Le and Vo, 2018) - 75% - Simulation D-LZW
(Tasaka et al., 2019) - 80% LoRa - GPS Compression
(Hanumanthaiah et al., 2019) - 52% - - Delta + RLE
(Mishra et al., 2022) - 83% - TIMSP430 RLE + Huffman

3 Methodology and Evaluated Sce-
narios

The study was conducted using a TTGO OLED Display
LoRa module, which uses an ESP32 architecture that is com-
posed of two 32-bit Xtensa LX6 processors, an ultralow
power (ULP) coprocessor, 4 MB of Flash Memory and 528
kB of SRAM,Wi-Fi, Bluetooth, 18 ADC ports, SPI, I2C and
an SX1276 LoRa radio (Lilygo, 2019).
For the measurement of the data compression rate and

energy-related metrics, experiments were divided into three
scenarios, with a specific focus on the following metrics:
compression rate, execution time, memory usage (heap,
stack), global energy gain (considering the use in a real sce-
nario), and the energy consumption of the algorithm and peak
current.
In the first scenario, only the code is loaded on the end de-

vice to perform compression and decompression to prevent
any of the metrics from interfering with the normal operat-
ing code of the IoT application. In this scenario, real data
collected in the field were saved in a text file so that dur-

ing the execution of this scenario, the compressed messages
were loaded from this file. The file manipulation time (open-
ing, reading, and closing) is not considered. As a result of
this experiment, compression metrics are collected, such as
the maximum amounts of compressed messages within the
limit of the LoRaWAN packet size.
In the second scenario, the focus is the measurement of

the energy consumption of the compressor algorithm. Thus,
for a more accurate measurement, the messages to be com-
pressed are statically encoded in the code to prevent the cost
of opening and closing the file from distorting the compres-
sion cost. Thus, similar to the first scenario, only the com-
pression code is loaded into the device. For the energy mea-
surement, a current monitor INA219 (TI, 2023) was used in
an invasive manner that sampled the current at a rate of 250
samples per second.
The third scenario focuses on measuring the energy gain

of the compression when sending the data, simulating a real
application. In this scenario using the compressor algorithm,
the data are collected and grouped until reaching the maxi-
mum number of messages allowed in a LoRaWAN packet
(obtained in Scenario 1). The transmission was performed
using the LoRa modulation, but in the experiments, we con-
sider the packet size limit for each SF determined by the Lo-
RaWAN protocol.
In this work, we evaluate the compression methods Huff-

man, Arithmetic, LZW, LZ77 and LZ78. All compression
methods are lossless and are classified as statistical-based
(Huffman and Arithmetic) and dictionary-based (LZW,
LZ77, and LZ78).

3.1 Huffman Algorithm

The Huffman algorithm is a probability-based compression
technique. This technique uses the probability of occurrence
of symbols in a data set to form variable-length codewords
with the smallest average length of symbols (McAnlis and
Haecky, 2016).
To use the algorithm, it is necessary to create a table of

probabilities that can be obtained in two ways: statically or
dynamically. The static method uses a fixed probability table
that is known to both the encoder and decoder. One advan-
tage of this method is that the probability table does not have
to be sent with the encoded message. However, one of the
disadvantages is that the table may not represent the data to
be encoded, resulting in a degradation of the compression
rate (Nelson and Gailly, 1996).
In the adaptive method, the frequency distribution of sym-

bols in the message to be compressed is computed. An ad-
vantage of this approach is the possibility of achieving a
better compression rate since it obtains the probability table
from the message. However, the probability table must be in-
cluded in the message to allow decoding. Therefore, despite
the improvement in compression ratio, the encoding time and
computational cost increase (Nelson and Gailly, 1996). For
the algorithm used in this work, we used an adaptive table be-
cause the data format and application have many variations
that could degrade the compression ratio when using a static
table.

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

The classical text compression algorithm uses a probabil-
ity table with a size of 256 (ASCII symbols). However, for
IoT-oriented applications, where the alphabet used in most
applications is smaller than the ASCII table, the algorithm
has been adapted to reduce the size of the table to be transmit-
ted by limiting its size to N symbols, where N is the number
of different symbols in the application’s alphabet.
Another adaptation is to store the number of occurrences

of each symbol in the table instead of the probability, reduc-
ing the size of the table. The elements in the table have a
size of one byte, so the same symbol can occur a maximum
of 255 times. Beyond this value, the symbol has a fixed value
at probability 255. Considering that the maximum payload
in LoRaWAN when using SF7 is 222 bytes, the limit of 255
occurrences does not limit the compression ratio that can be
achieved by the adaptation performed in this work.

3.2 Arithmetic algorithm
Arithmetic coding is another variable-length coding tech-
nique that is particularly suitable for small alphabets and
skewed probabilities (Sayood, 2005). Similar to the Huff-
man algorithm, arithmetic coding also uses the probability
of the source to perform data compression. However, unlike
Huffman, which generates one codeword per symbol, arith-
metic coding can generate one codeword for a sequence of
symbols.
In arithmetic coding, a single sequence of symbols is con-

verted into a number (tag), that requires fewer bits to repre-
sent it. The method of generating the tag works by reducing
the size of the range in which the tag is located when new el-
ements are received for encoding. First, the probabilities of
the symbols are calculated and the unit interval is divided ac-
cording to the value of the cumulative distribution function
(cdf) of each symbol. The tag starts with the constraint on the
unit interval and when a new symbol is received, the proba-
bilities of each symbol are updated. The cdf function is used
to distribute a new range for each symbol proportional to the
probability of the symbol (McAnlis and Haecky, 2016).
The traditional algorithm uses a fixed probability table.

However, similar to the Huffman algorithm, the algorithm
has been adapted to calculate a probability table for eachmes-
sage. The table must therefore be sent together with the com-
pressed message.

3.3 LZ77
Although variable-length encodings such as Huffman and
Arithmetic work well, they are limited by the entropy of
the source, which has driven the search for new ways to
compress data, and other dictionary-based compression tech-
niques have emerged (McAnlis and Haecky, 2016).
In the LZ77 algorithm, the created dictionary is based on

the previously encoded sequence. The encoder works by
examining an input string through a sliding window. This
window consists of a search buffer, which contains the previ-
ously encoded sequence, and a look-ahead buffer, which con-
tains the sequence to be encoded. For each encoded symbol
or set of symbols, the encoder performs encoding according
to the following format [o, l, c], where o is the displacement,

l is the length, and c is the following symbol in the coinci-
dence character string.
To optimize the number of bytes used, the adaptation pro-

posed in this work limits each index of the triple to a size of
1 byte. Given this limitation on the indexes, the values of
the search and look-ahead buffer sizes must be less than 255,
since the highest possible match would result in this value.
Therefore, in the tests, the search buffer size was set to 200
bytes and 54 for the look-ahead buffer in order to avoid over-
flow.

3.4 LZ78

The LZ77 algorithm assumes that similar patterns occur at
positions close to each other and that the search buffer is
able to capture these patterns. However, if the patterns oc-
cur outside the search buffer, the method does not achieve
good compression rates.
To address these limitations, the LZ78 algorithm discards

the search buffer and creates an explicit dictionary. However,
one of the limitations is that this dictionary must be created
in the encoder and the decoder, and they must be identical.
The encoding for this algorithm does not use three terms like
LZ77, but the pair i and c, where i is the index corresponding
to the position in the dictionary with the largest number of
matching symbols, and c is the symbol following the encoded
string, similar to LZ77. If the dictionary does not contain the
symbol, the index value is zero and c is the symbol to be
encoded (Sayood, 2005).
In the classical LZ78 algorithm, there is no limit on the

size of the dictionary. However, this kind of approach is not
practical for IoT applications because it could cause a large
memory requirement for processing and creating the dictio-
nary. Therefore, based on the work of (Sadler andMartonosi,
2006), which proposed a limit on the size of the LZW dictio-
nary, a similar strategy was adopted for LZ78.
As adopted in LZ77 implementation, the values of i and

c were restricted to one byte, limiting the dictionary to 256
indexes.

3.5 LZW

The LZ algorithms have a number of variations, such as the
LZ77 and LZ78 algorithms, but one of the most widely used
is LZW. This was proposed by TerryWelch (Welch, 1984), in
which the second element of the pair (i,c) does not need to be
encoded, so only the index of the dictionary is sent. However,
the dictionary must first be prepared with all symbols of the
source alphabet, both in the encoder and the decoder.
For this implementation, all possible symbols of the appli-

cation’s alphabet were defined as the initial dictionary. Ad-
ditionally, it was assumed that the dictionary has a finite size
so that no new combination can be added to the dictionary as
assumed by (Sadler and Martonosi, 2006). In this work, the
maximum size of the dictionary was limited to 256 indexes
(0-255), so each index of the dictionary could be sent with a
single byte.

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

4 Experimental Results
The results were obtained using two datasets. The first
dataset is the temperature monitoring data of concrete blocks
used in the foundations of large buildings. In this dataset,
there is a strong correlation between the data. The second
dataset was obtained from GPS data collected from an ap-
plication in the smart cities domain (Camargo et al., 2021),
using data with little temporal correlation. The two datasets
have text messages encoded in ASCII.
The temperature messages have a size of 28 bytes with

five fields, the first of which refers to the communication
channel where the data will be stored in the cloud plat-
form, and the other four are the temperatures measured
by the sensors in the concrete block with up to 3 decimal
places. The alphabet used consists of 14 symbols, namely:
[0 1 2 3 4 5 6 7 8 9 . < > &]. For GPS data, the message
has 22 bytes and consists of two fields for latitude and lon-
gitude with 6 decimal places and the alphabet consists of 13
symbols, namely: [0 1 2 3 4 5 6 7 8 9 . , −].

4.1 Scenario 1
In this scenario, a set of 300 messages obtained from the
running devices have a size of 28 bytes (Temperature) and
22 bytes (GPS). The messages were saved in a text file on
the device. In the measurement of the metrics (execution
time, heap used, stack and compression rate), groups of 1 to
39 messages were compressed. For each cluster, 100 com-
pressions were performed with different messages, totalling
3,900 compressed messages.
Through the data collected, it was observed that the LZW

algorithm required a longer compression time for both sets.
According to Figure 1, the compression time difference be-
tween the Huffman algorithm and the LZW considering 39
messages is up to 7 times higher for the temperature data and
8 times higher for GPS data.
Figure 2 shows the compression rate of the algorithms.

The rate tends to an asymptotic value for all algorithms in
the two datasets. For a few messages, the LZ77 and LZ78 al-
gorithms were not able to compress but generated an expan-
sion in the message (negative compression rate) for the two
datasets. In both scenarios, the LZW algorithm obtained the
highest compression rate, reaching 70% (temperature) and
63% (GPS). Figure 2(b) presents some peaks in the compres-
sion rate between 5 and 15 messages for the LZ77 compres-
sion algorithm. As themessages are selected randomly, these
values are obtained in executions where the messages are
similar (for instance, the same position in the GPS), result-
ing in a high compression rate.
Despite the high compression rates, dictionary-based algo-

rithms used a large amount of heap memory since algorithms
such as LZW need to store the dictionary. For 39 messages,
the difference between LZW and Huffman is 300% (Temper-
ature) and 400% (GPS). The use of the stack was practically
identical, close to 6,000 bytes, regardless of algorithm and
the data size.
The consumption of heap memory was linear with the in-

crease in the number of messages and showed a tendency
to stabilize when the algorithms used the maximum sizes of

Table 4. Maximum amount of messages

Max. messages
Algorithm SF Temp. GPS
Huffman 12 3 3

7 16 21
Arithmetic 12 3 3

7 16 21
LZ77 12 NP NP

7 16 13
LZ78 12 NP NP

7 11 13
LZW 12 3 3

7 21 21

their data structures. That is, the Huffman algorithm with
the binary tree containing all the symbols as in the dictionary
and the algorithms based on the dictionary reach the maxi-
mum size of the dictionary.
A correlational analysis between the metrics was per-

formed. It was observed that the time and the heap memory
are correlated for the two sets. The more the device used the
heap memory, the greater the time consumption. However,
the rate of compression and use of heap memory have low
correlation. Thus, a higher compression rate does not imply
greater use of heap memory. Thus, the data that used the
most heap indicated that the correlation between these vari-
ables exists but is noncausal, so that a greater use of heap has
a stronger relationship with the method than with the com-
pression rate.
Despite the average values shown in the figure, the com-

pression algorithms have the indetermination in the compres-
sion rate as a characteristic, which is related to the data that
are being compressed. Thus, Figure 3 illustrates box plots of
the size of the compressed output as a function of the number
of compressed messages for the temperature data. The figure
also shows the maximum payload in bytes of a LoRaWAN
message according to the SF7 and SF12. The horizontal lines
represent the maximum payload limit of the packet for SF12
and 7, with sizes of 51 and 222 bytes, respectively. Given the
values obtained, it is possible to estimate the maximum num-
ber of messages that can be compressed according to the SF,
as shown in Table 4. Some algorithms cannot perform com-
pression within SF12 (LZ77 and LZ78) and therefore have
NP (not possible).

4.2 Scenario 2
In this scenario, as described in the methodology, the data
are no longer taken from a file but from a function saved
in the code. For this function, 21 distinct and consecutive
messages were saved. As already mentioned, the objective
of this experiment is to measure the energy consumed in the
compression and to verify the peak current.
The mean energy value between these experiments is

shown in Figure 4. It can be observed that the LZW algo-
rithm has the highest energy consumption in compression.
LZW consumes five times more than the Arithmetic com-
pression algorithm for one message and five times more than
Huffman for 19 messages.

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

(a) Temperature of the concrete (b) GPS

Figure 1. Compression time (µs).

(a) Temperature of the concrete (b) GPS

Figure 2. Compression Rate.

Figure 3. Variability of the compressed output: concrete temperature - SF12 and SF 7 payloads.

There is an important issue that should be addressed. In
addition to having its time and energy consumption increase
as the messages increase, the Huffman, LZ78 and LZW al-
gorithms increase the current peak considerably during com-
pression.

Figure 5 shows the increase in current amplitude during
compression as the number of messages increases. Compar-
ing the current between 3 and 19 messages for the Huffman,
LZ78 and LZW algorithms, there was an increase of 10%,
7% and 9%, respectively, for the concrete temperature data.

For example, considering Huffman, for three messages, the
average current was 21.68 mA; for 19 messages, the current
was 23.92mA, representing an increase of 10%. For the GPS
data, this increase was 9%, 7% and 9%. Although there is no
considerable increase in current amplitude, the Arithmetic
and LZ77 algorithms have a higher value compared to the
other algorithms.

Figure 5 shows that LZ77 and Arithmetic have almost con-
stant amplitudes. It is worth noting that these two algorithms
have little memory allocation. LZ77 uses many pointer arith-

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

(a) Energy consumption: Temperature (b) Energy consumption: GPS

Figure 4. Compression energy consumption.

Figure 5. Peak current during compression: Concrete temperature.

metic operations, while Arithmetic uses integer operations.
Due to the lowmemory allocation, the two algorithmsmostly
use data stored in static memory, while the other algorithms
use dynamic memory. This fact may justify the higher cur-
rent consumption given the memory hierarchy of the ESP32.

Given the linear characteristic of energy consumption ac-
cording to the number of messages, it is possible to perform
a linear regression using the least squares method to find the
linear equations for each method, that are presented by Equa-
tions 1 and 2. The energy value is given in micro J as a func-
tion of the message quantity in Figure 4.

∣∣∣∣∣∣∣∣∣
ARIT HMET IC

HUF F MAN
LZ77
LZ78
LZW

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
31.19346206 240.4389606
584.6346579 147.8401837

−953.0774479 559.4875384
28.56365175 624.3464559
493.016198 952.1385793

∣∣∣∣∣∣∣∣ ∗
∣∣∣ 1
QT Y

∣∣∣
(1)

∣∣∣∣∣∣∣∣∣
ARIT HMET IC

HUF F MAN
LZ77
LZ78
LZW

∣∣∣∣∣∣∣∣∣
=

∣∣∣∣∣∣∣∣
32.49872122 200.3617035
482.347699 118.9338961

−1001.497977 498.1676272
−36.23078591 577.665713
325.3223286 861.6462055

∣∣∣∣∣∣∣∣ ∗
∣∣∣ 1
QT Y

∣∣∣
(2)

4.3 Scenario 3
This scenario, as described in the methodology, is intended
to analyse the energy impact of data compression. For this
scenario, it was considered that the application sends 21 data
packets, each containing a message of 28 and 22 bytes for the
concrete temperature and GPS respectively. Each data point
is collected at a fixed time interval; for this scenario, two in-
tervals (15 and 60 seconds) were considered. The number of
packets used to send the 21messages is based on the compres-
sion algorithm used. For example, considering the Huffman
algorithm in SF12, it would be necessary to send 7 packets
because the maximum reached in the compression for this SF
is 3 messages; thus, 3x7 totals the 21 messages that would be
sent in normal mode. Table 4 presents the limits of messages
allowed in each packet in a given SF.
Table 5 shows the energy gains using data compression. It

can be observed that it was possible to obtain a reduction of
approximately 22% of energy for the temperature data and
20% for the GPS data. When considering SF12, it is ob-
served that the best results are for cases where there is deep
sleep and a shorter interval time between messages (15 sec-
onds). This behaviour is justifiable because, for this combi-
nation, the impact on the compression gain is greater consid-
ering the overall energy spent. Similarly, the scenario where
the compression had less impact is where the consumption of
the device is greater than the transmission (in a continuous
60 seconds).
Considering SF7, there was no energy gain, since most of

the values remained close to 1%. Compared to the scenario
without compression, this lack of gain is related to the energy
consumption of the device when compared to the transmis-
sion cost when sending messages in SF12. Since the time to

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

Table 5. Energy gain (%)

SF 7 SF12
DEEPSLEEP CONTINUOUS DEEPSLEEP CONTINUOUS

Data Algorithm 15 s 60 s 15 s 60 s 15 s 60 s 15 s 60 s
GPS Arithmetic 1.74% 0.65% 0.92% 0.43% 19.73% 9.69% 10.79% 3.39%

Huffman 1.25% 0.86% 0.91% 0.1% 19.95% 9.66% 10.71% 3.50%
LZ77 2.74% 1.45% 0.65% 0.24% -
LZ78 1.13% 0.35% 0.78% 0.22% -
LZW 2.06% 0.15% 0.81% 0.21% 17.48% 8.37% 9.88% 3.13%
Arithmetic 1.35% 1.54% 0.98% 0.23% 20.58% 11.23% 11.83% 3.61%
Huffman 1.68% 1.46% 1.23% 0.15% 21.51% 11.51% 11.72% 3.54%
LZ77 0.93% 1.28% 1.07% 0.13% -
LZ78 0.41% 1.54% 0.8% 0.23% -
LZW 2.64% 1.29% 0.98% 0.22% 20.1% 11.1% 11.81% 3.64%

send a byte in SF12 is considerably longer than in SF7, it has
a low impact on the gain.
Although there are no significant energy gains in SF7,

there is a gain in network throughput because, in one of the
scenarios, it is possible to send up to 21 messages in a single
packet using the compression algorithm. However, it is im-
portant that systems that use the compression approach are
delay tolerant. That is, it will be necessary to wait for 21
measurements to send the messages in a single LoRaWAN
packet. In this sense, considering an interval of 15 seconds
to send messages, if using LZW, it would be necessary to
wait 315 seconds to send a packet.

5 Energy Consumption Model
To estimate the gain in the energy autonomy of the device
considering the data compression, an analytic model of en-
ergy consumption can be proposed. The device has two dif-
ferent modes of operation: continuous and deep sleep. Thus,
a model for each mode of operation was developed.
The energy consumption of the device in continuous mode

can be estimated considering three items: energy spent in the
transmission of a packet, energy spent in the compression
and energy spent in the idle mode. The energy values spent
by the algorithm were determined in scenario 2 of each case,
and the current value during the execution was close to 50.9
mA; with this, it is possible to calculate the energy spent for
this item. To determine the cost of sending packets, an exper-
iment was performed to send messages from 20 to 200 bytes
in SF12 and 7. Through the experiment, it was observed that
the amount spent transmitting is linear to the number of bytes
sent, as shown in Figure 6. Given its linear behaviour, it is
possible to obtain by first-order linear regression an estimate
of the energy consumption as a function of the bytes sent.
The estimates for the two SFs are presented in Equation 3 in
micro Joule.

∣∣∣∣∣SF 12
SF 7

∣∣∣∣∣ =
∣∣∣391559.4379 19142.09454
14690.21583 866.7934129

∣∣∣ ∗
∣∣∣ 1
Bytes

∣∣∣ (3)

The energy consumption in deep sleep mode can be esti-
mated considering four aspects: energy consumed in deep
sleep, energy consumed when turning on the device, trans-
mission energy and compression energy. This is shown in
Figure 7, displaying the energy curve of the device in deep

Figure 6. Energy consumption curve SF7 and SF12.

sleep. The value in mA during deep sleep is constant, close
to 10.9 mA. Using the equations obtained in each situation,
the energy model used to estimate the lifetime of a device is
represented by Equation 4.

ET otal = EMode(T, n) +
n∑

i=1

EAlgo(sizei) +
n∑

i=1

ESF (sizei) (4)

Emode represents the energy consumption of the device
while waiting for the next transmit window and depends on
the operating mode (DeepSleep or Continuous). The energy
consumption is a function of the sampling time (T) and the
number of messages to be sent (n). Table 6 shows the values
that are used to estimate the useful life gain of the device.
Some values are in power because they depend on the time
(T) that will be used to estimate the energy.

EAlgo represents the energy spent to compress the mes-
sage and depends on the algorithm to be used (Equation 1)
and the message size. ESF represents the energy spent to
send a packet and depends on the SF chosen (Equation 3)
and the size of the message to be sent.

Table 6. Energy metric

Value Unit
Energy to wake up from deep sleep 0.00305 J
Power in deep sleep mode 0.0545 W
Power in normal mode 0.2545 W

To simulate the useful life gain using the models obtained,
the use of a Li-Ion 18650 battery with a capacity of 2,200
mAH was considered. However, the battery supply voltage
is 3.7 V, and it is necessary to use a boost converter to raise

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

Figure 7. Energy curve in deep sleep mode.

Figure 8. Energy consumption curve from SF7 to SF12.

the operating voltage to 5 V. The considered converter has an
efficiency of 93%. Through themodel, it was found that with
compression, the useful life increased by more than 5 days
considering the deep sleep mode and SF12mode, going from
21 days without compression to 26 days.
Considering the models obtained, the gain values of sce-

nario 3 were compared. As a result, a mean difference be-
tween the measurement in the experiment and the analytical
model of 0.7% was obtained. It is worth noting that distor-
tions such as noise and variation of the measured values are
not included in the model, in addition to distortions caused
by the linear approximations of the analytical model.
To analyze the energy gains using compression for the

other SF (8, 9, 10, 11), energy consumption curves were gen-
erated for each SF and applied to the model (Equation 4).
Figure 8 presents the energy consumption curves for all SFs,
and the methodology to obtain the curves for the SF8 to SF11
was the same as described at the beginning of this section to
obtain the curves for the SF7 and SF12. In the analytical
model, for SF 8, 9, 10, and 11, the maximum size allowed
per packet for each SF (Table 2) was used as the limit to de-
termine the number of messages transmitted.
Figures 9 and 10 show the gains for the different transmis-

sion interval scenarios using the different compression algo-
rithms. In Figures 9, and 10 it can be seen that the gains are
less significant for SF (7, 8, 9), but from SF10 the gains are
larger. The reason for this behavior is that the energy cost of
sending the data from SF10 is greater than that of compress-
ing it.
The analytical model revealed that the algorithms that re-

sulted in a higher compression rate obtained the highest en-

ergy gain. The justification for this finding is that the con-
sumption to send a bit is considerably higher than the com-
pression cost. Thus, considering SF12, the algorithms ob-
tained close gains since they mostly sent the same number of
bytes. Considering SF7, the best results were obtained using
Huffman and LZW because they had the best compression
rates.

6 Conclusion

This article presents the results obtained with data compres-
sion applied to LoRa networks. Algorithms based on statis-
tics and dictionaries were used. From the data of real appli-
cations, a reduction in energy consumption and traffic on the
network was obtained. This study also developed an analyti-
cal model for energy consumption when using data compres-
sion.
The LZW algorithm had the highest compression rate in

both scenarios, with values of 69% (temperature) and 63%
(GPS) and an energy reduction of approximately 22%. It was
found that the LZW and LZ78 algorithms used more heap
memory and that this considerably impacts the compression
time and energy consumption of the algorithm. Inmost cases,
the algorithms that used more heap memory had a higher
compression rate. However, the rate and use of memory heap
are not related. According to the analysis of the compression
rate, the compression rate is intrinsically related to the data.
It was also observed that the algorithms based on statis-

tics (Huffman and Arithmetic), have greater stability in the
compression rate than those based on a dictionary, and this
stability becomes greater as the rate increases. In addition,
it was observed that depending on the location of the mem-
ory accessed by the algorithm (static or heap), the size of the
compressed data can lead to a considerable increase in energy
consumption.
As future work, we propose the use of static probabilities

on Huffman and Arithmetic algorithms, to avoid the sending
of the probability table in the message. For the dictionary al-
gorithms, such as LZ77, LZ78 and LZW, a study can be car-
ried out to evaluate the impact of different dictionary sizes
on the compression rate and execution time, and mainly in
the energy consumption due to the increase of memory ac-
cess in bigger dictionaries. Thanks to the compression al-
gorithms, the number of messages in the LoRa network de-
creases. Thus, we also propose to address the scalability and
throughput gain in the LoRa network and the impact in the
goodput, obtained with the compression of the messages us-
ing simulators.

Acknowledgment

This study was financed in part by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES)
- Finance Code 001

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

Figure 9. Energy gains (%) - Temperature

Figure 10. Energy gains (%) - GPS

Declarations

Authors’ Contributions

Javan Ataide de Oliveira Junior: Developed the code; Designed the
Experiments; Executed the experiments; Analysed the results; and
wrote the first draft. Edson Tavares de Camargo: Analysed the data;
Revised themanuscript; Rewrote parts of the text. Marcio Seiji Oya-
mada: Supervised the whole work; Designed the research; Revised
the manuscript; Rewrote parts of the text and Validate the final re-
sults. All authors contributed to the writing of this article, read and
approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Availability of data and materials
Data can be made available upon request.

References
Ahmar, A. U. H., Aras, E., Joosen, W., and Hughes, D.
(2019). Towardsmore scalable and secure lpwan networks

Data Compression in LoRa Networks: A Compromise between Performance and Energy Consumption Junior et. al. 2023

using cryptographic frequency hopping. IEEE Computer
Society. DOI: 10.1109/WD.2019.8734249.

Al-kadhim, H. M., Al-raweshidy, H. S., and Member, S.
(2021). in cloud based iot. 21:12212–12219.

Aras, E., Ramachandran, G. S., Lawrence, P., and Hughes,
D. (2017). Exploring the security vulnerabilities of lora.
Institute of Electrical and Electronics Engineers Inc.. DOI:
10.1109/CYBConf.2017.7985777.

Bor, M., Vidler, J., and Roedig, U. (2016). LoRa for
the Internet of Things. Proceedings of the 2016 In-
ternational Conference on Embedded Wireless Systems
and Networks, pages 361–366. Available at:https://
eprints.lancs.ac.uk/id/eprint/77615/.

Camargo, E. T., Spanhol, F. A., and Castro e Souza, A. R.
(2021). Deployment of a LoRaWAN network and eval-
uation of tracking devices in the context of smart cities.
Journal of Internet Services and Applications, 12(8):1–24.
DOI: 10.1186/s13174-021-00138-7.

Gu, F., Niu, J., Jiang, L., Liu, X., and Atiquzzaman, M.
(2020). Survey of the low power wide area network tech-
nologies. Journal of Network and Computer Applications,
149:102459. DOI: 10.1016/j.jnca.2019.102459.

Hanumanthaiah, A., Gopinath, A., Arun, C., Hariharan,
B., and Murugan, R. (2019). Comparison of Loss-
less Data Compression Techniques in Low-Cost Low-
Power (LCLP) IoT Systems. Proceedings of the
2019 International Symposium on Embedded Compu-
ting and System Design, ISED 2019, pages 63–67. DOI:
10.1109/ISED48680.2019.9096229.

Le, T. L. and Vo, M. H. (2018). Lossless data compres-
sion algorithm to save energy in wireless sensor network.
Proceedings 2018 4th International Conference on Green
Technology and Sustainable Development, GTSD 2018,
pages 597–600. DOI: 10.1109/GTSD.2018.8595614.

Lilygo (2019). Lilygo TTGO LoRa development board.
Available at: http://www.lilygo.cn/.

LoRa Alliance (2021). LoRaWAN Regional Pa-
rameters RP002-1.0.3. Available at: https:
//lora-alliance.org/resource_hub/rp2-1-0-
3-lorawan-regional-parameters/.

Marcelloni, F. and Vecchio, M. (2008). A simple algorithm
for data compression in wireless sensor networks. IEEE
Communications Letters, 12(6):411–413. DOI: 10.1109/L-
COMM.2008.080300.

Maurya, A. K. and Singh, D. (2011). Median predictor based
data compression algorithm for wireless sensor network.
International Journal of Computer Applications, 24. DOI:
10.5120/2961-3940.

McAnlis, C. and Haecky, A. (2016). Understanding Com-
pression: Data Compression for Modern Developers.
O’Reilly Media, Inc., 1st edition. Book.

Mishra, M., Sen Gupta, G., and Gui, X. (2022). Inves-
tigation of energy cost of data compression algorithms
in WSN for IoT applications. Sensors, 22(19). DOI:
10.3390/s22197685.

Nelson, M. and Gailly, J.-L. (1996). The Data Compression
Book (2Nd Ed.). MIS:Press, New York, NY, USA. Avail-
able at: http://www.hti.edu.eg/academic-files/
English/2435.pdf.

Perera, C., Liu, C. H., Jayawardena, S., and Chen, M. (2015).
A Survey on Internet of Things from IndustrialMarket Per-
spective. IEEE Access, 2:1660–1679. DOI: 10.1109/AC-
CESS.2015.2389854.

Sacaleanu, D. I., Popescu, R., Manciu, I. P., and Perişoară,
L. A. (2018). Data compression in wireless sensor nodes
with LoRa. In 2018 10th International Conference on
Electronics, Computers and Artificial Intelligence (ECAI),
pages 1–4. DOI: 10.1109/ECAI.2018.8679003.

Sadler, C. M. and Martonosi, M. (2006). Data compression
algorithms for energy-constrained devices in delay toler-
ant networks. In Proceedings of the 4th International Con-
ference on Embedded Networked Sensor Systems, SenSys
’06, pages 265–278, New York, NY, USA. ACM. DOI:
10.1145/1182807.1182834.

Samie, F., Tsoutsouras, V., Bauer, L., Xydis, S., Soudris, D.,
and Henkel, J. (2017). Computation offloading and re-
source allocation for low-power IoT edge devices. 2016
IEEE 3rd World Forum on Internet of Things, WF-IoT
2016, pages 7–12. DOI: 10.1109/WF-IoT.2016.7845499.

Sayood, K. (2005). Introduction to Data Compression, Third
Edition (Morgan Kaufmann Series in Multimedia Informa-
tion and Systems). Morgan Kaufmann Publishers Inc., San
Francisco, CA, USA. Book.

Semtech Corporation (2015). LoRa Modula-
tion Basics. Available online at: https://
www.frugalprototype.com/wp-content/uploads/
2016/08/an1200.22.pdf.

Semtech Corporation (2019). Understanding
The LoRa Adaptive Data Rate. Available at:
https://lora-developers.semtech.com/library/
tech-papers-and-guides/understanding-adr/.

Semtech Corporation (2023). What are LoRa
and LoRaWAN. Available at: https://lora-
developers.semtech.com/documentation/tech-
papers-and-guides/lora-and-lorawan/.

Sinha, R. S., Wei, Y., and Hwang, S.-H. (2017). A survey
on LPWA technology: LoRa and NB-IoT. ICT Express,
3(1):14–21. DOI: 10.1016/j.icte.2017.03.004.

Statista (2020). Forecast end-user spending on IoT
solutions worldwide from 2017 to 2025. Avail-
able at: https://www.statista.com/statistics/
976313/global-iot-market-size/.

Tasaka, S., Ikari, T., Kaneko, H., Iijima, Y., Yoshino, R., and
Tanaka, M. S. (2019). Study of a bus location system with
LoRa in Nonochi city. 2019 IEEE 8th Global Conference
on Consumer Electronics, GCCE 2019, pages 58–59. DOI:
10.1109/GCCE46687.2019.9015321.

TI (2023). INA219 output current/voltage/power monitor.
Available at: https://www.ti.com/product/INA219.

Vander Byl, A., Neilson, R., and Wilkinson, R. (2009).
An evaluation of compression techniques for wireless
sensor networks. pages 1–6. DOI: 10.1109/AFR-
CON.2009.5308078.

Welch, T. (1984). A technique for high-performance
data compression. Computer, 17(6):8–19. DOI:
10.1109/MC.1984.1659158.

https://ieeexplore.ieee.org/document/8734249
https://ieeexplore.ieee.org/document/7985777
https://eprints.lancs.ac.uk/id/eprint/77615/
https://eprints.lancs.ac.uk/id/eprint/77615/
https://doi.org/10.1186/s13174-021-00138-7
https://ieeexplore.ieee.org/document/9096229
https://ieeexplore.ieee.org/document/8595614
http://www.lilygo.cn/
https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/
https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/
https://lora-alliance.org/resource_hub/rp2-1-0-3-lorawan-regional-parameters/
https://ieeexplore.ieee.org/document/4542766
https://ieeexplore.ieee.org/document/4542766
https://www.ijcaonline.org/volume24/number6/pxc3873942.pdf
https://doi.org/10.3390/s22197685
http://www.hti.edu.eg/academic-files/English/2435.pdf
http://www.hti.edu.eg/academic-files/English/2435.pdf
https://ieeexplore.ieee.org/document/7004894
https://ieeexplore.ieee.org/document/7004894
https://ieeexplore.ieee.org/document/8679003
https://doi.org/10.1145/1182807.1182834
https://ieeexplore.ieee.org/document/7845499
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://www.frugalprototype.com/wp-content/uploads/2016/08/an1200.22.pdf
https://lora-developers.semtech.com/library/tech-papers-and-guides/understanding-adr/
https://lora-developers.semtech.com/library/tech-papers-and-guides/understanding-adr/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://lora-developers.semtech.com/documentation/tech-papers-and-guides/lora-and-lorawan/
https://doi.org/10.1016/j.icte.2017.03.004
https://www.statista.com/statistics/976313/global-iot-market-size/
https://www.statista.com/statistics/976313/global-iot-market-size/
https://ieeexplore.ieee.org/document/9015321
https://www.ti.com/product/INA219
https://ieeexplore.ieee.org/document/5308078
https://ieeexplore.ieee.org/document/5308078
https://ieeexplore.ieee.org/document/1659158

	Introduction
	Background
	LoRa and LoRaWAN
	Related Work

	Methodology and Evaluated Scenarios
	Huffman Algorithm
	Arithmetic algorithm
	LZ77
	LZ78
	LZW

	Experimental Results
	Scenario 1
	Scenario 2
	Scenario 3

	Energy Consumption Model
	Conclusion

