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AbstractThis paper presents a study on the performance ofMachine Learning techniques for the task of determining
each of the electronics systems connected within the same electrical network, in the Internet of Smart Grid Things
(IoSGT) architecture. This is regarded as an ecosystem which has cutting-edge technologies that work together to
enable advanced SG applications, and run in core/edge cloud datacenters connected to an underlying IoT network
infrastructure. This identification was carried out by analyzing traditional energy measures (i.e., voltage, current
and power) through ML-based techniques. The analysis of regular energy measurements is required as a means of
ensuring compatibility with legacy /smart meters, without the need to exchange them for new ones or make updates.
The data was obtained by using a smart meter built by our group, and was processed and validated in the IoSGT
edge-cloud.
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1 Introduction
The increase in population density on the planet has led to an
exponential growth in energy consumption. However, as this
was based on large (preponderant) generating plants often
far from the main urban centers, the electrical system model-
ing software has not accompanied this exponential growth at
the same rate. This has caused a number of challenges that
need to be settled, especially those related to energy distribu-
tion for high-density environments, such as outages, interrup-
tions, transmission losses, deterioration of legacy systems,
and low energy efficiency [Barja-Martinez et al., 2021]. De-
signing solutions that can fill the gaps in these areas rests on
the premise of generating distributed energy and, at the same
time, handling control mechanisms that are capable of sup-
porting a systematic interaction between energy generators,
energy distributors, and end consumers. In general terms,
Samart Grid (SG) [Gopstein et al., 2021] allows a consol-
idated approach to be adopted that can lead to a paradigm
shift in the existing power grid systems [Wang et al., 2019;
Alonso et al., 2022]. SG allows the monitoring and manage-
ment of electric power transmission in real time.
The intelligence of SG is acquired by adopting spe-

cific sensors/actuators (called IEDs, Intelligent Electronic
Devices) that are capable of operating telemetry and en-

suring the supply and consumption of energy. Accord-
ing to the National Institute of Standards and Technology
(NIST) [Keith Stouffer and Hahn, 2015], an IED stands for
”any device incorporating one or more processors with the
capability to receive or send data/control from or to an ex-
ternal source (e.g., electronic multifunction meters, digital
relays, controllers).” The microprocessor-based power sys-
tem approach that IEDs adopt, makes it possible to harness
both the networking (sending/receiving data/control from or
to external systems) and to handle computerized control and
automated functions.
The bidirectional data and energy flow that SG provisions

in all sectors of the grid system, mean that both IEDs and
Supervisory Control and Data Acquisition (SCADA) have
essential architectural components that are interlinked to as-
sist utilities in achieving reliability and efficiency [Hajam
and Sofi, 2021]. Such an interlinking approach provides ad-
vanced power automation for the whole electricity grid in
terms of detection, measurement and control, among other
capabilities [Cabrini et al., 2022a]. The next SG generation
is predicted to advance at unprecedented levels, through an
ecosystem of cutting-edge Information and Communication
Technologies (ICTs) led by the Internet of Things (IoT) and
Cloud Computing paradigms. This will transform the power
grid into a full automated, intelligent, and widely distributed
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energy network [Cabrini et al., 2021; Saleem et al., 2019;
Hashmi et al., 2021].
In the context of SG, power meters measure the energy

consumed by eletroelectronic systems within a power grid.
For instance, an electro-mechanical power meter causes
problems regarding metering precision owing to variations
in ambient temperature, primary voltage, frequency, harmon-
ics signals, and external magnetic fields. Electronic meters
have emerged to overcome the problems raised by electro-
mechanical meters, as they are based on a set of A/D convert-
ers, microcontrollers, and microprocessors that make power
measuring more accurate. Currently, power meters have
evolved for the smart era¨ in the form of Intelligent Elec-
tronic Devices (IEDs) that embed functions capable of shar-
ing power metrics in real-time with remote SCADA systems,
which are transmitted across networks in the form of teleme-
try data [Santos et al., 2022].
The Internet of Smart Grid Things (IoSGT) [Santos et al.,

2022] has emerged as a promising ecosystem with a wide
range of technologies that are orchestrated to pave the way
for new SG applications and services. Technically speaking,
the IoSGT cloud-native approach advances across servers
that are located at both core (cloud computing) and edge
(edge computing) facilities, thus, establishing an IoT-to-edge-
to-cloud continuum. Hence, the IoSGT can accelerate SG
automation and control by enabling functions to be executed
at edge data center facilities that are near IEDs, rather than in
cloud computing where the data must be sent to faraway cen-
tralized data centers (which are likely to be situated in a dif-
ferent country). In our previous work, Modesto et al. [2022],
the findings from IoSGT validation outcomes suggested that
SG functions running at edge servers proved to have a better
performance than in central clouds (among other benefits).
The literature displays a large number of footprints regard-

ing the application of Artificial Intelligence (AI) techniques
to SG use cases. In the research of Singh and Gill [2023] and
Omitaomu and Niu [2021], for instance, the authors under-
took comprehensive studies to show that AI-supported SG
is becoming more and more prominent, in the sense that it
is able to overcome the limitations of traditional modeling,
optimization, and control technologies. In addition, the in-
troduction of AI capabilities into Edge computing facilities
ensures highly accurate decision-making at on-site premises,
since the high proximity between IEDs and servers, entail
computing, data storage, and AI-enforced SG control appli-
cations [Ramalho andNeto, 2016]. Moreover, Edge Comput-
ing enhances SG by avoiding the need to constantly interact
with Cloud server facilities to enable SG data processing and
analysis to be carried out, as well as to respond back with the
actions needed [Cabrini et al., 2022b].
More recently, devices outside the Edge Computing server

premises have been deployed to offload upper-layer comput-
ing tasks, also called Extreme Edge. Extreme Edge attempts
to speed up processing, as well as to achieve energy sus-
tainability by preventing the exchange of useless data with
external servers [Portilla et al., 2019]. The Extreme Edge
computing scheme refers to the outer-most layers within a
cloud computing architecture, i.e., those nearest either the
end users or things under monitoring/control. On the basis
of the Extreme Edge use cases, the classical approach pro-

vided by the IoT-supported Advanced Metering Infrastruc-
ture (AMI) [Kaur, 2021] has attracted particular attention in
the area of our research. In AMI-IoT, the smart meters trans-
mit through an Internet connection, (time-to-time), and all
the electrical readings are delivered to a known remote utility
in the SCADA systemwhich is generally running in a central
cloud server. This in turn is responsible for data processing
and offering analytical perspectives.
In this research endeavor, we hypothesize that introducing

extreme edge capabilities into IEDs offers a prospect of en-
suring a higher AMI-IoT use-case performance, by enabling
metering, analytics, automated control, and other SG func-
tions to be carried out on-site at IEDs. Thus, it allows a
more secure and scalable solution to be found. In this sce-
nario, Edge Computing adds vital support, by provisioning
AI training functions which are carried out in the environ-
ment nearest to the extreme edge IEDs.

1.1 Problem Statement
As a use case of IoSGT for future SG applications and ser-
vices, energy consciousness, along with the quality of en-
ergy offered to customers, are key factors to achieve sustain-
ability and power efficiency, given the great scarcity of re-
sources and energy, and in compliance with Goals 7, 11, and
13 set out in the guidelines of the 2030 Agenda for Sustain-
able Development of the United Nations (UN) [Assembly,
2015]. To achieve this, power consumption monitoring must
be put into effect in a per eletroelectronic granularity within
the same power grid. Energy sensing of off-the-shelf smart
meter IEDs focuses on the cumulative records of the total
amount of energy consumption (e.g., for monthly billing pur-
poses), regardless of the eletroelectronics granularity within
the same power grid. However, identifying eletroelectron-
ics connected inside the same power grid is not a trivial task,
since it requires specific classification techniques and meth-
ods to provide an accurate identification.
Individual eletroelectronic identification can be obtained

by studying and analyzing the power signals injected into
the grid. Analytical studies of classic power signals (namely,
voltage, current, and power) have been conducted since the
1990s [Hart, 1992]. Our starting-point is based on the hypoth-
esis that the emergence of the Edge Computing facilities at
IoSGT has turned Artificial Intelligence (AI) techniques for
classic energy power metrics into a cost-effective method for
classifying eletroelectronics with a very high degree of accu-
racy, as shown in Singh and Gill [2023] and Santos et al.
[2022]. Moreover, most of the smart meter IEDs can sense
and share traditional power metrics, by adopting a fully com-
patible approach without the need for upgrades.
Although this system can assist in detecting and identify-

ing the different types of eletroelectronics connected within
the same power grid (e.g., a computer, an air conditioner, or
a televisions), the analysis of classic power measures cannot
distinguish between devices of the same class (i.e., the dif-
ferent types of televisions). However this shortcoming can
be overcome by including more electrical reading features
(e.g., power factor, active/reactive/apparent power, and har-
monic signals up to the 50th order) in the analysis. Never-
theless, this requires the adoption of new smart meter IED
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strategies with a capacity to handle these new reading fea-
tures. Moreover, this kind of IED approach requires to en-
tail power-expanded computing resources (i.e., processing,
memory, and storage), in order to become capable to achieve
this goal, as well as being more expensive.
To the best of our knowledge, this kind of system lacks

a standard solution that is capable of identifying every type
of electro-electronic device on an individual basis. A set of
”smart” electro-electronic appliances available in the market
(mostly televisions, air conditioners, and refrigerators) entail
IoT-based technologies that are intertwined with smart home
facilities (e.g., Google Home1, LG ThinQ2, and Amazon
Alexa Smart Home3). However, these kind of smart home
solutions are designed to handle interactive functions aimed
at customizing aspects of ambience, comfort, and well-being,
rather than analyzing power consumption for the purposes of
energy efficiency, conscious use, or sustainability.
AI-enabled SG envisions operational processes being en-

hanced to unprecedented levels, by allowing the identifica-
tion of electro-electronic devices based on the classic power
signals that are provided by the existing smart meter IEDs. In
this context, the ability to analyze a large volume of data in a
short time enables Machine Learning (ML)-supported mech-
anisms to adapt their functionality to dynamic changes, as
well as to predict the occurrence of future events with a rea-
sonable degree of accuracy. The literature examines a vast
number of ML techniques, ranging from conventional types
(based on supervised learning) to more recent techniques
(based on deep neural networks, unsupervised learning, rein-
forced learning, and the innovative federated learning tech-
nique). The range of ML techniques has led to in-depth stud-
ies to assess which method is best-fitted for a highly accurate
identification of electro-electronic devices connected to the
same power grid (within the scope of this research study).
All the ML training was carried out in the edge cloud to

ensure homogeneity in the results obtained, avoid possible er-
rors and/or system incompatibilities with regard to the config-
uration parameters of each algorithm used, and thus achieve
the best scenario that could guarantee the results would be
consistently reliable.

1.2 Goals and Research Contributions
The widespread adoption of smart meters has led to a better
understanding andmanagement of electricity consumption in
homes and businesses. However, there is still a significant
challenge over the question of determining which electro-
electronic devices should be connected to the same electrical
network and thus reduce energy consumption. The identi-
fication of individual devices might be a significant step in
improving energy efficiency, by making it possible to adopt
intelligent consumption practices resulting in the optimiza-
tion of energy use.
In this paper, we put forward a system to classify electro-

mechanical devices connected to the same electricity grid,
by means of the IoSGT architecture and machine learning al-
gorithms. Data is obtained from the smart meter, which is

1http://home.google.com/
2http://www.lg.com/us/lg-thinq
3http://www.amazon.com/alexa-smart-home

capable of collecting information about energy consumption
at regular intervals. Our aim is to provide a detailed study
of the effects of advanced machine learning techniques on
the identification of electro-electronic devices connected to
the same electricity grid. To achieve this goal, the IoSGT ar-
chitecture is employed to establish the continuum of IoT-to-
edge-to-cloud and orchestrate the architectural components
in Smart Grid. We hope that this study can assist in mak-
ing significant advances in the current knowledge about the
identification of electro-electronic devices in a smart electri-
cal network and in the management of electricity, improving
energy efficiency and reducing operational costs, which are
critical factors in achieving sustainability. In addition, the
main purposes of the research are: (i) to create a dataset in
which electro-electronic devices are connected to the same
power grid, with fundamental sinusoidal signals (voltage,
current and power); (ii) to provide a detailed study of the
effects of advanced machine learning techniques on identi-
fying electro-electronic devices connected to the same elec-
tricity grid; (iii) to establish a bridge between IoT and Smart
Grid through the IoSGT architecture, allowing IoT devices
to be integrated with intelligent electrical networks; (iv) to
make a contribution to enhancing research in Smart Grids, by
determining challenges and opportunities related to the iden-
tification of electro-electronic devices and suggesting possi-
ble solutions

1.3 Organization
This paper is structured as follows. Section 2 provides an
analysis of current related work. Section 3, gives a detailed
description of the use case and how the experiments were car-
ried out. Section 4 outlines an analysis of the outcome of the
experiments. And finally, last but not least, Section 5 wraps
up this article with a conclusion and makes suggestions for
future work.

2 Related Work
The power and energy measurement instruments available
on the market are based on either, devices embedding the
electro-electronic systems, or attached to them (e.g., smart
sockets). Such instruments make local measurements and de-
liver telemetry data via the local network to central analyzers
(which might be in the home or remote cloud installations).
On receiving these telemetry data, the analyzer tool individ-
ually identifies the monitored equipment (by recognizing the
digital signature or generating the code by means of the em-
bedded/attached artifact), store the information, and even al-
low the process to be monitored via the web or mobile ap-
plication. This kind of solution emerges as efficient means
of monitoring the consumption that each electro-electronic
takes. On the other hand, there are specific artifacts designed
to monitor each piece of equipment, which increases the cost
according with the density of electro-electronics. Hence, the
high costs this entails might make this economically unfeasi-
ble, especially with proprietary equipment (which seriously
limits the scope for data interoperability).
Among the recent research studies on this subject, it is
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worth highlighting the works of [Quek et al., 2016], which
employs methods that combine two machine learning tech-
niques: unsupervised clustering of K-means and techniques
of supervised classification of k-nearest neighbors. These
models train systems that can effectively determine the low
voltage DC electronic load and simultaneously detect if it
is in its steady state. [Huang et al., 2011], deals with the
question of classification by examining information retrieved
from energy signatures and current harmonics. [Hayvaci
et al., 2019] classify electronic devices by means of a har-
monic radar, where variant signals are transmitted in single-
tone time with variable power for the electronic circuits un-
der test. [Hayvaci et al., 2021] explores the non-linear rera-
diation of electronic circuits under test (ECUT) for classi-
fying electronic devices using harmonic radar, as well as
a linear model to relate measurements to unknown parame-
ters representing non-linear ECUT features. [Hayvaci et al.,
2021] classifies electronic devices by adopting a Scanning
Frequency Harmonic Radar (FSHR) approach.
Some works, such as that of [Huang et al., 2011], explore

measurements in the harmonic field. However, this approach
restricts the use of many smart meters since not all of them
have this type of measurement available. As a result, the
classic meters for voltage, current, and power measurements,
are rendered obsolete in this approach, and this results in the
added costs of creating a new infrastructure compatible with
this type of measurement.
Energy companies in several cities worldwide have al-

ready announced their decision to adopt AI-based solutions
in their SG ecosystems for managing their electrical installa-
tions. The Chinese company Huawei, for example, reported
they had conducted an intelligent inspection system in the
city of Shenzhen. The solution generally uses AI algorithms
that are designed to process and analyze images and videos
created by surveillance cameras (including drones). The pur-
pose of this is to detect physical problems in towers or poles
within the SG domain. The company estimates that by com-
bining this intelligent system with human manual judgment,
the inspection period can be reduced from the original 20
days to just two hours [Huawey, 2020].
The above literature shows that [Huang et al., 2011], [Hay-

vaci et al., 2019] and [Hayvaci et al., 2021] explored the har-
monic field, and only [Quek et al., 2016] examined energy
data through classical signals. The purpose of this work is to
use classical measurements, so that it is possible to reuse the
smart meters that can be found in the market today.

3 Prototyping and Testing
Methodology

This Section outlines the setup of the experimental test en-
vironment and describes the methodology used to achieve
the central objective - to evaluate how this analytical task af-
fects the way the classification of electrical and electronics
systems can be supervised by analyzing the telemetry of re-
search tests and currents in the power grid.
Figure 1 provides an overview of the system, from the

capture of the fundamental voltage and current signals, the
arrangement of this data and request for data processing, re-

Figure 1. System Overview.

sponsibility for training and validation, and the selection of
the ML algorithm for the identification of the device.

3.1 IoSGT

We extended our IoSGT Testbed [Santos et al., 2022] by in-
cluding three key layers: Extreme Edge, Edge Cloud Data
Center (DC), and Central Cloud DC, Figure 2. The Extreme
Edge layer, consisting of IEDs, gathers energy-consumption
information at a given period of time. The IED measures
voltage, current, active and reactive power and other factors
for an embedded low-capacity storage system. An embedded
EdgeMachine Learning Framework (EMLF), with Classifier
and ML Model, relies on an ML Model that is stored in the
Edge Cloud to detect electro-electronic devices. The updates
of the ML Model are taken from the Edge Cloud DC itself,
for each group of IEDs. The sets of IEDs arranged in groups
have similar installations - location, version, technical spec-
ifications, and consumption profile (residential, commercial,
and industrial). The IED transmits data to the Edge Cloud
DCs using a well-known Internet of Things (IoT) commu-
nication protocol, called Message Queuing Telemetry Trans-
port (MQTT). The deployed IEDs deliver energy data to the
chosen Edge Cloud DC instances. The Edge Cloud DC acts
as a gateway and manager for the IED groups, by mediating
data transmission to ML services atop our proposed IoSGT
platform.
The IoSGT takes account of the FIWARE platform archi-

tecture, by means of harnessing an open-source ecosystem
that is based on Docker containers, thus, enabling greater
scalability to merge or fork Edge Cloud DCs. The Extreme
Edge interacts with the Edge Cloud DC through the IoT
Agents, which are suitable for the resource-constrained ap-
proach that the IoT devices yield. The IEDs interact by
means of the Ultralight 2.0 protocol. The Context Broker
acts as an interface of the Ultralight protocol, which enables
the querying of contextual information. For instance, we
used the Orion Context Broker as a Publish/Subscribe inter-
face between Ultralight and the Next Generation Service In-
terfaces (NGSI).
The Connector Framework divides the history of contex-

tual data into persistent databases. In particular, we used
Cygnus to automate and manage the data flow for Storage
in third-party databases. For instance, we stored real-time
data in a MongoDB database to keep the latest readings.
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Figure 2. IoSGT Architecture

Moreover, we stored persistent long-term data in a relational
database using MySQL, to arrange groups of IEDs. The
stored data is used to extract useful information by attaching
our proposed EMLF service.
The EMLF service consists of an ML classifier. The per-

sistent data collected from IEDs needs to be formatted to feed
the service. For this reason, we designed a Data Handler in
charge to carry out the pre-processing, such as cleaning up er-
rors, and removing null values, detecting outliers, transform-
ing data types, and resampling data into different granular-
ity. We stored pre-processed data into our storage system and
fed the ML Classifier. Periodically, the classifier updates its
models using new collected and pre-processed data with the
aid of the Training Scheduler. The training device creates en-
hanced ML Models for each group of IEDs and saves them
in a persistent database for further usage so that, for example,
frauds in energy consumption can be detected.
Finally, within the IoT-to-Edge-to-Cloud continuum, the

Central Cloud DC layer complements the IoSGT with high
processing and storage capacity, which enables it to have
a global view of the SG system. For instance, the Central
Cloud DC collaborates with the Edge Cloud DCs services
by providing the following: powerful analytics, ML mod-
els merged with more accurate models and decision-making
schemes, personalized IED domains with predictions from
the global model, and others. Our prototyping adopts an
edge-based approach, and thus, the Central Cloud DC in-
stance is not in the scope of our current work.

3.2 Methodology for Preparatory Dataset
The data used for analysis and training was extracted from a
real-world SG system, harnessing a smart meter designed by
the group. The methodology employed for the preparatory
dataset process took place in the following phases:

1. 3 different devices were added, one at a time and in-
dividually, in the electrical network, while its measure-
ments were being made by the smart meter. The de-
vices consisted of a cooler, a heat blower, and a moni-
tor. These devices were chosen because they could be
found in the research laboratory and belong to different
classes.

2. Preparation of a basic dataset: These datasets are in-
tended to represent the energy consumption pattern that
active electronics yield within the electricity grid of a
consumer unit. To this end, they include measurements
of voltage, current and electrical power over time with
samples being captured at 1ms granularity.

3. Preparation of asset datasets: To analyze the patterns in
the sinusoidal formats of their voltage and current sig-
nals and not just data points, the database was adjusted
so that each signal sample had 100 voltage, 100 current,
and 100 power attributes

3.3 Dataset handling
The dataset is of paramount importance to allow classifi-
cation operations that will assist in decision-making. The
dataset used in this research includes measurements of volt-
age, current, and power in a temporal way, where informa-
tion is picked up at various points of the sine wave.
The purpose of this is to classify electro-electronic devices

that coexist in the same electricity grid. In this case, four en-
vironments are used as a parameter: the first without load,
where no equipment is connected to the electrical grid, and
the other three environments are divided between the respec-
tive electronic devices: heat blower, monitor, and cooler.
Figure 3 displays the average power values of each device,

which allows a quick visual comparison to be made between
them. In general, the Figure illustrates the difficulty in dif-
ferentiating information between devices, which can affect
the analysis and interpretation of the results. It should be
stressed that the presented average values are only a general
representation and that there may be variations between indi-
vidual measurements.

Figure 3. Apparent Power Chart

The use of ML algorithms in this work is necessary to as-
sist the targeting identification, through an analysis of sine
waves generated by equipment connected to the same elec-
tricity grid. After this, it is possible to quantify each device’s
energy consumption in a given consumer unit.
For better data visualization and better signal processing,

we decided to concatenate 100 temporal instances into just
one. In this way, we now had a dataset with 300 attributes.
Owing to the environment used for data acquisition, four
datasets were created (one for data with no added load, one
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for monitoring, one for the heat blower, and one for the
cooler), each with 87 instances and 300 attributes. After val-
idating these experiments, we intend to scale the density of
the electro-electronic devices connected to the same electric-
ity grid , and classify as much equipment as possible in the
same consumer unit on the basis of the analysis of electrical
signals of voltage, current, and power.

3.3.1 Pre-processing

The data pre-processing phase is one of the most delicate
steps, as it involves preparing the data for use in ML algo-
rithms, with the aim of ensuring the availability of informa-
tion so that the algorithms work correctly and consistently,
and achieve the best performances and results. Thus, we
seek to carry out standard procedures in accordance with the
recommendations of [Sivakumar and Gunasundari, 2017],
which are aimed at to cleaning, integrating , transforming
and reducing data. The Data Handler in the Edge Machine
Learning Framework (EMLF) Internet of Smart Grids for
IoT (IoSGT) architecture transforms the data as specified in
the pre-processing phase and keeps it in the Pre-processed
Data storage facility.
Removing unnecessary information is the first step taken

with datasets. It is common for a database to contain empty
fields and incoherent values, which means it is necessary to
process these data. The alternative way of overcoming this
problem is to eliminate these instances. After following this
procedure, we obtained a dataset with 348 instances and 300
numeric attributes.
Subsequently, data integration was carried out to prevent

the occurrence of errors, inconsistencies, and redundancies
in the attributes of the dataset. Soon after, these data were
transformed and saved in the Pre-processed Data Storage sys-
tem in their own formats so that they could be used by the
models. Thus, the data normalization was carried out, and
the creation of 3 new datasets which used some of the Weka
software filters [WEKA, 2022]. A different filter was used
for each of the 3 datasets; in the reduced dataset 1 (R1), the
”Remove percentage” filter was used. This was configured
to remove 50% of the instances, and led the reduced dataset
1 to have 300 attributes and 174 instances.
The reduced dataset 2 (R2) made use of the ”Principal

Components” filter, which significantly reduced the number
of attributes, with 348 instances and only 63 attributes. In
reduced dataset 3 (R3), the filter used was ”Remove Folds”,
which reduced the number of instances, leaving it with 35 in-
stances and 300 attributes. After creating the three datasets
from the original, we obtained a total of 4 datasets (which
are arranged in Table 1), to carry out the training of the ML
algorithms.

Table 1. Datasets used.

Dataset Nº instances Nº attributes
Original 348 300
R1 174 300
R2 348 63
R3 35 300

3.4 ML models
Supervised learning is one of the most important tasks in the
ML process, as it consists of i) learning functions that map re-
sults through inputs and outputs, ii) understanding functions
from already classified training data, and iii) is formed of a
set of training examples. In supervised learning, each model
consists of a combination of input and output. At the input,
there is usually a vector of values; at the output, there is the
desired result for that specific value or supervision signal.
The supervised learning algorithm analyzes the training

data and reaches a conclusion, which it uses to map out new
examples. The algorithm can correctly determine class la-
bels for unknown instances in an ideal environment. This
process will require the learning algorithm to have a suitable
generalization of the training data in unknown situations. In
the following section, we describe the main supervised learn-
ing techniques that are used for the correct classification of
individualized electronics.

3.4.1 K-Nearest Neighbors (K-NN)

K-Nearest Neighbors (K-NN) [Altman, 1992] is an unparam-
eterized and ”lazy” (lazy) supervised ML algorithm, which
assesses the distance among problem instances and a pos-
sible calculation object. Given an unlabeled instance, the
KNN algorithm selects the k nearest neighbors of that in-
stance and adopts a voting-based strategy capable of choos-
ing the majority-voting label. The algorithm receives k-
nearest neighbors as input, and calculates instance similar-
ity by adopting the Euclidean distance. Thus, the KNN-
supervisedML algorithm distinguishes itself by both simplic-
ity and flexibility main advantages.

3.4.2 Decision Trees (J48)

The Decision Trees algorithm (J48) [Quinlan, 1986] is a
widely used ML technique that proceedings data examina-
tion in a categorically and continuously manner. The J48
algorithm follows a top-down approach that is based on a
recursive divide and conquer strategy. On the basis of an
attribute selected to split on at the root node, a branch is cre-
ated according with each possible attribute value. Then, J48
splits instances into subsets, one of which associated to each
branch extending from the root node. The highest classifica-
tion accuracy depends on using the best attribute to split on
set with the greatest information. The J48 algorithm resolu-
tion feature is based around decision trees, as such, it ends
up suffering from a sort of problems that using the decision
tree approach yields, such as empty branches, insignificant
branches, and overfitting. The use of pruning methods can
be a solution to overcome the overfitting problem, by remov-
ing the nodes which results in partitions with few instances.

3.4.3 Naive Bayes (NB)

Naive Bayes (NB) [Hand and Yu, 2001] is an ML algorithm
that uses probabilistic models to describe datasets. Although
Naive Bayes (NB) is a widely used algorithm in data classi-
fication, its simplicity and built-in assumptions can lead to
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limitations in certain cases, such as the following: a) situa-
tions where the data displays a high correlation between its
features, b) there are missing values, c) the feature distribu-
tions are complex, d) there is an imbalance in the classes , or
e) there are irrelevant features present. Since it is regarded as
”naive”, it assumes that the features of the data are indepen-
dent of each other, which is not always the case [McCallum
and Nigam, 1998].
Furthermore, NB assumes that the attributes are equally

important and statistically independent. These requirements
may often be violated, where too many redundant attributes
will not affect the algorithm’s performance. The NB formula
is derived from Bayes’ Theorem and is used to calculate the
probability of an event belonging to a specific class, based
on the characteristics or attributes of the data. The formula
is written as: P (C|X) = P (X|C)P (C)

P (X) where: P(C|X) is the
probability of the event belonging to class C, given a set of
characteristics X. P(X|C) is the probability of the character-
istics X occurring in data belonging to class C. P(C) is the
prior probability of an event belonging to class C. P(X) is
the probability of the characteristics X occurring in all the
data. When the data are unsuitable for the model, calculat-
ing probability through the Gaussian distribution can cause
a serious problem.

3.4.4 Support-vector machine (SVM)

Support Vector Machine (SVM) [Cortes and Vapnik, 1995]
is an optimization-based supervised ML method that aims at
finding a hyperplane along an N-dimensional space (where
N is the number of features). Hyperplanes stand to deci-
sion boundaries that assist in the task of distinctly classify-
ing classes of data points. Algorithmically speaking, each
instance is projected with a feature vector within the hyper-
dimensional space. Afterwards, SVM proceeds the data clas-
sification through finding an optimal separation hyperplane.
Although the use of linear functions as parameters requires
to reduce computational costs, SVM is highly suitable for
scenarios with high-dimensional data and problems linearly
separable. Moreover, the high sensitivity of SVM to varia-
tions makes very difficult to find the best parameter settings.

3.4.5 Multi Layer Perceptron (MLP)

Multi Layer Perceptron (MLP) [Meyer-Baese and Schmid,
2014] is a class of fully connectedArtificial Neural Networks
(ANN) and is characterized by having one or more interme-
diate layers, which makes it possible to handle complex and
non-linear systems [Haykin, 2001]. The most widely used
algorithm in MLPs backpropagation, which injects a signal
at the network’s input that is propagated forward to the out-
put layer. Then the error can be calculated, since it corre-
sponds to the difference between the real outcome and the
result produced by the network. A signal sent to the previous
layers calculates the new synaptic weights. The algorithm is
repeated until the error reaches a pre-defined value or a max-
imum number of repetitions [Haykin, 2001].

4 Analysis on the Experiment Out-
comes

The goal of this session is to assess the performance that the
main ML methods and techniques takes in our edge-cloud
infrastructure. We compared the results obtained in the ex-
periments carried out with implementations of the k-NN, J48,
SVM,Naive Bayes, andMLP algorithms. This was achieved
by making use of the four datasets (Original, Reduced 1, Re-
duced 2, Reduced 3), divided into 80% for training and 20%
for testing, with a kfold of 10. Furthermore, the confusion
matrix was extracted for each case, where the actual data was
compared with the predicted data in the separate test set for
each algorithm. The results and corresponding analysis are
described in the following subsections:

4.1 K-NN set of Experiments
In the K-NN algorithm, the impact of the K parameter was
verified. The Jupyter tool was used to do the tests, which in-
volved carrying out experiments with each dataset, and sev-
eral different scenarios were created for this. In each dataset,
there was a training session and 10-fold cross-validation was
used for different values of K(k=1, k=3, k=5, and k=7).
Jupyter is the most used system for interactive literary pro-
gramming [Shen, 2014]. The best results of each dataset used
can be seen in the Table 2.
The literary programming paradigm is designed to assist in

the communication of programs by alternating formatted nat-
ural language text, executable code extracts, and the results
of calculations. Jupyter’s interactivity allows this paradigm
to be used in real time for data analysis, particularly the
Python language. After carrying out the tests with the K-
NN algorithm, it was found that the two reduced datasets
achieved the best performance, since it obtained a 100% de-
gree of accuracy, according to the Table 2 shows the impor-
tance of scaling the values to obtain a better result. The con-
fusion matrix of the dataset that obtained the best result can
be seen in Figure 4, where the assertiveness¨ of the data clas-
sification should be noted.

Table 2. Results using K-NN.

K-NN
Dataset Amount of K Time Accuracy
Original 3 0.08 seconds 99.71%
R1 1 0.01 seconds 97.12%
R2 1 0.01 seconds 100%
R3 3 0.01 seconds 94.28%

4.2 Decision Tree set of Experiments
In the J48 algorithm, the effects of creating or not pruning
the tree were determined. For this reason, together with
the Jupyter tool, we carried out experiments for each of the
4 datasets (original, reduced 1, reduced 2 and reduced 3).
For each one we configured the training for 10-fold cross-
validation and ran the tests both with and without pruning;
the results can be seen in Table 3.
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Figure 4. K-NN algorithm confusion matrix.

Table 3. Results using decision tree.

J48
Dataset Time Accuracy Tree size Nº leaves
Original 0.05 s. 67.14% 8 37
R1 0.05 s. 68.57% 8 22
R2 0.06 s. 84.28% 8 23
R3 0.05 s. 57.14% 4 6

By analyzing the results present in the Table 3 it can be
seen that the DT algorithm obtained the best performance
with the reduced dataset 2, configured without pruning, and
obtained a degree of accuracy of 84.28%. In addition to these
data, it can be seen that the tree is 8 nodes high with a total
of 23 leaf nodes. On the basis of all these tests, it can be
stated that there was no overfitting, either before or after the
pruning. The confusion matrix of the reduced dataset 2 can
be seen in Figure 5, where it shows the false positives that
were taken into account during the data classification.

Figure 5. Decision tree confusion matrix.

4.3 Naive Bayes set of Experiments
In the NB algorithm, the impact of the two assumptions was
verified, by means of the Jupyter tool. Experiments were
carried out with each dataset, and, different scenarios were
created for this and following this, training was carried out
with each dataset. The results of the experiment using the
NB algorithm can be viewed in Table 4.

Table 4. Results using Naive Bayes.

Naive Bayes
Dataset Time Accuracy
Original 0.06 s. 84.77%
R1 0.06 s. 87.93%
R2 0.06 s. 94.54%
R3 0.06 s. 91.42%

By analyzing the results present in the Table 4, it can be
seen that the dataset that obtained the best result with the NB
algorithm was the reduced 2, with an accuracy of 94.54%.
In the case of all the tests , there was a normal distribution,
as both data are related to each other. The confusion matrix
of the NB algorithm using the reduced dataset 2 can be seen
in Figure 6. By analyzing the confusion matrix, it can be
seen that the algorithm obtained a good rate of assertiveness
in classifying the data, but a number of false positives were
detected.

Figure 6. Confusion matrix of the Naive Bayes algorithm.

4.4 SVM set of Experiments
In the SVM algorithm, the impact of the Kernel type on the
performance of support vector machines (SVM) was deter-
mined. The Jupyter tool was used to carry out the tests, which
involved experiments with each dataset, and several differ-
ent scenarios were created for this. In each dataset, training
was carried out by means of different kernels (exponential,
Gaussian, and linear), as well as different values for the Cost
parameter. Among the three kernels used, exponential had
the best performance, and its results can be seen in Table 5.

Table 5. Results using SVM.

SVM
Dataset Kernel Cost Time Accuracy
Original Exponential 2 0.14 s. 98.85%
R1 Exponential 1 0.08 s. 97.12%
R2 Exponential 4 0.08 s. 99.71%
R3 Linear 1 0.03 s. 94.28%

After carrying out the experiments using the SVM algo-
rithm, it was found that the best results were obtained in the
reduced dataset 2, using the Exponential Kernel, in which the
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Figure 7. Confusion matrix of the SVM algorithm.

Cost parameter value was equal to 4. It should be noted here
that the cost parameter is quite a significant requirement to
obtain a good degree of accuracy. Figure 7 shows the confu-
sion matrix of the classification of the data using the reduced
dataset 2, since it had the best performance. It can be seen
that there is an assertiveness¨ of 99.71% in the classifications,
just missing a single rating.

4.5 MLP set of Experiments
In the MLP algorithm, the impact of the number of neurons
(NN) on the hidden layer was determined . The Jupyter tool
was used to carry out the tests, which included experiments
with each dataset; several different scenarios were created
for this. In each database, there were training sessions using
different iterative values (100, 1.000 and 10.000), as well as
different values of neurons in the hidden layer, alternating be-
tween 4, 8, and 12. In addition to these settings, the variation
of the learning rate (LR) was established and ranged between
0.1, 0.01 and 0.001. the best results obtained for each dataset
can be viewed in Table 6.

Table 6. Results using MLP.

0.8
Multilayer Perceptron (MLP)

Datasets Iterations NN LR Time Accuracy
Original 1000 12 0.001 2 ms 85.91%
R1 1000 12 0.01 1 ms 84.48%
R2 100 8 0.01 1 ms 95.71%
R3 10000 4 0.01 1 ms 88.57%

After applying the MLP algorithm, it was found that the
best result was obtained using the reduced dataset 2, with 8
neurons in the hidden layer and a LR of 0.01. The resulting
degree of accuracy for the test was 95.71%. Figure 8 shows
the confusion matrix of the best result obtained regarding the
classification of data using the reduced dataset 2, and also
reveals that the algorithm only missed three classifications.

4.6 Outcome Analysis Wrap Up
On the basis of the results obtained from the performance
tests carried out with each algorithm, a comparative an de-
tailed analysis can be conducted. This shows the algorithm

Figure 8. Confusion matrix of the MLP algorithm.

that raised the best performance regarding the classification
of electrical and electronic devices. Table 7, shows the best
result obtained by each algorithm, and it can be seen that k-
NN had the best performance, with an accuracy rate of 100%.

Table 7. Best algorithm results

Algorithm k-NN J48 NB SVM MLP

Dataset R2 R2 R2 R2 R2
Nº K 1 - - - -

Pruning - w.p. - - -
Kernel - - - Expo -
Cost - - - 4 -

Nº Neurons - - - - 4
LR - - - - 0.001

Time(s) 0.06 0.06 0.06 0.08 0.05
Accuracy(%) 100 84.28 94.5 99.7 95.7

Account should be taken of the conditions under which
each algorithm was used when drawing conclusions about
its performance, and our conclusions should not simply be
based on the best result obtained by each one. In light of
this, Table 8 highlights the worst performance of each algo-
rithm, since this allows us to obtain a more complete view
of their performance. When analyzing this Table, it can be
seen that although the J48 algorithm performed well overall,
it also had the worst performance among all the algorithms,
with an accuracy rate of only 14.28%. The MLP algorithm
obtained the second worst rate, with 49.42%. However, if
we compare the best performance with the worst, the k-NN
algorithm stands out with an accuracy of 88.57%.

Table 8. Comparison of the worst results

Algorithm k-NN J48 NB SVM MLP

Dataset R3 R3 Orig. R3 R1
Nº K 7 - - - -

Pruning - w.p. - - -
Kernel - - - Gauss. -
Cost - - - 1 -

Nº Neurons - - - - 4
LR - - - - 0.01

Time(s) 0.26 0.05 0.06 0.05 0.02
Accuracy(%) 88.57 14.28 84.77 51.42 49.42
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So it can be concluded and stated that the k-NN algorithm
had the best performance. Thus we decided to create Table 9,
with the average of all the results of each algorithm, so that
it could be determined which algorithm had the best perfor-
mance in terms of the average rate of accuracy.

Table 9. Summary of results.

0.8

Summary of results
Algorithm Time Accuracy
k-NN 0.06 s 96.61%
J48 0.05 s 62.58%
Naive Bayes 0.06 s 89.67%
SVM 0.08 s 92.14%
MLP 0.07 s 76.70%

By analyzing what is shown in Table 9, we can state that
the k-NN algorithm obtained an average accuracy of 96.61%,
which confirms the hypothesis that the k-NN algorithm is
the best algorithm to perform the classification of electronic
devices by means of classical energy data (voltage, current
and power).

5 Conclusion and Recommendations
for Future Work

In this paper, we address the challenges of identifying
and classifying different types of electro-electronic devices
within the same electrical grid, a significant step in improv-
ing energy efficiency and good consumption practices. To
this end, we harnessed the IoSGT architecture to orches-
trate the architectural components across a Smart Grid IoT-
to-edge-to-cloud continuum for the task of collecting regular
measures provided by smart meters. Moreover, we carried
out a detailed study about the effects of the most significant
machine learning techniques to identify electro-electronic de-
vices connected to the same electricity grid.
In order to assess how the ML techniques perform in clas-

sifying electro-electronics individually through fundamental
sinusoidal electric signals (voltage, current, and power) pro-
cessing, we set up an experimental test environment. For
this, we created a dataset providing historical data of electro-
electronic devices inside the same power grid, with funda-
mental sinusoidal signals (voltage, current, and power) ob-
tained from real smart meters. The outcomes suggested that,
among all the ML algorithms applied, the K-NN performed
better by obtaining an accuracy rate of 100% for almost all
the datasets, while achieving, at the same time, lower time
taken to carry out classification functions.
On the basis of the satisfactory outcomes obtained in

our tests, we aim to explore the KNN-based classification
strategy in greater depth, in future work. In light of this,
we intend to devise new parameters and/or attributes, such
as harmonic parameters, which will raise the project to a
new level by enabling simultaneous analysis of high-dense
electro-electronics at the extreme edge (i.e., directly in the
SM). Finally, but not least, we aim to advance beyond de-
vice detection by inspecting different consumption patterns
and the importance of Electric Power Quality (QEE).
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