
Journal of Internet Services and Applications, 2023, 14:1, doi: 10.5753/jisa.2023.3075
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Usercentered analysis of a safe bus routing strategy
João Marcos A. M. Ramos [ Universidade Federal de Viçosa  Florestal | joao.m.ramos@ufv.br ]
Vinícius G. J. Almeida [ Universidade Federal de Viçosa  Florestal | vinicius.jesus@ufv.br ]
Henrique S. Santana [ Universidade Federal de Viçosa  Florestal | henrique.s.santana@ufv.br ]
Thais R. M. Braga Silva [ Universidade Federal de Viçosa  Florestal | thais.braga@ufv.br ]
Fabrício A. Silva [ Universidade Federal de Viçosa  Florestal | fabricio.asilva@ufv.br ]

 Universidade Federal de Viçosa  Campus Florestal, Rodovia LMG 818, km 06, s/n, Campus Universitário, Florestal
 MG, 35690000

Received: 23 December 2022 • Accepted: 28 March 2023 • Published: 20 June 2023

Abstract Contextaware mobility has the potential to make the way we travel more efficient, safer, and more sus
tainable. Among the possible contexts, safety, in terms of crime levels in city regions, is one that has been used
to calculate safer routes. Making a bus route safer is important to improve the quality of life of the passengers,
who often are victims of criminals during their journey.However, existing studies focus only on private vehicles
and do not assess the impact for citizens as a whole. In this work, an existing solution for calculating safe routes
is evaluated in the context of public bus transport in terms of the impact caused to passengers. The results showed
that, in general, changing a bus route to make it safer increases the distance traveled by a few kilometers for most
passengers. This small increase in distance is not harmful to the passengers, given that they will be at less risk to
face any kind of criminal situation. In addition to this analysis, a scalable tool for extracting mobility flow was also
developed.
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1 Introduction

Contextaware mobility is a growing research area, aiming to
use data about people and their environment to help improve
theirmovement (Santos et al., 2017). Thus, it is expected that
citizens displacement can becomemore efficient, safer, more
sustainable, and customized. Among those goals, safety has
increasingly become more relevant, and it consists of tracing
mobility routes crossing regions of lower criminality rates,
in order to protect vehicles or people following such routes.
Currently, existingworks that calculate safe routes have fo

cused their efforts on building strategies geared towards pri
vate vehicles. Overall, those solutions involve tracing routes
for a car or motorcycle that needs to travel from an origin to
a destination point. Despite being useful for mobility, those
proposals have not been evaluated for public transportation,
which is responsible for carrying numerous people around
big cities. Therefore, criminality context awareness should
also be integrated with bus routes to benefit their passengers.
To the best of our knowledge, (Almeida et al., 2022) is

the only work found in the literature that aims to build safe
routes for public transportation. The authors use an objec
tive equation to calculate criminality scores for regions of
different shapes. The solution was implemented for the bus
routes of the São Paulo city in Brazil, changing the paths
through which buses move between stops to make them safer.
However, that study only evaluated its impact in terms of the
routes themselves, overlooking the passengers perspective –
the users who are in fact affected by the route changes.
As such, the purpose of the present work is to conduct a

usercentered assessment of (Almeida et al., 2022).
The objective of this evaluation is to determine whether

the solution to find safer routes would affect a considerable
number of people in a real scenario, and whether the changes
made would positively or negatively affect the largest por
tion of the population. Our hypothesis is that it is possible to
find safer routes to keep passengers less vulnerable to crimi
nal situations while not increasing the length of the route sig
nificantly. We evaluated the impact on passengers after the
proposed changes to make bus routes safer, taking as input
a real dataset composed of more than 300,000 mobile users.
Results show that, in general, changes in paths affected neg
atively only a small portion of citizens, which would have to
travel for up to one extra kilometer to get to their destination.
In order to achieve the intended results, a mobility flow

matrix of thousands of users was calculated, then mapped to
bus route segments. Since we are dealing with large amounts
of data, a scalable tool for flow extraction was implemented,
which managed to reduce processing time up to seven times
when compared to an already existing equivalent tool. This
largescale flow extraction tool is also an important contribu
tion of our work.
This work is an extension of our previous study published

in Portuguese at the Brazilian Symposium on Ubiquitous and
Pervasive Computing (SBCUP 2022). In this version, we in
cluded new content regarding the related works, the formal
description of the solution, and the data description and char
acterization. Also, we included new metrics in the results, as
well as a more detailed discussion on them. With the new
results, it was possible to observe that the changes proposed
to the bus routes in order to make them safer affect only a
few people and that this impact is not significant. Therefore,
the adoption of a contextaware solution to make the routes
of public transportation safer may be a good opportunity to
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improve the citizens quality of life.
The remainder of the text is organized as follows: Sec

tion 2 presents relatedworks found in the literature. Section 3
describes the implementation of a tool for mobility flow ex
traction. The safe bus routing strategy proposed by Almeida
et al. (2022) is combined with a usercentered analysis to
show the relevance of creating safer routes to avoid or reduce
passenger exposure at bus stops and criminally dangerous re
gions, since these end up being the places with the greatest
risks to their integrity. The details and results of these im
plementations are presented in Sections 4 and 5. Finally, in
Section 6, conclusions and future directions are given.

2 Background and related work
The baselines for this work can be divided in two categories,
according to their contributions: safe route analysis and flow
extraction.
Regarding safe route analysis, there are different ap

proaches in the literature to handle this problem. In (Liu
et al., 2017), SafeRNet is presented as a framework based
on Bayesian networks to create safety probability estimation.
Criteria are added to the network, such as vehicle flow, road
conditions, weather, and traffic collisions, in order to provide
route variations and lower the number of accidents to private
vehicles. Similarly, Mata et al. (2016) present a Bayesian
networks framework for private vehicles used to build safe
routes from a hybrid recommendation system, consuming
data from official criminal records and from Twitter. The
work allows observing the impacts caused by the use of time
windows, in addition to the improvements in route safety and
adaptation to schedules caused by them. SafePaths (Galbrun
et al., 2016) is another route recommendation system, which
uses the Gaussian Kernel Density Estimation (KDE) cluster
ing approach. Chicago and Philadelphia are the cities used
as input, and the strategy to build routes is made on small
regions, such as neighborhoods and streets, allowing to esti
mate the relative criminal probability on any road segment.
The authors state their solution is robust in terms of execution
time and update of new criminal records.
In (Ladeira et al., 2019), one more safe route identification

solutionwas proposed for private vehicles, using the Density
Based Spatial Clustering of Applications with Noise (DB
SCAN), well known for its good results even in the presence
of noise and diverse cluster shapes and sizes (Santos et al.,
2018). This solution is combined with a probability density
function called Parzen Window. Unfortunately, there is no
published study written in English that contemplates the use
of the Parzen Window function. Results show a significant
drop in the number of clusters through which vehicles should
go, after opting for safer routes instead of shorter ones.
Lastly, Hot Routes (Tompson et al., 2009) is a solution fo

cused on public transport – more specifically, buses –, whose
goal is to identify unsafe regions in the city of London, based
on criminal data and a KDE clustering technique. The result
ing information is presented on a map as bus stops and route
segments. However, improvements regarding stop locations
are not shown, nor safer route solutions are proposed.
Table 1 presents a summary of the described related works,

highlighting the type of vehicles targeted by their solutions,
the implemented algorithms, the usage of temporal windows,
and their application context. Among all the presented solu
tions, (Almeida et al., 2022)  the base of this study  is the
only work that focuses on calculating safer routes for buses.
The city of São Paulo has been the subject of other stud

ies about its population mobility. There are works such
as (MorenoMonroy et al., 2017), in which an analysis is
conducted using public transport data from the city and its
metropolitan area, in order to evaluate how accessible are
the schools of São Paulo. The authors describe a metric con
sisting of the spatial distribution of students, the school lo
cations, and the public transport vehicles that serve the in
fluence area of schools. Martins et al. (2021) also use data
from the metropolitan area of São Paulo, due to its intense
traffic, to create a trajectory visualization solution with Trail
Bundling, a technique to group trajectories next to each other
in a simplified representation, differing from the concept of
mobility flow in the way trajectories are grouped.
The other main concept dealt with in the present work is

the origindestination (OD) matrices, used during the mobil
ity flow calculation step. The definitions of OD matrices
are presented in works such as (Barbosa et al., 2018), which
gives an overview of multiple approaches to studying human
mobility. In (Iqbal et al., 2014), origindestination matrices
are created from Call Detail Records (CDR) and limited traf
fic counts.
Regarding the mobility flow calculation, the authors

of (Guo et al., 2012) deal with the spatial grouping ofmassive
amounts of GPS points to identify potentially significant lo
cations, and extract andmap aggregated flowmetrics. Those,
in turn, are used to understand the spatial distribution and
temporal tendency of movements. As for (Kon et al., 2021),
the authors describe the use ofmobility flow to analyzemove
ment patterns in a bikesharing system, employing a method
capable of processing millions of trips.
There are some known tools and libraries to work with mo

bility data. We can highlight MovingPandas (Graser, 2019),
which deals with individual trajectory data but lacks aggre
gated metrics for flow extraction. On the other hand, there
is also ScikitMobility (Pappalardo et al., 2021), providing
methods to handle both trajectory and flow data. However,
neither of those libraries performwell for big volumes of data
since the entirety of datasets must be loaded into memory at
once, and they lack support for parallel or distributed com
putation. This problem is addressed in the proposed flow
extraction tool developed in this work.

3 A tool for mobility flow extraction
In the area of trajectory data analysis, an important task is to
extract mobility flow, which consists of counting the num
ber of collective movements between regions to determine
areas of intense traffic. This metric is interesting for both
private and public applications, helping with urban planning,
advertisement, recommendation systems, and environmental
impact studies, among others (Iqbal et al., 2014; Guo et al.,
2012).
In this work, we use mobility flow to evaluate which bus
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Table 1. Characteristics of stateoftheart solutions.

Target Algorithm Temporal window Context
Baseline
(Almeida et al., 2022) Buses DBSCAN and

Parzen Window Yes Criminal

(Ladeira et al., 2019) Private
vehicles

DBSCAN and
Parzen Window Yes Criminal

(Santos et al., 2018) Private
vehicles

DBSCAN and
Google Maps Yes Criminal

SafeRNet
(Liu et al., 2017)

Private
vehicles Bayesian Networks Yes Traffic

(accidents)

(Mata et al., 2016) Private
vehicles Bayesian Networks Yes Criminal

SafePaths
(Galbrun et al., 2016)

Private
vehicles KDE No Criminal

Hot Routes
(Tompson et al., 2009) Buses KDE No Criminal

routes segments – as defined in Section 4.2 – are most used
by citizens, and consequently how many people are affected
by each route relocation. Given the need for largescale flow
extraction, we have developed a tool to tackle this problem,
whose design is summarized in Figure 1 and detailed in the
following sections.

Figure 1. Summary of designed steps on the mobility flow calculation tool.

3.1 Design
First, the Apache Spark (Zaharia et al., 2012) framework,
alongside the Apache Sedona (Yu et al., 2019) library, were
used as the tool backend in order to benefit from its compu
tational efficiency and parallelism. We also opted for imple
menting it with the Scala programming language for perfor
mance gains.
We define three main steps for the scope of our tool: data

input, preprocessing, and mobility flow calculation. Each of

those steps has a particular input and output tabular format, in
which each data record is a row and features are represented
as columns.
In the first step, each data entry consists of instanta

neous temporal information associated with a specific point
in space. Thus, each row pi can be defined as a tuple
(ui, ϕi, λi, ti), where ui is a user identifier, ϕi and λi are re
spectively the latitude and longitude, and ti is a timestamp.
However, this instantaneous point representation does not

convey the meaning of endtoend movements, because mul
tiple entries can be recorded as an object moves. Conse
quently, these points must be transformed during the prepro
cessing step into stay points (Fig. 2a) through the algorithm
presented in (Montoliu et al., 2011), which was implemented
in our solution. This algorithm uses three parameters to filter
out points detected as intermediates in a movement, and ag
gregates nearby points into one. One parameter determines
the maximum distance points can be far from each other to
be considered in the same stay point. Also, there are two
timerelated parameters to establish a minimum and maxi
mum permanence time for each stay point. By doing so,
each data record spi, i.e., each stay point, is defined as a tu
ple (ui, ϕi, λi, tsi, tei), where ui, ϕi and λi have the same
meaning as the previous format, and tsi and tei respectively
represent the start and end timestamps for the permanence of
that user on the indicated point.
Nonetheless, it is not useful to represent moves as stay

points to calculate flow, because we aim for an aggregated
view of movements, to count the number of moves between
regions. In this sense, the notion of tessellations is conve
nient: a division of space into regions, usually expressed as a
set of polygons. Still during the preprocessing step, we used
the Apache Sedona library to implement a method to find in
which polygon of a tessellation each geographical point is
located, so that its exact coordinates can be labeled by the
identifier of that polygon. Therefore, each data record sti is
then defined by a tuple (ui, θi, tsi, tei), where ui, tsi and tei

have the same meaning as in the previous format, and θi is a
unique identifier for the polygon that contains the respective
ϕi and λi coordinates from spi.
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For this work, we used as tessellation the polygons of cen
sus sectors provided by the Brazilian Institute of Geography
and Statistics (IBGE). Figure 2b shows the polygons associ
ated with the points from the previous image.
To finish the preprocessing step, data is finally converted

into a more explicit representation for movements, in which
each row mi is defined as a tuple (ui, θoi, θdi, to, td), where
ui is a user identifier, to is a timestamp indicating when that
user departed from their origin region θoi, and td is a times
tamp indicating when the user arrived at their destination re
gion θdi. We assume there is a move from two regions when
there are consecutive stay points for the same user between
those regions. That is, given two consecutive stay points spk

and spk+1 that belong to the same user, a movement record
mk is constructed as (uk, θk, θk+1, tek, tsk+1). Figure 2c
shows the same points of previous images, but with each
curve representing a move, with the origin colored in red,
and the destination colored in blue.

[a] Stay points representation

[b] Tessellation tiles

[c] Move representation.

Figure 2. Example of data representation in the preprocessing step.

On the last step inside the scope of the tool, mobility flow
is finally calculated. Mobility flow can be defined as the
number of moves that occurred between pairs of origin and
destination regions during a given time interval, consider
ing both outflow and inflow. Outflow refers to the move
ments going outwards from a region and inflow refers to the
ones going towards a region. Formally, given a time inter

val [T0, Tf ] and a set of move records M = {m1, ..., mk},
outflow for a pair of regions θA and θB is defined as
fAB,out = |{(ui, θoi, θdi, to, td)|θoi = θA, θdi = θB , T0 ≤
to ≤ Tf }|. Similarly, inflow in defined as fAB,in =
|{(ui, θoi, θdi, to, td)|θoi = θA, θdi = θB , T0 ≤ td ≤ Tf }|.
Note that the only variable that changes in those two defini
tions is which timestamp is considered: either the departure
or the arrival time. Thus, if only a single time interval is used,
comprising the whole dataset, both outflow, and inflow will
be the same value. For simplicity sake, we used a single time
interval in this work, and so outflow and inflow are referred
to as simply flow – denoted by fAB = fAB,out = fAB,in for
a pair of regions θA and θB .
Flow is usually expressed as an origindestination (OD)

matrix, mathematically defined as F = (fij)1≤i≤n,1≤j≤n,
where n is the number of unique regions in the dataset. In our
implemented solution, after associating stay points to iden
tifiers of their corresponding regions, flow is calculated by
using these identifiers as aggregation keys, and counting the
number of records. So, the OD matrix is implemented in a
tabular format, where each row is a tuple (θA, θB , fAB).

3.2 Performance analysis
To assess the efficiency of the implemented flow extraction
tool, we compared its execution time against the already
known ScikitMobility library. The objective here is to mea
sure how efficient, in terms of computational time, the pro
posed tool is to extract mobility flow from large datasets
when compared to ScikitMobility. It is important to state
that this tool can be used in different problems that require
mobility flow and is not responsible for route calculation.
Considering the stay point detection algorithm used by Scikit
Mobility is not the same as the one we implemented and
could thus lead to different outputs, the scope of this perfor
mance analysis only takes into account the process of using
a tessellation to associate points to region identifiers, and the
aggregation step to calculate the flow matrix itself, in order
to provide a fair comparison.
Every test instance was run on a single computer, with

the following specifications: 2 Intel Xeon CPUX5650 (12M
Cache, 2.66 GHz, 6.40 GT/s Intel QPI, 6 cores, 12 threads)
processors, 24 GB DDR3 1333 MHz RAM and 512 GB of
storage. Each was run 33 times to avoid disparities in execu
tion time due to uncontrolled factors such as other processes
running on the same machine.
The input dataset chosen for the performance analysis was

offered by a partner company, and is different from the one
used on the bus route study, consisting of 8.5 million records,
with around 49 thousand unique users. Each data record was
collected through apps installed on users mobile phones, cap
turing geographic coordinates with timestamps.
As our implementation uses the parallelism leveraged by

Apache Spark, we tested it using different numbers of exe
cution threads, varying from 1 to 16. Table 2 shows the re
sult of the comparative evaluation, with ”skmob” referring
to ScikitMobility and ”original” to our own tool. While
ScikitMobility took around 15 minutes on average to per
form the mobility flow calculation, our tool completed the
task in about 2 minutes with 8 or 16 threads. This shows the
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Table 2. Execution time for flow extraction.

Execution time (minutes)
Solution Threads Min. Avg. Max. StdDev.
skmob  15.1 15.2 15.3 0.04
original 1 7.6 7.6 7.8 0.05
original 2 4.0 4.7 5.3 0.45
original 4 2.2 2.7 3.1 0.19
original 8 1.6 1.9 2.2 0.21
original 16 1.5 1.9 2.3 0.21

efficiency of our implementation and how parallelism can
outperform traditional methods.

4 UserCentered Analysis of Safe Bus
Routes

This section presents the usercentered assessment of the im
pact of using a safe route solution, more specifically the work
of Almeida et al. (2022), on the movement of bus users. So
far, existing solutions focus on evaluating the route itself,
without concern about how changes in routes affect passen
gers. For the usercentered analysis conducted here, real data
from thousands of users was used to extract mobility flow,
and the impact on them was revealed.

4.1 Contextualization
A city, in general, has several distinct bus lines, each of
which is responsible for covering certain metropolitan re
gions. Each line has a number of bus stops, which are manda
tory and sequential places where the bus of that line must
pass through to board and disembark passengers. Between
two bus stops, a bus can follow different routes, such as the
shortest, the safest, or the fastest. In addition to the bus stops,
each street corner through which a bus needs to pass is also
considered a vertex of the city road network built and used
in this work.
Traditionally, between two bus stops, the bus tends to take

the shortest route, that is, considering the limitations of city
roads, the one that travels the shortest distance between its
origin and destination bus stops, i.e., bus stops in sequence.
However, the shortest route is not necessarily safe, that is,
one that avoids areas with high crime rates. In this con
text, the citizen is often exposed to violence both inside vehi
cles and at the bus stops. Therefore, an alternative approach
would be to use safe routes, which avoid criminal areas as
much as possible.

4.2 Construction of Safe Routes
The work of Almeida et al. (2022) has a flexible scheme to
find criminal regions, as well as a function capable of sum
marizing criminal data to calculate the safety score of a route.
After identifying criminal regions, the considered safe routes
solution also tries to merge the location of certain bus stops
that are in highly dangerous areas, with others that are close
to them but at less dangerous places. A bus stop is only
merged with another if they are within a viable distance from

each other. The use of an already existing bus stop avoids in
vestment in infrastructure for the bus stops – e.g., coverage,
monitoring panels, etc.
When changing the route of a given bus line, or relocat

ing one of its bus stops, passengers may be affected by the
distance to be traveled, since the safest route is not always
the shortest one. If we calculate the difference in length
between the safest and the shortest routes, considering the
complete bus line – i.e., from its first to its last bus stop –,
we find the impact of the safe route solution on the line as a
whole. But this does not necessarily reflect on the impact per
ceived by the passengers themselves, as each of them has dif
ferent boarding and disembarking points, which rarely coin
cide with the starting and ending points of the lines. In other
words, a given line may have sections with more passengers
boarding and disembarking. Therefore, certain segments of
the route are more relevant to the population than others, and
so mobility flow is used to identify these segments, as de
scribed in Section 4.3.
In order to create safetybased route options, the first step

is to define the criteria for identifying unsafe regions. For
this, after preparing the criminal datasets used and leaving
them with only the useful attributes in the process, such as
the crime heading, date, time, latitude, and longitude, it is
already possible to build clusters through the geolocation
of the registers. To generate these clusters across the city,
the DensityBased Spatial Clustering of Applications with
Noise (DBSCAN) algorithm was used. It has two parame
ters: ε = 100m (maximum radius between neighbors) and
υ = 36 (minimum number of neighbors for a cluster to be
valid). These values vary according to the dataset used and
the size of the city. After carrying out numerous empirical
combinations, these were the ones that were most consistent
with our model and scenario, in the city of São Paulo.

In this way, after modeling and defining the safety criteria,
it is possible to define the strategy for identifying and classi
fying safe routes and combine it with criminal information.
Almeida et al. (2022) present in their work formal definitions
for the correct understanding of important concepts. For this
work, only a summarized overview will be presented.
Definitions: In the public transportation data used, the N
available bus lines are represented by an ordered list of bus
stops. Therefore, originally there are no routes that connect
such bus stops. The routes are the paths that connect all pairs
of bus stops of a bus line. The journeys between two pairs
of adjacent bus stops are called route segments. For a sin
gle bus line, there may be different types of routes, such as:
shortest, safest, and least safe, each of them having different
route segments in their construction.
Equation 1, first defined in (Babu and Viswanath, 2008)

was used byAlmeida et al. (2022) to calculate the safety level
of the created routes. This equation, called Parzen Window,
is a nonparametric way to estimate the probability density
function of a random variable.
The term route segment is important because Equation 1

is applied over each route segment constructed between pairs
of bus stops. As a result, each segment receives a score
k, which, when added to the complete route, returns a total
value of K. This total value represents the safety index of
the route, so the lower it is, the safer the route can be con
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sidered. In this way, it is possible to classify among all the
routes created for each bus line which ones are the safest and
the least safe.
In Equation 1, m represents the number of street corners

between the begin and ending of a segment, σ is the standard
deviation of the number of crimes per cluster, xa represents
the distance of each vertex to the center of the nearest cluster,
and x represents the distance from the edge of the closest
cluster to its center.

k(pi,pj) = 1
m

m∑
a=1

1√
2πσ

exp

(
−xa − x

2σ2

)
(1)

To complement the understanding of the Equation 1, Fig
ure 3 shows how each stage of the route is related to the
nearest criminal cluster. Therefore, the points in blue rep
resent the street corners of the route, and the arrows, the city
streets. The polygon highlighted in light red is used to repre
sent a criminal cluster. Finally, the red dot indicates where
the center of the cluster is located. From this, two distances
are calculated, A and B. A represents the distance of the an
alyzed vertex in relation to the nearest cluster center, and B
represents the distance from the nearest edge of the analyzed
vertex to the center of the criminal cluster. In Equation 1,
A is equivalent to xa and B is equivalent to x. However, in
practice, the formed clusters do not have the regular format
illustrated in Figure 3, so it is necessary to identify the closest
edge to characterize the proximity to the center of the cluster,
as done by Ladeira et al. (2019).

Figure 3. Example of applying the equation to a route section.

With this equation, it is now possible to execute the afore
mentioned method and obtain the safest routes. This is done
by applying it iteratively to each street corner of the route
and summing the partial results in the K variable, which in
the end represents the route safety index. The safest route is
the one with the lowest K. As a comparison parameter, the
shortest route of each bus line was generated to serve as a ref
erence, representing the way buses currently travel, since the
exact route of the lines is not available in the datasets. Thus,
at the end of this part, we have the shortest and safest route
between pairs of consecutive bus stops of all lines.
However, according to Almeida et al. (2022), this solution

alone did not prove to be fully efficient in terms of safety,
and there may be cases in which changing the route between
two bus stops does not make much difference, since the main
problem is at the bus stop located inside a criminal region.
Thus, in addition to changing the route, Almeida et al. (2022)

added a strategy to solve this problem, proposing the reloca
tion of bus stops as an alternative to increasing route safety.
This strategy adopted the following criteria: a bus stop can

only be relocated if it is inside a criminal cluster and there
is another bus stop outside the cluster, but within a radius
of 250 meters. If this condition is met, it is also verified if
there is a route (round trip) between the current bus stop and
the candidate one. If such route exists and its length is less
than or equal to 1000meters, this candidate bus stop becomes
valid and able to replace the current one. In Figure 4, it is
possible to see how this process occurs. It can be seen in 4(a)
that even if the algorithm searches for safer routes, the fact
that the bus stop (blue marker) is located inside the cluster
means that the route has to go through it, reducing safety and
exposing the passenger to a greater risk. In 4(b), it is possible
to work around the problem since there is a candidate bus
stop (blue marker) that satisfies the required conditions. In
this way, it is noticed that when relocating the bus stop to a
region outside the cluster, the constructed route avoids the
cluster as a whole, increasing its safety.

(a) Original bus stop within a
criminal cluster.

(b) Bus stop relocated to a safe
region

Figure 4. Example of a bus stop replaced by a valid candidate.

It is important to state that other strategies can be used
to select safer routes, such as spatial operations. Still, it is
necessary to formulate how to compute how safe a route is.
The use of Equation 1 is a good alternative that was proven
efficient by Ladeira et al. (2019). In addition, the possibility
to change a bus stop from one place to another is a novelty
that also contributes to making the routes even safer.
Thus, given these alternatives for building safe routes, us

ing clustering and relocation, different possibilities and com
binations of routes can be created. Two of these scenarios,
presented in Table 3, were created and implemented to ana
lyze the case studies and generated results. Essentially, Sce
nario 1 represents the current model for public transport and
Scenario 2 is the solution of Almeida et al. (2022), with all
the safety issues mentioned. These scenarios will be used to
reference the results later.

Table 3. Implemented scenarios.

Scenario Displacement Type Uses Relocation?
1 Shortest Route No
2 Safest Route Yes
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4.3 Flow and line segments
As described in Section 3, after completely processing in
put data with the implemented tool, a flow matrix is calcu
lated and each of its cells can be identified by an origin and
a destination census sector. The next step consists of search
ing a bus line segment that connects each of those origin
destination pairs.
Each bus line b has an identifier idb and an ordered list of

bus stops bs1, ..., bsn. Each bus stop has a geographical loca
tion, throughwhich it is possible to associate a corresponding
census sector, thus transforming the list of bus stops into a
list of sectors s1, ..., sn where the bus line b travels through.
For each occurrence of two distinct census sectors si and

sj in the bus stops of a line b, if i < j, i.e., if si is present on
the list before sj , this line b is marked as usable for traveling
from si to sj . Also, we keep track of how many bus stops
have to be crossed for this travel.
Performing this calculation for every pair of origin

destination sectors extracted from mobility flow, it is possi
ble to choose the bus line with the least amount of intermedi
ate bus stops. Movements from and to the same sector were
discarded as either data collection noise or too short to use
public transportation.
For each line segment selected in the previous step, the

shortest and the safest route were built. These two types
of routes were compared in terms of total distance traveled,
number of changed vertices (i.e., street corners of stops), and
number of impacted people.

5 Results
In this section, we present the results with the objective of
assessing how changing routes to make them safer affects
the passengers. We consider the two scenarios from Table 3,
where Scenario 1 considers the original route, which is as
sumed to be the shortest one, while Scenario 2 considers the
safest route selected by the process described in Section 4.2.
Before presenting the results obtained by applying the

steps detailed in Section 4, we describe the data used.

5.1 The Data
5.1.1 Bus Routes and Crime

For the bus routes, an open dataset from the Interscity1 plat
form was used. It is composed of 2,089 eligible bus lines
in the city of São Paulo/SP, with an average of 43 stops per
line, a minimum of 5 and a maximum of 132, in addition to
a median of 40 stops.
For the construction of the clustering model of the crim

inal areas, an open dataset, available on the Data World2
platform, was also used. This has approximately 945,000
criminal records in the city of São Paulo during the year
2014. However, the crimes with no geolocated information
were removed, resulting in 732,000 crimes. Finally, a crime
heading filter was applied to select crimes more consistent

1https://interscity.org/open_data/
2https://data.world/maszanchi/boletins-de-ocorrencia-

sp-2014

with the public transportation scenario. Of these, only items
such as theft, simple homicide, stealing, and drug traffic were
maintained. In this way, the final dataset kept approximately
522,000 crimes. With the criminal data filtered and cleaned,
it was possible to apply the clustering techniques. Table 4
presents some information on the resulting clusters. A vi
sual example of how a criminal cluster is represented in the
city graph can be seen as the red area in Figure 4.

Table 4. Cluster statistics were created for filtered crimes.

Clusters Formed by all crimes
filtered

Amount 2,030
Average Area (m²) 54,397.47
Average crimes 103.48

Standard deviation of crimes 164.90

The main results obtained in Almeida et al. (2022), which
evaluates the entire lines, are presented in the following as
part of data characterization.
An important factor when proposing improvements to an

existing route solution is the distance that will be added to
the route to obtain safer routes. In Figure 5 it is possible
to observe the distribution of distances. On average, there
are 20,076.69 meters for scenario 1 and 22,399.46 meters for
scenario 2. In percentage terms, it represents approximately
only a 12% increase.

Figure 5. Total length between bus routes for both scenarios.

Regarding the benefits obtained with this addition, it is
clear that with the strategy used, buses need to travel less in
unsafe regions, reducing the number of vertices (street cor
ners) of the route on which the bus travels, located in crim
inal regions, from 27.93% (scenario 1) to 22.01% (scenario
2). This difference can be seen in Figure 6.

Figure 6. Percentage of route vertices located within criminal clusters.

https://interscity.org/open_data/
https://data.world/maszanchi/boletins-de-ocorrencia-sp-2014
https://data.world/maszanchi/boletins-de-ocorrencia-sp-2014
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In addition to this result, it is also important to evaluate
only the bus stops located within criminal clusters. With the
original solution (scenario 1), on average, 25.46% of the bus
stops of a route were located within a criminal cluster. With
the solution presented, this number dropped to 8.12%, sig
nificantly reducing the exposure of passengers waiting for
their bus in a criminal area. In practical terms, it represents
an average of 7.4 bus stops of a line removed from criminal
clusters. Considering that the average number of bus stops
is 43, this represents approximately 17% of the entire route.

Figure 7. Percentage of bus stops located within criminal clusters.

5.1.2 Displacements

For a usercentered analysis, real geolocation data were pro
vided by a private company under a confidentiality agree
ment. Data from 356,725 users were made available, gen
erating a total of 11,351,545 records over 6 months of 2021.
Most users contain around 200 records, which is a reasonable
amount to extract knowledge.
Mobility flow was extracted from these data points, re

sulting in 51,240 unique pairs of regions. The average flow
among those pairs is 3.68 movements, the highest value is
292, and the lowest value is 1.
The three most important sectors, through which a larger

number of people move, are in the central region of the city,
as shown in Figure 8. In addition, two other import sec
tors are located far from the central region, as shown in Fig
ure 9, which correspond to a region where the Neo Química
Arena stadium is located, together with the Shopping/Metrô
Itaquera, two points of great interest in the city.

Figure 8. Sectors located in the central region

Figure 9. Sectors located further away

5.2 Traveled Distance andNumber of Vertices
The distance traveled measures the length of the segment be
tween the origin and destination points of the flow matrix,
and not the route as a whole. In other words, it is the dis
tance traveled by the passengers on their journey. We also
calculate the extra distance traveled, which is given by sub
tracting the size of the safest route from the size of the short
est one, the former being always greater than or equal to the
latter. The number of vertices, on the other hand, consists of
the number of stopping points and corners that constitute the
route of that specific bus line segment.

Figure 10. Distribution of the distance of the segments

We can observe the distance of the sections in Figure 10.
In this figure, the outliers have been removed for better visu
alization. As expected, the safest routes are longer than the
shortest ones, with the median of the shortest routes being
below 5km, while close to 5km for the safest ones. How
ever, if we look at the extra distance traveled, we see that
most of the increases occur in the 1km range. That is, most
segments have an increase of a maximum of 1km when the
route becomes safer, with little impact on users.

Figure 11. Size of segments and the total number of vertices.

Regarding the total number of vertices, Figure 11 shows
that the increase in vertices is not as significant as the dis
tance. Thus, the impact for users on the path in terms of the
number of corners is practically none.

5.3 Changes in Vertices and Bus Stops
When making a route safer, either by changing the path or by
relocating its bus stops, the number of vertices (i.e., corners),
as well as bus stops, may change. To measure the impact of
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Table 5. Same and different vertices or bus stops.

Measures Different Vertices Different Bus Stops Same Vertices Same Bus Stops
Mean 15.49 3.76 45.75 6.39
Minimum 0.00 0.00 0.00 0.00
Maximum 547.00 83.00 493.00 90.00
1o quartile 0.00 0.00 1.00 0.00
Median 4.00 0.00 24.00 1.00
3o quartile 13.00 2.00 66.00 9.00
Standard
Deviation

35.72 8.65 59.51 10.45

such changes, the number of stops and vertices of the shortest
and the safest routes for each segment was compared, as can
be seen in Table 5.
It can be observed that, on average, few vertices are

changed between the shortest route and the safest one, and
the great part is maintained or presents little modification.
We can also observe that, in certain segments, there is no
change at all, since the shortest route is already the safest.
For 75% and 50% of the segments, the change of vertices is
at most 13 and 4, respectively. Regarding the bus stops, we
see that 75% of the segments have a maximum of 2 changed
bus stops, that is, it maintains the integrity of the original
route, not significantly affecting passengers.

5.4 Number of Affected Users
To understand the number of people impacted by the changes
in routes, we check the mobility flow matrix, since each
record indicates the aggregation of individual trips.

Figure 12. Maximum extra distance traveled by the number of people.

Figure 12 shows the extra distance traveled per segment re
garding the number of people on it. It can be noticed that the
segments with greater extra distance affect a small number
of people, while most users experience little impact. In fact,
74.58% of users were affected in less than 1km and 86.16%
in less than 2km. It is worth noting that this figure includes all
segments and that some of them were greatly affected when
the safer route is used, traveling up to extra 2km. However,
they represent a minimal number of segments and affected

users.

Figure 13. Number of different vertices by the number of people.

Figure 13 shows the result of the analysis regarding the
number of different vertices in the segment by the number of
people. Once again, the segments with the highest number of
people were the least altered routes, while the routes where
there are significant differences are those with the least num
ber of people. As can be seen, only a small part (around 13%)
of the passengers travel through segments with more than 25
changes in the number of vertices.

Figure 14. Number of relocated bus stops by the number of people.

Finally, in Figure 14 we can observe the number of people
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who were affected by the relocations, and the number of bus
stops that were relocated in the segment. It can be seen that
most of the significant changes affect a small portion of the
passengers, while the least impact changes are those that af
fect the most relevant displacements. In fact, 79.89% of the
passengers had their routes with one or zero changes in the
bus stops, while 94.98% of them had their routes affected by
less than 6 changes in the bus stops.

6 Conclusion and Future Work
This work presented a usercentered analysis of the applica
tion of a safe route solution for public bus transport in the
city of São Paulo/Brazil. The solution used was proposed
by Almeida et al. (2022) and has only been evaluated un
der transportation metrics, such as integral line length and
number of replaced stops. In this work, we went further and
evaluated how passengers are affected by route changes by
considering real data from thousands of users.
It has been shown that changing a bus route to make it

safer increases its length. However, the impact on the pas
sengers themselves is not significant, and most of the route
segments have their length increased in less than 1 km. If we
consider the benefits of having a safer route, this distance is
acceptable.
For this analysis to be carried out, a tool was developed

to extract flow from large volumes of mobility data. This
tool was able to reduce the processing time from the 15 min
utes required by Scikitmobility, a solution from the litera
ture, to 2 minutes when 8 parallel processes are used. This
tool, which can be used in other scenarios, is also a contribu
tion of this work.
Regarding future works, we can list the need to expand the

implemented tool with new functionalities related to the ex
traction of mobility flow or to facilitate the calculation with
new metrics. It is also expected more case studies to be car
ried out, taking into account other cities.
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