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INTRODUCTION

“Magnetic resonance imaging (MRI) is an imaging technique 
that used primarily in the clinical diagnosis and biomedical 
research to produce high resolution and contrast images of 
the soft‑tissue anatomy.”[1] By increasing size and number 
of medical images, the use of computers in their processing 
and analysis is necessary. Segmenting different tissues in 
MRIs of the human brain is an important pre‑processing 
stage for different tasks.

There are many methods for brain MRIs tissue 
segmentation. These methods can be categorized into 
three groups:  (i) contour‑based segmentation such as 
active contour algorithm.[2,3] (ii) Region‑based segmentation 
techniques.[4]  (iii) Classification‑based segmentation that 
includes supervised and unsupervised methods. Supervised 
segmentation methods such as neural networks[5] and support 
vector machines[6] lead to high accuracy but they require a 
large amount of labeled data, which is hard, expensive and 
slow to obtain. Furthermore, they cannot use unlabeled 
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data to train classifiers. On the other hand, unsupervised 
learning methods such as Marcov random field  (MRF),[7] 
Fuzzy C means[8] and spectral clustering,[9] remove the costs 
of labeling and do not use the label of training data. So, 
these methods have no prior knowledge and will have lower 
performance respect to supervised methods.

To overcome these problems, in this paper, we propose a 
semi‑supervised approach for segmenting of brain MRIs 
tissues. Recently, several semi‑supervised algorithms 
such as Co_Training,[10] Transductive Support Vector 
Machines  (TSVMs),[11] expectation maximization  (EM)[12] 
and graph‑based methods[13] have been presented although 
none of them have been used for MRI segmentation. The 
proposed method in this paper is an ensemble frame‑work 
that uses the results of several semi‑supervised classifiers 
simultaneously. Figure 1 illustrates an overall view of this 
frame‑work.

In this figure, first, several different semi‑supervised 
classifiers are trained. Then, test data labeling is carried out 
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by using all trained classifiers and a central decision making 
unit. This unit also uses some policies to make the appropriate 
decision. Clearly, selecting appropriate classifiers and using 
efficient decision making policies have important roles in 
the performance of this frame‑work. For this purpose, in 
this paper, we present two semi‑supervised algorithms that 
are improved versions of semi‑supervised classifiers EM 
and Co_Training. Then, we use these improved classifiers 
together with graph‑based semi‑supervised classifier as the 
components of the ensemble approach.

This paper is organized as follows: In section 2, we introduce 
three methods that were used for extracting features 
from brain MRIs. Semi‑supervised classifiers including 
expectation filtering maximization  (EFM), MCo_Training 
and graph‑based method are presented in section 3. 
The proposed ensemble semi‑supervised frame‑work 
will be explained in section 4. Section 5 investigate the 
experimental results of our frame‑work and compare them 
by supervised and individual semi‑supervised classifiers. In 
final, Discussion and conclusion comes in section 6.

FEATURE EXTRACTION

Pixel classification is a common method that models image 
segmentation task as a labeling problem. In this model, 
each MRI image with its segmentation can be shown by 
the pair X YMRI,  that is defined on 2D lattice P = {pij | 1 ≤ 
i ≤ m, 1 ≤ j ≤ n}, where P is a set of pixels, m and n are image 
dimensions, X x k PMRI

k= ∈{ | },
 
xk  is the feature vector of 

pixel k, y = {yk ∈ Γ |k ∈ P}, yk is assigned label of pixel k, 
Γ = {l1, l2,…,lM} is a set of labels that are associated with 

tissues and M is the number of different brain tissues. Using 
this description, the purpose of image segmentation is to 
assign appropriate labels to all pixels in a MRI image.

The feature vector 

x, can be obtained using various 

feature extraction methods. The intensity‑based feature 
extraction method is very straightforward. In this method 
x x G k PMRI

k= { | }
∈ ∈  and G ∈ [0, 255] is the range of gray 

level. However, intensity‑based method is not sufficient for 
good segmentation.[14] Therefore, in this paper we extract 
three types of features: Stationary wavelet transform (SWT) 
features, edge features, and fractal features. Then, we 
combine these features with intensity of each pixel and the 
horizontal and vertical location of it to create a new feature 
set with totally 65 features for each pixel (25 SWT features, 
25 edge‑based features, 12 fractal features, intensity feature 
and horizontal and vertical locations of pixel).

Combining these features for each pixel may decrease both 
accuracy and speed. Therefore, selecting an appropriate 
subset of them has a significant role in improving accuracy 
and managing complexity. In this paper, we use a forward 
feature selection method for selecting nine salience features 
and identify them as final selected feature set. The first three 
features of this set is belong to edge‑based feature set (the 
9th, 20th  and 21th  features of edge‑based feature set), the 
next three features is belong to fractal feature set (the 9th, 
11th and 12th features of fractal feature set), the next feature 
is the 6th  feature of SWT feature set and two last features 
are intensity and horizontal location of each pixel. In next 
subsections, we describe these methods by details.

Stationary Wavelet Transform Feature

WT[15] is used frequently in feature extraction of MRIs. The 
WT produces several representation of image at various 
resolutions and also captures both frequency and location 
information. The discrete wavelet transform  (DWT) is a 
powerful implementation of the WT using the dyadic scales 
and positions. DWT can be expressed as Eq. 1 Where cAjk and 
cDjk refer to the approximation and the detailed components 
coefficients respectively and l(n) and h(n) represent the low 
and high‑pass filters.[15‑17]

cA n DS x n l n kjk j
j( ) ( ) ( )*= − ∑ 2

cD n DS x n h n kjk j
j( ) ( ) ( )*= − ∑ 2 � (1)

However, “DWT suffers from time variant property. This 
means that if a MR image is a little shifted, the features 
extracted by DWT change notably.”[16,17] Hence, in this 
paper, we use SWT that is a WT algorithm designed to 
overcome the lack of translation‑invariance of the DWT.[18] 
Translation‑invariance is achieved by removing the up and 
down samplers in the DWT and up sampling the filter 
coefficients by a factor of 2j−1 in the jth level of the algorithm. 

Figure 1: An overall view of ensemble semi-supervised frame-work. White 
arrow shows training and gray arrows show test image segmentation process
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In this study, we performed a 3‑level SWT on MRIs and 
extracted 25 features for each pixel.

Edge Features

Edge detection operators are based on this idea that 
edge information in an image are found by looking at 
the relationship a pixel has with its neighbors.[19] An edge 
is defined by a discontinuity in gray‑level values. In edge 
detection methods two masks that is Gx and Gy, are used 
to approximate the gradient of an input image xMRI to 
determine edge points. Edge detectors can perform well on 
uncorrupted images, but are highly sensitive to noise. To 
reduce the effect of noise, it’s attempted to find edges in 
smoothed images rather than the original ones. Here, first 
the 3 × 3 Gaussian filter is used to remove the noisy pixels 
from the original MRIs. Then, we applied edge detection 
operators Sobel and Laplacian on smoothed images. We 
obtain 25 edge‑based features using the output of derivative 
filters (dx, dy, dxy, dxx, dyy) at five different scales.

Fractal Features

“Fractals are geometric objects that have a non‑integer 
fractal dimension  (FD). These objects are found in many 
places in nature, including mountains and coastlines. Some 
parts of the human body, such as the lungs, brain tissues, and 
tumors also appear to grow in the form of fractals or exhibit 
fractal characteristics.”[20] So, we use FD analysis to extract 
features for brain MRIs tissue segmentation and calculate 
FD by Blanket, Piecewise Modified Box‑Counting  (PMBC) 
and Piecewise Triangular Prism Surface Area  (PTPSA) that 
are three FD computation algorithms.

First, we divide each image into sub‑images with specific 
dimension. Then, we use one of the three algorithms to 
compute the FD for each sub‑image. In PMBC algorithm,[20,21] 
Each sub‑image was divided into boxes of several sizes, and 
the difference between the maximum and minimum gray 
values was computed for each box. After that, through a 
final processing, FD is calculated for that sub‑image. In 
PTPSA[20‑22] technique as in PMBC, each sub‑image was 
divided into several boxes. Next, a more accurate procedure 
using the four corners and center gray values was used to 
gain FD for sub‑image.

Unlike two preceding algorithms, the blanket method[20] 
does not divide each sub‑image into boxes. Instead, it 
uses an iterative process for comparing each pixel with 
its surrounding pixels and finally calculates FD for each 
sub‑image. In all three algorithms, after calculating FD value 
for each sub‑image, this value is assigned to all pixels in 
it. If we divide each 256 × 256 image in to 4 × 4, 8 × 8, 
16 × 16, and 32 × 32 sub‑images and use three algorithms 
to compute the FD for each sub‑image, then we will get 12 

FD values for each pixel.

SEMI SUPERVISED CLASSIFICATION 
METHODS

As mentioned in previous sections, the purpose of image 
segmentation is to assign appropriate labels to all pixels 
in an MRI Image. This can be achieved using supervised 
and/or unsupervised methods. In supervised method, 
pixels of images with their labels are used for training 
learners. Then, these learners are used to label new images. 
However, in unsupervised methods, there is not any labeled 
image in training step and image segmentation process is 
performed by exploiting structure and information existing 
in unlabeled pixels. Unlike supervised and unsupervised 
methods, semi‑supervised methods train the appropriate 
classifier using a few labeled data and many unlabeled data 
as well. In this section, we introduce some semi‑supervised 
methods that are used in our proposed frame‑work.

EFM Algorithm

Expectation maximization (EM) is an algorithm that provides 
a flexible approach for clustering. For the first time, McCallum 
and Nigam[23] in 1998, applied this probabilistic learning 
algorithm for semi‑supervised learning. Semi‑supervised 
EM first creates an initial weak classifier based solely on the 
labeled examples. Then, it repeatedly performs a two‑step 
procedure: At the first step  (E), it assigns probabilistically 
label to all unlabeled examples and at the second step (M), 
it learns a new maximum a posteriori  (MAP) hypothesis 
based on the examples labeled with high probability in the 
previous step.[24]

As mentioned above, EM algorithm in step E, assigns 
probabilistically label to all unlabeled examples; but in 
practice, some of these assigned labels are incorrect. This 
can decrease the accuracy of the classifier that will learn in 
step M and stop progressing in the next iterations of the 
algorithm. To solve this problem, a Modified form of EM 
algorithm called EFM is presented here.

EFM is a semi‑supervised multi‑learner algorithm that 
first, creates N initial weak classifiers based solely on 
the labeled examples by different learning algorithms. 
Then, it repeatedly performs a three‑step procedure: At 
the first step  (E), probabilistically label is assigned to all 
unlabeled examples by N learners. Therefore, in this step, 
each unlabeled data has N different labels and N different 
probabilities of labels. At the second step  (F), algorithm 
selects some reliable unlabeled data for which  (i) all N 
assigned labels are equal, and  (ii) each probability label 
is greater than a specific threshold that is determined by 
problem information. Unlabeled data that do not satisfy 
these two constraints are filtered, but the others are called 
Reliable_Unlabeled data. These data are added to labeled 
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data examples and removed from unlabeled data in the next 
iteration. At the third step  (M), a new MAP hypothesis is 
learned based on initial labeled data and Reliable_Unlabeled 
examples. At the end, N learned classifiers cooperate to 
label new data.

MCo_training Algorithm

Co_training algorithm was proposed by Blum and 
Mitchell[25,11] in 1998. In this algorithm, first, two 
classifiers are trained with a few labeled training data 
using two views. Then, each classifier classifies the 
unlabeled data, chooses a few unlabeled examples whose 
labels have been predicted most confidently and adds 
those examples to the labeled training set. The classifiers 
are retrained and the process repeats. According to,[25] 
there are three initial assumptions in the Co_training 
frame‑work that guarantee that this algorithm works well: 
(i) Feature sets can be split into two naturally independent 
views, (ii) each view of the dataset is sufficiently good for 
training learners  (sufficiency assumption) and (iii)  the 
two views are conditionally independent given the 
class (independence assumption).

However, many datasets in the real world do not satisfy 
these assumptions. To overcome this problem, first a 
method was presented based on training classifiers with the 
same view that ignored the first assumption of Co_training 
algorithm.[26] Afterward, Nigam and Ghani[27] empirically 
studied the performance of standard Co_training algorithm 
in this case. Their experimental results suggested that when 
the feature set is sufficiently large, randomly splitting the 
features and then conducting standard Co_training may 
lead to a good performance. However, there are some 
problems with small feature sets in which random splitting 
cannot lead to a good performance. To solve this problem, 
an improved version of Co_training algorithm called MCO_
training (Modified Co_training) is presented here.

The main idea of this algorithm is to create two required 
views of Co_training algorithm via feature selection methods. 
For this reason, first two subsets of initial features that 
have the best performance based on respective classifiers 
are selected by two different feature selection algorithms. 
Afterward, training classifiers in each step is carried out via 
the selected feature sets. Remaining steps are carried out in 
the same manner with Co_training algorithm except that to 
increase performance we use defined conditions in filtering 
step of EFM algorithm. At the end, two learned classifiers 
cooperate to label new data.

Graph‑based Algorithm

Graph based semi‑supervised methods are composed of 
two phases, graph construction, and label inference. Graph 
construction is a crucial step, which affects the performance. 

In constructed graph, nodes are labeled and unlabeled 
examples and edges represent similarities between them. 
Graph construction involves three selections:  (i) Similarity 
function for computing affinity matrix,  (ii) sparsification 
method, and (iii) reweighting method.[28]

In label inference phase, known labels diffuse to all the 
unlabeled nodes in the graph through semi‑supervised 
learning algorithms such as Gaussian random field  (GRF) 
method,[29] local and global consistency  (LGC) method[30] 
and the graph transduction via alternating minimization 
method.[31] These methods can be viewed as estimating a 
function f on the graph that should be close to the given 
labels yL on the labeled nodes, and be smooth on the whole 
graph. More details about graph based methods can be found 
in references.[32] After labeling the unlabeled data through 
label inference algorithm, K‑nearest neighbors  (KNN) 
classifier is trained through all examples and we use this 
classifier to label new data.

ENSEMBLE SEMI‑SUPERVISED 
FRAMEWORK

In this paper, an ensemble semi‑supervised frame‑work 
is presented for brain tissues segmentation that uses the 
results of each three algorithms introduced in section 3. 
Figure 2 shows, the training process and the segmentation 
of a test image in our proposed model.

In training step, first three feature sets are extracted 
for each pixel of training images according to section 2. 
Then, in each image, some pixels are randomly chosen 
as training pixels. A  few of these pixels are labeled and 
others remain unlabeled. Afterward, a feature selection 
process is performed to find salience features. Three 
semi‑supervised classifiers explained in section 3 are 
trained using labeled and unlabeled samples. Each 
classifier can determine the label of unseen input pixels 
and output probability as well. In Figure 2 white arrows 
show the training process.

For segmenting an image, first salience features are 
extracted for each pixel of it. Then, these pixels are entered 
to trained classifiers for labeling. Each classifier produces 
two matrixes of size m  ×  n for each m  ×  n pixels image. 
These matrixes that are called ClassifierName_Label and 
ClassifierName_Prob show allocated label to each pixel and 
its probability, respectively. Hereby, after labeling step, 
three labels are assigned to each pixel that may be similar 
or not. Three label matrixes and three probability matrixes 
are entered into decision making unit. This unit assigns final 
labels to each pixel based on input information and decision 
policies. These policies will be described in the following 
subsections. In Figure 2, the gray arrows show the image 
segmentation procedure.
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Simple Voting Policy

This policy is carried out in two steps. At the first step, 
decision making unit performs voting on the results of 
three classifiers for each pixel and assigns the winning label 
to that pixel as temporary label. Temporary label for pixel 
(s, t) can be calculated using Eq. (2)

Temp label s t arg s t
q

k
k

_ , max ,( ) = ( )



=

∑
λ ∈Γ

α
1

3

� (2)

Where  = {l1,l2,l3} is a set of associated labels to three 
white, black and gray brain tissues and ak(s, t) is defined 
through Eq. 3.

α
λ

k s t
label s t k q

otherwise
,

( , , )( ) = =



1

0

→
→

� (3)

Where label is a matrix with the size of m × n × 3. It contains 
all labels that different classifiers assign to pixels of the 
image. For example, label can be defined for pixel (m, n) as 
follow:

According to equations 2 and 3, decision making unit 
performs voting on the results of three classifiers for each 
pixel and assigns the winning label to that pixel as temporary 
label. After assigning temporary labels to all pixels, second 
step begins. In this step, final label for each pixel will be 
the one that gets the maximum number of votes between 
temporary labels of its surrounding neighbors. Eq.  4 

presents this process for each pixel in location (i, j).

Final label i j
m

t j

j

s i

i

_ , arg max( ) = 



= −

+

= −

+

∑∑λ
β

∈Γ
(s,t)

1

1

1

1

� (4)

Where the Final_label  (i, j) is the final label allocated to 
pixel  (i, j), s and t are variables for defining neighborhood 
around pixel (i, j) and b(s, t) is defined by Eq. 5.

β
λ

s t
if Temp

other
label s t m

,
� ���

�
,( ) =
=





( )1

0

Probabilistic Voting Policy

As mentioned in the previous section, the simple voting policy 
only uses allocated labels of each pixel and its neighbors in 
the label predicting process. However, probabilistic voting 
policy uses both labels and their probabilities. Like simple 
voting, this policy is performed in two steps. At the first 
step, decision making unit performs probabilistic voting on 
the results of the three classifiers for each pixel and assigns 
the winning label to that pixel as temporary label. For 
example, if predicted labels by three classifiers are l1, l1, 

l2 and corresponding probability of these labels are 0.3, 0.4 
and 0.8, then the scores of the labels l1, l2, l3 equal to 0.7, 
0.8, and 0 respectively. Therefore, with this policy, l2 will be 
the temporary label of that pixel whereas in this situation, 
simple voting policy selects l1. Temporary label for pixel 
(s, t) can be calculated using Eq. (6)

Figure 2: Illustration of ensemble semi-supervised framework. White arrows show training and gray arrows show test image segmentation process
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Temp label s t arg s t prob s t k
q k

k_ ( , ) max , , ,= ( )× ( )( )







∈

=
∑λ

α
Γ 1

3

� (6)

Where ak (s, t) is defined by Eq. 3 and prob is a matrix with the 
size of m × n × 3. This matrix contains all label probabilities 
that different classifiers assign to pixels of the image. For 
example, prob can be defined for pixel (m, n) as follow:

prob m n MCO m n( , , ) _1 = Prob ( , )

prob m n MCO m n( , , ) _2 = Prob ( , )

prob m n MCO m n( , , ) _3 = Prob ( , )

After allocating temporary label to all pixels, next step is 
performed like the second step of the simple voting policy. 
In probabilistic voting policy, final label allocation can be 
shown by Eq. 4 in which we can get b(s, t) through Eq. 5.

Maximum Probability Policy

This policy is performed in two steps and leads to better 
results compared to two other policies. In the first step, 
decision making unit temporarily assigns a label with 
maximum probability to the pixel by evaluating proposed 
labels and their probabilities with three classifiers. Temporary 
label for pixel (s, t) can be calculated using Eq. (7).

Temp label s t label s t arg prob s t k
k

_ ( , ) , , max , ,
, ,

= ( )



∈{ }1 2 3

The next step is performed like step 2 in previous policies. 
Here, the final label prediction for each pixel  (i, j) can be 
done through Eq. 4 and we can get b(s, t) using Eq. 5.

EXPERIMENTAL RESULTS

In this section, the performance of our semi‑supervised 
framework is investigated using Internet Brain Segmentation 
Repository (IBSR) dataset that were provided by the Center for 
Morphometric Analysis at Massachusetts General Hospital.[33] 
This dataset includes brain images and their ground truth (GT) 
segmentation. GT is used as a reference for performance 
evaluation of segmentation methods in our experiments.

Here, we used 24 images for the training process that one of 
them is labeled and the others are unlabeled images. Then, 
180 pixels are chosen randomly from each image and three 
sets of features are extracted for each of them according to 
section 2. Hereby, we have the total of 180 labeled and 4140 
unlabeled pixels for the training classifiers. By applying 
forward feature selection method on training examples, 
nine salience features are selected, which lead to higher 
speed in addition to appropriate accuracy.

In the next step, six brain images that are different in 
terms of shape and structure of tissues are used as the test 
images. These images and their GTs have been shown in 

two first rows of Figure 3. Then, nine selected features are 
extracted from all pixels of the test images and these pixels 
are labeled by the trained classifiers. Finally, these labels 
are used for performance evaluation of different classifiers.

Evaluation Criteria

To investigate classifiers we use three criteria; accuracy, 
precision, and energy of images. These criteria will be 
described in the following subsections.

Accuracy
The accuracy criterion is a known concept in the evaluation 
of learning methods, which is described in reference[34] for 
two classification problem. Here, we only customized this 
criterion for our tissue segmentation problem, which is a 
three classification problem. This between assigned labels 
by classifier C and real labels in GT. Through this description, 
the accuracy of classifier C is obtained using Eq. 8.

Accuracy C
Tr Eval_Matrix

m n
( )

[ ]
=

×
� (8)

Where, m and n are dimensions of the test image and 
Tr[.] is trace operator. Eval_Matrix is a M × M matrix that 
M is the number of brain tissues  (here M = 3). Each  (i, j) 
element of this matrix shows the number of pixels that 
classifier C assigns label lj to them where their actual 
label is li according to GT. Through this description, if 
i = j, then, classifier C has a correct prediction. Therefore, 
by applying trace operator  (an operator that sums the 
diagonal elements of a matrix) on the Eval_Matrix, the 
number of pixels that are correctly predicted by classifier 
C can be obtained.

Precision
The Precision criterion is a known concept in the evaluation 
of learning methods, which is described in reference[34] for 
two classification problem. Here, we only customized this 
criterion for our tissue segmentation problem, which is a 
three classification problem. Unlike accuracy, precision 
criterion is used to measure reproducibility or repeatability 
of assigning a label in the same conditions. Therefore, 
precision of classifier C can be obtained through Eq. 9.

Pr ( )
_ ( , )

_ ( , )
ecesion C

Eval Matrix i j

Eval Matrix i j
i

M=











=
∑

1





=
∑
j

M

M
1

� (9)

Energy function
Before describing this criterion, first we investigate MRF 
method. MRF is an unsupervised classification method in 
image segmentation that models spatial coherence among 
pixels using a neighboring system. In 1971, a new theory 
was ascribed to MRF by Hammersley and Clifford. Based on 
this theory, random field formed by assigned labels to an 
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image is a MRF if and only if, its probability distribution be 
Gibbes distribution according to Eq. 10[7].

P y
z

E y
T

( ) exp ( )
=

−







1
� (10)

Where y is an array of all assigned labels to an image, Z is 
normalization constant, T is temperature parameter and 
E(y) is defined by Eq. 11.[7]

E y v k y i j
k Nj

n

i

m

( ) , ,= ( )( )∑∑∑
== ∈11

� (11)

Where N = {y(i−1, j), y(i+1, j), y(i, j−1), y(i, j+1)} is a set 
of 4 immediate neighbors of y  (i, j), m and n are image 
dimensions and v(k, q) is defined according to Eq. 12.[7]
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Now, we should find the labels of the pixels (means y array) 
in a way that minimizes energy function of Eq. 13.[7]
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Where l = y (i, j), X (i, j) is the gray value of pixel (i, j). μ1 and 

sl
2 are the mean and covariance for gray level of pixels with 

label λl respectively.

In this paper, however, we do not use MRF method for 
image segmentation. Here, we use energy function of Eq. 
13 as the criterion for performance evaluation of presented 
classifiers. It is clear that unlike accuracy and precision 
criteria, lower values of the energy function in a constant 
temperature show more appropriate performance of 
classifiers in brain image segmentation.

Performance Evaluation for Supervised 
Classifiers

Before evaluating the segmentation performance in 
semi‑supervised methods, first we investigate the 
performance of supervised methods in MRI image 
segmentation. For this purpose, three supervised 
classifiers (KNN with k = 10), Support Vector Machine (SVM), 
and naïve Bayesian are trained separately using 180 labeled 
data. Then, we compute accuracy and precision of these 
classifiers for test data using Eq. 8 and 9. Table 1 represents 
segmentation accuracy and precision of the three supervised 
classifiers on test images and Figure  3 illustrates their 
segmentation results.

Figure 3: Segmentation results for supervised methods: Support vector machine, K-nearest neighbors and Naïve Bayesian
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As can be observed in Figure 3, supervised methods cannot 
produce acceptable results when we have a few labeled 
data. For example, KNN and SVM classifiers fail to recognize 
white tissue of the brain and Bayesian classifier fails in 
recognition of black tissue. These weak results lead us 
toward using semi‑supervised classifiers.

Performance Evaluation for Semi‑supervised 
Classifiers

In this section, three semi‑supervised EM, Co_Training 
and graph‑based methods are trained separately using 
180 labeled and 4140 unlabeled data. In this experiment, 
EM method uses Bayesian classifier as the basic classifier 
and Co_Training algorithm with random feature split 
uses Bayesian and SVM for this purpose. In graph‑based 
method, for construct a graph, we use Euclidean 
distance to compute affinity matrix, KNN algorithm as 
graph sparsification method, and binary method for 
reweighting. For label inference, GRF method that is 
one of the graph Laplacian‑based methods is used. After 
training above semi‑supervised classifiers, we compute 
accuracy and precision of them for test images using  
Eq. 8 and 9.

Experimental results show that the graph‑based classifier 
has produced appropriate results and can be used as one 
of the semi‑supervised classifiers in presented ensemble 
frame‑work. However, EM and Co_Training classifiers do 
not have the desired accuracy. Hence, in the next step of the 
experiment, improved versions of these classifiers called 
EFM and MCo_Training are evaluated. Three basic classifiers 

in EFM algorithm are Bayesian, SVM and KNN (k = 3), which 
the threshold value of all of them is 0.8. On the other hand, 
MCo_Training algorithm uses Bayesian and SVM algorithms 
as basic classifiers, which the threshold values of them are 
0.8 and 0.5 respectively.

Table 2 represents segmentation accuracy and precision of 
the three traditional semi‑supervised classifiers and two 
improved semi‑supervised classifiers on test images and 
Figure  4 illustrates their segmentation results. According 
to the results in this table, MCo_Training and EFM improve 
segmentation accuracy and precision in all test images 
respect to Co_training and EM respectively. So, these two 
improved classifiers can be used in ensemble frame‑work 
together with the graph‑based method. It is important 
to note that each of the three semi‑supervised classifiers 
yields more appropriate results compared to all supervised 
classifiers. Comparing Figure  4 with Figure  3 confirms  
this progress.

Performance Evaluation for Ensemble 
Semi‑supervised Framework

After specifying appropriate semi‑supervised classifiers to 
be used in presented ensemble frame‑work, we can evaluate 
the accuracy of semi‑supervised frame‑work with different 
decision policies. For this purpose, three policies; simple 
voting, probabilistic voting and maximum probability, are 
applied separately to decision making unit and therefore 
the segmentation accuracy and precision of all test images 
are evaluated. Table  3 reports these results for ensemble 
semi‑supervised frame‑work and individual semi‑supervised 

Table 1: Segmentation accuracy and precision for supervised methods: SVM, KNN and Naïve Bayesian
Learning algorithms Accuracy and precision (%)

Test image 1 Test image 2 Test image 3 Test image 4 Test image 5 Test image 6

Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre

Supervised learning approach
SVM 38.47 51.20 46.53 60.74 48.96 62.74 45.34 60.92 35.75 52.21 46.92 46.40
KNN 48.86 40.78 53.99 58.01 57.05 54.37 54.55 41.84 48.13 57.63 57.39 42.78
Bayesian 67.92 70.15 64.65 65.21 62.94 66.02 64.32 66.32 68.24 70.57 62.92 63.61

SVM – Support vector machine; KNN – K-nearest neighbors

Table 2: Segmentation accuracy and precision for semi‑supervised methods: Co_training, MCo_training, EM, EFM and 
graph‑based method
Algorithm or policy Accuracy and precision (%)

Test image 1 Test image 2 Test image 3 Test image 4 Test image 5 Test image 6

Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre

Semi‑supervised learning approach
Co‑training 54.72 59.40 55.06 57.79 49.37 54.48 51.18 54.09 58.64 63.72 48.89 51.86
MCO‑training 62.69 70.94 66.94 69.96 68.50 70.59 70.19 74.95 69.88 72.03 68.72 73.84
EM 66.78 70.09 62.39 64.59 61.87 65.91 67.39 70.25 67.72 70.76 60.10 59.28
EFM 69.47 70.92 71.45 71.84 71.97 72.83 72.16 75.50 68.47 70.98 67.69 67.32
Graph‑base 75.45 76.52 77.98 77.53 76.65 76.45 79.32 79.61 77.31 76.59 70.78 71.27

EM – Expectation maximization; EFM – Expectation filtering maximization; MCo_training – Modified Co_training; Co_training
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Table 3: Segmentation accuracy and precision for individual semi‑supervised methods and semi‑supervised ensemble frame‑work
Algorithm or policy Accuracy and precision (%)

Test image 1 Test image 2 Test image 3 Test image 4 Test image 5 Test image 6

Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre Acc Pre

Semi‑supervised learning approach
MCO‑training 62.69 70.94 66.94 69.96 68.50 70.59 70.19 74.95 69.88 72.03 68.72 73.84
EFM 69.47 70.92 71.45 71.84 71.97 72.83 72.16 75.50 68.47 70.98 67.69 67.32
Graph‑base 75.45 76.52 77.98 77.53 76.65 76.45 79.32 79.61 77.31 76.59 70.78 71.27

Semi‑supervised ensemble method
Policy 4.1 71.79 76.89 75.77 77.74 76.54 77.72 79.81 82.66 79.03 80.83 76.37 79.16
Policy 4.2 72.76 77.22 76.58 77.88 77.69 78.54 80.04 82.81 79.76 81.46 75.42 78.59
Policy 4.3 75.63 78.48 79.79 79.86 81.23 81.17 81.69 82.89 81.34 81.69 73.05 76.09

EFM – Expectation filtering maximization; MCo_training – Modified Co_training

Figure 4: Segmentation results for semi-supervised methods: Co_training, MCo_Training, expectation maximization, expectation filtering maximization and 
graph-based method
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Figure 5: Segmentation results for individual semi-supervised methods and semi-supervised ensemble frame-work
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classifiers. Figure 5 illustrates segmentation results of these 
methods.

As Figure 5 shows, by applying each of the three decision 
policies especially the maximum probability, segmented 
images have higher clarity and less noise compared to results 
of individual semi‑supervised classifiers and are more similar 
to GT images. These properties can be investigated through 

energy function criterion. Table  4 reports segmentation 
energy of each image using Eq. 13. According to this table, the 
energy of segmented images produced by ensemble method 
is clearly less than individual semi‑supervised methods. 
The diagram in Figure 6 shows this different. According to 
Table 4, each of the three policies improves segmentation 
accuracy and precision of the test image compared to all 
semi‑supervised classifiers in average.
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Table 4: Segmentation energy for individual semi‑supervised methods and semi‑supervised ensemble frame‑work
Algorithm 
or policy

Energy

Test image 1 Test image 2 Test image 3 Test image 4 Test image 5 Test image 6

Semi‑supervised 
learning 
approach

MCO‑training 28875 32859 26531 22087 14351 13571
EFM 35893 35232 29514 21006 15242 12116
Graph‑base 22887 27661 23063 16711 9488 9783

Semi‑supervised
Ensemble
Method

Policy 4.1 17047 19809 15576 12243 6809 7427
Policy 4.2 16879 19505 15575 12085 6503 7311
Policy 4.3 16306 18611 15220 11796 6700 7629

EFM – Expectation filtering maximization; MCo_training – Modified Co_training
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Figure 6: Illustration of energy levels for results of individual semi-supervised 
methods and semi-supervised ensemble frame-work

Computation Time Evaluation

In previous subsections, we evaluate the performance 
of supervised methods  (Bayesian, KNN, SVM), individual 
semi‑supervised methods  (EM, EFM, Co_training, MCo_
training, graph‑based) and ensemble semi‑supervised 
framework. In this part, we concentrate on computation 
time of these methods in testing phase and compare them 
in terms of this criterion.

For simplicity, we assume that the computation time of all 
mentioned supervised methods  (Bayesian, KNN, SVM) is 
equal to M in testing phase. So, this time is equal to 3 × M 
for EFM algorithm because it uses Bayesian, KNN and SVM 
classifiers as its basic classifiers. In the other hand, the 
computation time of MCo_training will be almost equal to 
2 × M because this method uses Bayesian and SVM classifiers 
as its basic classifiers. Finally, the computation time of 
graph‑based method is M because this method utilizes KNN 
algorithm as final classifier in test phase.

As mentioned previous, EFM, MCo_training and graph‑based 
methods are three main components of ensemble 
frame‑work. So, it is clear that the computation time of this 
method will be equal to (2 × M) + (3 × M) + M + K = (6 × M) + 
K in test phase where k is the computation time of decision  
making process.

It’s noteworthy that all mentioned semi‑supervised 
methods  (EFM, MCo_training and Ensemble frame‑work) 
can utilize parallel computation. So in this situation, the 
running time of test process in EFM and MCo_training 
methods are almost equal to M, because their basic 
classifiers can be ran parallel. In the other hand, the 
running time of our proposed ensemble frame‑work is 
equal to (M + K) because its main components can be ran 
parallel in time, M, and after that, decision making process 
can be applied in time k.

CONCLUSION AND DISCUSSION

In this paper, semi‑supervised approach was presented as a 
new approach for brain tissue segmentation in MRI images 
and evaluated through 3 criteria; accuracy, precision, and 
energy of images. This approach can produce better results 
compared to supervised classifiers through using a few 
number of training labeled data and also information and 
structure existing in unlabeled data. For this reason, two 
improved semi‑supervised EFM, MCo_Training classifiers 
and an ensemble semi‑supervised frame‑work was 
presented for brain tissue segmentation. The evaluation 
results of these classifiers on several test images reveal a 
number of interesting points:
i.	 Supervised classifiers have appropriate accuracy 

in image segmentation when they are trained with 
many labeled data. However, in many cases, obtaining 
labeled data is expensive. This motivates us to use 
semi‑supervised methods. According to the results of 
experiments, supervised classifiers cannot produce the 
suitable results when limited labeled data are available

ii.	 In conditions that limited labeled data are available, 
presented semi‑supervised classifiers can produce more 
appropriate results compared to supervised classifiers 
by exploiting information, which exist in labeled and 
unlabeled data

iii.	 By adding Filtering phase to the EM classifier, EFM 
classifier trains a confident learner in phase M and 
improves accuracy and precision of segmented images 
according to the experimental results

iv.	 By using feature selection methods, MCO_training 
classifier creates two feature sets and improves 
performance of Co_training classifier that randomly 
splits features
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v.	 By using the results of several semi‑supervised 
classifiers simultaneously, ensemble semi‑supervised 
classifier improves accuracy and precision compared to 
all supervised and semi‑supervised methods in average. 
Moreover, by reducing the energy of images and 
applying ensemble policies based on neighborhood, 
these methods increase the quality of segmented 
images and decreases noise

vi.	 Our experiments in the evaluation of unsupervised 
approaches like MRF for brain image segmentation[7] 
show that in this approach, the segmentation of an 
image requires a lot of time. While semi‑supervised 
classifiers consume a lot of time in training phase but 
perform the test image segmentation quickly. Therefore, 
supervised and semi‑supervised approaches are better 
than unsupervised methods in terms of segmentation 
time.

So, according to points i and vi, when a few labeled data 
are available semi‑supervised approach is better than 
supervised approach in terms of segmentation accuracy 
and is better than unsupervised approach in terms of 
required segmentation time. Furthermore, according to 
point v, ensemble semi‑supervised approach produces more 
suitable results compared to individual semi‑supervised 
classifiers. It is clear that using appropriate polices in 
decision making unit has an important role in improving the 
results. Therefore, defining effective policies and applying 
the presented framework in other problems like brain 
tumor segmentation can be investigated in future works.
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