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inTroducTion

Spirometry is pivotal in screening, diagnosing and 
monitoring pulmonary diseases and is increasingly 
advocated for use in primary care practice. Inspired and 
expired lung volumes measured by spirometry are useful for 
detecting, characterizing and quantifying the severity of lung 
diseases.[1] A variety of techniques have been developed for 
the measurement of absolute lung volume based on the flow 
measurement. One such technique can measure flow rate 
with known orifice geometry and then do the time integral 
to get the total volume. One of the available operating 
principles for flow measurement is thermal anemometry.[2] 
It measures the total heat loss of a heating element and 
correlates the output signal to the flow rate of the fluid.[3]

A flow rate sensor with large dynamic range is very essential in 
medical applications to measure, for example, the breathing 
rate of a child in normal conditions or the breathing rate of an 
adult person in exercise conditions, all with the same sensor.[4]

Hot-wire is a delicate and highly sensitive device that 
provides flow velocity data. Its small size gives it good 
spatial resolution and high frequency response.[3] In 
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Hot-wire spirometer is a kind of constant temperature anemometer (CTA). The working principle of CTA, used for the measurement of 
fluid velocity and flow turbulence, is based on convective heat transfer from a hot‑wire sensor to a fluid being measured. The calibration 
curve of a CTA is nonlinear and cannot be easily extrapolated beyond its calibration range. Therefore, a method for extrapolation of 
CTA calibration curve will be of great practical application. In this paper, a novel approach based on the conventional neural network 
and self‑organizing map (SOM) method has been proposed to extrapolate CTA calibration curve for measurement of velocity in the 
range 0.7‑30 m/seconds. Results show that, using this approach for the extrapolation of the CTA calibration curve beyond its upper 
limit, the standard deviation is about −0.5%, which is acceptable in most cases. Moreover, this approach for the extrapolation of the 
CTA calibration curve below its lower limit produces standard deviation of about 4.5%, which is acceptable in spirometry applications. 
Finally, the standard deviation on the whole measurement range (0.7‑30 m/s) is about 1.5%.
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addition, hot-wire anemometry exhibits stable performance 
characteristics across the clinical range of temperature 
and humidity, has a small dead-space and is unaffected by 
mean airway pressure.[5] Thermal flow transducers satisfy 
common clinical/research demands with respect to dynamic 
range[6] and response time.[7] Therefore, hot-wire spirometer 
is an important device for the measurement of respiration 
flow and lung volumes in the wide range of velocities.

Calibration of a hot-wire sensor is necessary for making 
accurate and reliable flow measurements. In the 
calibration process, reference velocities, Ur, are measured 
at various locations across the flow cross section, and the 
corresponding reference output voltages, Er, are obtained 
for all the measured data points. Subsequently, the resultant 
data pairs (Er, Ur) are plotted to obtain the calibration curve 
for the specific hot-wire sensor.

Different methods may be used for the calibration of 
hot-wire sensors. One such method is to use a pitot-tube 
for the measurement of reference velocity under laminar 
flow conditions. Measurement of pressure drop across a 
calibration nozzle is another method for the measurement of 
reference velocity. However, these methods present certain 
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difficulties. For example, at low flow velocities (<2 m/s), due 
to low dynamic pressures at low velocities, the pitot-tube is 
difficult to use and final results are associated with large 
errors. Therefore, different approaches such as moving the 
hot-wire probe in the fluid, or vortex shedding due to the 
presence of cylindrical wire in the air flow, may be used to 
obtain the calibration curve at low velocities.[8-10] Yet another 
alternative approach is to apply the law of conservation of 
mass, in which the pitot-tube is placed in the test section, 
and the hot-wire probe is located in a settling chamber. 
Although these methods can be used, in practice they may 
be difficult and time consuming to perform.

Calibration of sensors for high velocity conditions involves 
certain difficulties, too. Firstly, due to large energy 
requirements it is difficult to produce the required high 
velocities. Secondly, measurement of high velocities can 
be difficult to perform because low velocity pressure 
transducers cannot be used in such applications.

The calibration curve is drawn using the velocity data points 
(Er, Ur) obtained within the calibration range. Methods such as 
spline, power law (King’s law), and polynomial curve fitting 
are used for fitting of data points.[11,12] However, it is difficult 
to extend the data points, with acceptable error margin, 
beyond the calibration range of a particular CTA. Therefore, 
to avoid unwanted errors, the calibration curve of the CTA 
should only be used for the measurement of velocities within 
the range for which the original calibration curve has been 
obtained. Therefore, to use the same hot-wire anemometer for 
measuring velocities outside the range of the CTA calibration 
curve, an approach permitting the extrapolation of the original 
calibration curve will be very useful.

Neural network method has been previously used for 
fitting of nonlinear calibration curves.[13] Therefore, this 
method may also be used for fitting of hot-wire calibration 
curve, which is of nonlinear nature. On the other hand, an 
estimator based on neural network will have the capability 
to retain and change its internal weights. Therefore, when a 
neural network estimator is designed based on calibration 
data, it will be possible to insert new data into this network 
and retrain the estimator to obtain a new and improved 
estimator, which can estimate new data in addition to the 
old data. Using this procedure, a hot-wire spirometer can be 
recalibrated in clinic (It is recommended that a spirometer 
should be readjusted daily[4]). This characteristic of the 
neural network estimator is not shared by other estimators 
of calibration curve. In view of these advantages, the 
authors have designed a neural network estimator for the 
extrapolation of calibration curve of hot-wire spirometer.

In this paper, a novel approach based on the conventional 
neural network method has been proposed to extrapolate 
the calibration curve of a CTA, obtained for the velocity 
range (3-15 m/s). Standard deviation values for velocity 

ranges higher and lower than the range of calibration curve 
have been obtained using the proposed approach. These 
values have been compared with the corresponding values 
obtained from the conventional neural network method 
and the other fitting methods mentioned above.

maTerials and meThods

Experiments were carried out at Iranian Research Organization 
for Science and Technology (IROST), using a closed loop wind 
tunnel with a 60 cm  ×  60 cm test section [Figure 1]. The 
hot-wire spirometer uses a one-dimensional probe, consisting 
of two hot-wire sensors for its operation (flow magnitude 
and direction measurement). The vortex shedding method 
has been used for the calibration of each hot-wire sensor.

Experimental data is transferred to a PC via a 12 bit A/D data 
acquisition card. In order to increase the resolution of the CTA 
output, the top bridge voltage has been conditioned using a 
negative offset of 1.7 V and a gain of 16. Placing the hot-wire 
sensor at a suitable location, the output voltage and Karman 
vortex frequency have been measured.[10] In this method, a 
cylindrical wire of 1 mm diameter is placed in the flow path, 
and the vortex shedding behind the wire is measured. Flow 
velocity is then calculated using the relation given by:[14]

F = 0.212Re−4.5 (50<Re<170) 
(1)

F = 0.212Re−2.7 (300<Re<2000)

Here F  =  fd2/v, Re  = Ud/v, where f is the vortex shedding 
frequency (Hz), d is the cylindrical wire diameter (m), U is 
flow velocity (m/s), and v is kinematic viscosity (m2/s).

As shown in Figure 2, calibration curve of the hot-wire sensor 
at different velocities has been obtained by averaging the 
output voltage, measuring the vortex shedding frequency, 
and applying Eq. (1). Data ranging from 0.7 to 30 m/s has 
been used for this purpose. On the basis of Eq. (1), data 
obtained for 170 < Re < 300 has been discarded due to the 
large uncertainty in this range of Reynolds numbers.[15]

(Data obtained using the experimental setup shown in 
Figure 1.)

Figure 1: The experimental setup at IROST
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neural network method

Examination of experimental data from section 2 showed 
that the kind and behavior of the governing functions of 
the system at low and high velocities would be different. 
Therefore, design of a single estimation function for 
extrapolation of the CTA calibration curve in the entire velocity 
range, 0.7-30 m/s, might lead to increased estimation errors. 
Hence, our approach has been to divide the experimental 
data, in the range 3-15 m/s, into two groups of 3-10 m/s and 
10-15 m/s and design a different estimator for each group, 
based on the relevant neural networks. Subsequently, after 
training the groups at the training phase, results obtained 
from the two networks are combined.

The network architecture
Neural network method can be used as function 
approximator. The radial basis neural networks are among 
the most suitable neural networks for this purpose.[16] Radial 
basis networks consist of two layers: A hidden radial basis 
layer and an output linear layer [Figure 3a].

The ||dist|| box in Figure 3a accepts the input vector P and 
input weight matrix W1 and produces vector n1, whose 
elements are the distances between the input vector and 
row vectors of W1

[17]:

a F W p b1 1 1= −( )*  (2)

where b1 is the bias vector.

Every neuron in the radial basis layer will output a value, 
based on the distance of the input vector from each neuron’s 
weight vector. Thus, radial basis neurons with weight vectors 
quite different from the input vector P will have near zero 
outputs. These small outputs have only negligible effect on 
the linear output neurons. For the linear layer we have:

y = W2* a1 − b2 (3)

The transfer function (Radial Basis Function [RBF]) for a 
radial basis neuron is [Figure 3b]:

F n e n( ) = − 2

 (4)

where n is the input parameter vector. The radial basis 
function has a maximum value of 1 when its input is 0. As 
the distance between the weight vector W1 and input P 
decreases, the output increases. Thus, a radial basis neuron 
acts as a detector that produces 1, whenever the input P is 
identical to its weight vector W1, i.

[17]

The bias b1 allows the sensitivity of the radial basis neuron 
to be adjusted. Small values of parameter b1 result in larger 
widths of the transfer function in Eq. (4), which means a 
bigger data ranges can be estimated. We have selected:

b1 = 0.11 for U ∈ [3−10] 
(5)

b1 = 0.13 for U ∈ [10−15]

where U is the fluid velocity.

Similar to other neural networks, the radial basis neural 
network consists of training and test phases. During the 
training phase, known and existing input-output data 
points are used to construct a neural network, i.e., to 
obtain weight matrices W1, W2,… Aim of this phase, 
in addition to obtaining acceptable results at training 
phase, is to have a network with generalization ability 
to produce good approximation for obtaining acceptable 
non-existing data points, inside and outside the training 
data points.

The estimation algorithm for low velocity region
Distribution of the main data in the training region is 
not necessarily optimal and it can affect the convergence 
of the network to its global minima. Therefore, initially, 
the number of input-output pairs in the velocity range 
3 to 10 m/s was increased. For this purpose, polynomial 
calibration curve in the velocity range 3 to 15 m/s was used, 
and new data points were obtained from interpolation.

% (
U C Ei=

=
∑ *
i

i

0

5

 
(6)

where Ũ is estimation of velocity vector, Ĕ is expanded (up 

Figure 2: Calibration curve of the hot-wire sensor obtained for three sets 
of tests

Figure 3: (a) Radial Basis Network architecture (b) transfer function of 
radial basis neuron[17]

ba
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sampled) E vector and C’s are coefficients of the polynomial 
curve. However, if all the new data is used for training of the 
neural network, the network will be over trained on this data, 
impacting the extrapolation capability of the network (the over 
fitting problem). Therefore, it is important to pick the best 
input-output data pairs. These optimum data points are used 
to implement and train the RBF network for the estimation 
of data in the low velocity region. This is done using the 
principle of self-organizing neural networks (Self-Organizing 
Map [SOM]). The architecture of SOM is presented in Figure 4. 
An SOM learns to classify the input vectors according to the 
manner they are grouped in the input space.[17]

The ||ndist|| box in Figure 4 accepts the input vector P and 
input weight matrix WC and produces vector n1 having 
S1 elements. The elements are the negatives of the distances 
between the input vector and weight vectors WC, i, formed 
from the rows of the input weight matrix. The maximum 
net input n1 that the competitive layer can have is 0. This 

occurs when the input vector P equals that of neuron’s 
weight vector.[17]

The competitive transfer function accepts a net input vector 
and returns neuron outputs of 0 for all neurons except the 
winner (the neuron whose weight vector is closest to the 
input vector). The winner’s output is 1. The weights of the 
winning neuron are adjusted with the Kohonen learning 
rule. Supposing that the ith neuron wins, the elements 
of the ith row of the input weight matrix are adjusted as  
given below: [17]

W q W q P q W qC i C i C i, , ,( ) ( ) ( ( ) ( ))= − + − −1 1  (7)

where q is an index representing the training stage, and WC, i 
is the winning neuron vector.

Thus, the neuron whose weight vector is closest to the input 
vector is updated to be even closer. As more and more inputs 
are presented (q → ∞), each neuron in the layer closest to a 
group of input vectors soon adjusts its weight vector towards 
those input vectors. Finally, Wc will present the optimum 
data pairs for RBF network training and S1 the number of the 
optimum data pairs.[17] Using trial and error, the number of 
optimum neurons for the SOM network has been selected. 
Figure 5 presents the approach described above.

resulTs and discussion

In order to study the errors further, the following equation Figure 4: SOM architecture[17]

Figure 5: Neural approach used in the present work
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has been used for the determination of standard deviation:

u
c

mi

N

mN
U i
U i

U i= − ≠
=
∑1

1 0
1

( )
( )

, ( )  (8)

Where Uc and Um are the calculated and measured velocities, 
respectively.

As mentioned earlier, a single estimation scheme for 
extrapolation of calibration curve of the experimental 
data (3-15 m/s) on either side, namely low velocity range 
(0.7-3 m/s) and high velocity range (15-30 m/s), cannot 
fulfill the required accuracy in the low velocity range, 
where a small error in estimation can produce large errors 
in extrapolated data [Table 1]. Therefore, to circumvent 
this problem, a dual-network estimation scheme has 
been designed, in which the entire range of experimental 
data (3-15 m/sec) has been divided into two regions: The 
first region defined as U U3 10≤ <{ } , and the second 
region defined as U U10 15≤ ≤{ } . Subsequently, data 
points in the two regions were used to train the relevant 
RBF networks. Although, this procedure presents good 
estimation for the extrapolation of data in 15-30 m/sec 
velocity range, the estimated results are still not satisfactory 
for the low velocity range (3-10 m/s), as shown in the first 
row of Table 2.

Consideration of results presented in Tables 1 and 2 shows 
that, in the case of the dual-network estimation scheme, 
training of the first RBF network using the entire data 
in the region U U3 10≤ ≤{ }  improves the estimation 
error for the low velocity range as compared to the 
single network used for the entire velocity range (0.7-
30 m/s) [Table 1]. However, this improvement is still far 
from satisfactory. The problem seems to be due to the 
overestimation in the region U U3 10≤ ≤{ } . Therefore, 
it is important to pick the best input-output data pairs. 
These optimum data points are used to implement and 
train the RBF network for the estimation of data in the 
low velocity range. As mentioned earlier, this is done using 
the principle of self-organizing neural networks (SOM). 
The estimated results are satisfactory for the low 
velocity range (3-10 m/s), as shown in the second row  
of Table 2.

Table 3 presents the results pertaining to the estimation 
accuracy in the low velocity range, for different number of 
neurons in the SOM network. As shown, the decision for the 
selection of three optimum neurons has been justified. Figure 6 
shows a sample result of present neural network algorithm. 
As shown, the SOM network is selected data pairs (‘+’ points) 
that may be different from real data (‘o’ points).

In order to evaluate the validity of the neural network 
algorithm, initially, the experimental data [Figure 2] is fitted 

Table 1: Results for a single RBF network
Average estimation error±standard deviation (%)

Low velocity range (0.7-3 m/s) 17.65±3.1
High velocity range (15-30 m/s) 0.46±0.2
RBF – Radial basis function

Table 2: Average estimation error in the low velocity range
Average error±standard deviation (%)

Using the entire data in the region {U|3≤U≤10} 
for training the first RBF network

26.13±7.3

Using the three optimum data points in the region 
{U|3≤U≤10} (using the SOM network technique)

4.5±2.1

RBF – Radial basis function; SOM – Self-organizing map

Table 3: Results for average estimation error in the low 
velocity region, for different number of neurons in the 
self-organizing map network
Number of neurons Average error±standard deviation (%)

2 27.73±0.9

3 4.5±2.1
5 27.85±4.1

using power law, polynomial and neural methods. For the 
case of power law method, the following relation known as 
power law[12] has been used:

E2 = A + BUn (9)

where E is the instantaneous voltage of CTA output, and A, 
B and n are constants.

The above relation is based on the top bridge voltage, which 
is obtained from the relation, E E gain offsetb = ( ) + ,  where 
Eb is the top bridge voltage.

It should be determined whether the calibration curve can 
be fitted at velocities lower or higher than the calibration 
range. For this purpose, four fitting methods, namely 
polynomial, power law, the conventional neural network, 
and the present approach, based on the neural network 
method, have been used for fitting of data points [Figure 2] 
in the velocity range 3-15 m/s, in addition to zero point. 
Subsequently, results for the entire velocity range 0.7-
30 m/s have been evaluated. Figure 7 shows the percentage 
error for the entire velocity range, for different fitting 
methods. Here, Uc is the calculated velocity, obtained from 
the curve fitting, and Ur is the reference velocity. Calibration 
has been obtained for the low and moderate velocity 
ranges [Figure 2]. The maximum to minimum velocity 
ratio, Umax/Umin, should be in 10 to 20 range.[12] However, 
in this study, this ratio is about 40.The percentage error in 
the fitting range 3-15 m/s is negligible for the four fitting 
methods. However, outside the range 0.7-3 m/s, this error is 
considerable for all fitting methods, except for the present 
approach. As shown, the maximum error occurs when using 
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Figure 8: Absolute error for the four fitting methods

Figure 6: A sample result of the present algorithm

Figure 7: Percentage error ((Uc–Ur)/Ur) *100) % for velocity range 
0.7-30 m/s (‘Neural’ means a single RBF network)

the polynomial method outside 0.7-5 m/s and 15-30 m/s 
velocity ranges. Moreover, power law and conventional 
neural methods show considerable errors, especially at 
velocities lower than 3 m/s. Even at velocities higher than 
15 m/s, the errors are still considerable.

The absolute errors are shown in Figure 8. The absolute error 
in the fitting range 3-15 m/s is negligible for the four fitting 
methods. However, in the velocity range 0.7-3 m/s this error 
is considerable for all fitting methods, except the present 
approach. Moreover, in comparison with the power law and 
polynomial methods, the neural fitting methods present 
lower absolute errors. In the velocity range 15-30 m/s, the 
resulting errors from the application of the power law and 
polynomial fitting methods is very large, while errors in the 
conventional neural network method and present approach 

are acceptable. Table 4 presents the standard deviations 
based on Eq. (8), for each fitting method, in three sets of 
tests conducted in the entire velocity range (0.7-30 m/s). 
Data in calibration range is fitted. As mentioned earlier, 
the data is extrapolated in 15-30 m/s and 0.7-3 m/s velocity 
ranges.As shown, results obtained for calibration range 
3-15 m/s, using all methods, indicates errors less than 0.5%. 
For extrapolation in the lower velocity range of 0.7-3 m/s, the 
standard deviation obtained with polynomial is larger than 
100%. The standard deviation for power law method is about 
28%. These standard deviation values are unacceptable. 
Therefore, these methods cannot be used for extrapolation 
in the lower velocity range. However, the standard deviation 
associated with the present approach has been reduced to 
about 4.5%. Within the extrapolated velocity range, higher 
than 15-30 m/s, the standard deviation values for polynomial 
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and power law methods are about 10% and 5%, respectively. 
The standard deviation obtained with the present approach 
is less than 0.7%. For the entire 0.7-30 m/s range, the standard 
deviation associated with the present approach is about 2%, 
which is acceptable for spirometry applications.[4]

conclusions

Calibration curve of hot-wire is nonlinear and cannot be 
easily extrapolated. Therefore, it will be advantageous to 
find a reliable method for extrapolation of the calibration 
curve at velocities lower or higher than the calibration range.

Curve fitting methods such as polynomial, power law 
and neural network methods have been used. The entire 
calibration range considered in this study is large, resulting 
in a large U Umax min  ratio. Extrapolation of data in the lower 
velocity range (0.7-3 m/s) using the power law, polynomial 
and the conventional neural fitting methods are not 
acceptable. Therefore, a novel approach based on the neural 
network method has been used for extrapolation purpose. 
The error using this approach for 0.7-3 m/s velocity range 
has been reduced to about 4.5%, which is acceptable for 
spirometry applications.

Results of extrapolation of data in the higher range of 
calibration range show that power law and polynomial 
methods are associated with larger errors (more than about 
3%), which is not acceptable. However, the present approach 
has an error of less than about 1%, which is acceptable.

The above discussions suggest that in order to extrapolate 
the calibration curve outside the calibration range, the 
present approach can be used with advantage. In practice, 
the procedure will consist of obtaining the extrapolated 
calibration curve using the present approach, fitting the 
extrapolated data using the polynomial fitting method, and 
determining the corresponding polynomial coefficients. 
Subsequently, the general polynomial equation is used to 
determine the instantaneous velocity values U from the 

corresponding CTA output voltage values E. Look up tables 
can also be used, where the corresponding U and E values 
are presented for easy use.

In addition, as stated in the Introduction Section, due to 
the trainability of neural network estimator, it is possible 
to re-train and update the neural network with new 
data (collected during the spirometer use) without the need 
for re-estimation of the entire calibration curve. However, 
in the case of other estimating methods, it is not possible 
to make use of this important characteristic, and therefore, 
it becomes necessary to measure and use all data over the 
complete range of velocity for the re-estimation of the 
calibration curve.
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