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Abstract 
 

A two-dimensional steady MHD free convection and mass transfer flow past a semi-infinite 
vertical porous plate in a porous medium has been studied numerically including the 
Dufour and Soret effects. The resulting momentum, energy and concentration equations are 
then made similar by introducing the usual similarity transformations. These similar 
equations are then solved numerically by using the Nachtsheim-Swigert shooting method 
along with Runge-Kutta sixth order integration scheme. The numerical results are 
displayed graphically showing the effects of various parameters entering into the problem. 
Finally, the local values of the skin-friction coefficient (Cf), Nusselt number (Nu) and 
Sherwood number (Sh) are also shown in tabular form.   
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NOMENCLATURE: 
 

b Empirical constant Sc Schmidt number 
B0 Magnetic field intensity Sh Sherwood number 
C Concentration Sr Soret number 
cp Specific heat at constant pressure T Temperature 
cs Concentration susceptibility Tm Mean fluid temperature 
Da Local Darcy number U0 Uniform velocity 
Dm Mass diffusivity u, v Darcian velocities in the x and y-direction 

respectively 
Du Dufour number x, y Cartesian coordinates along the plate  and  

normal to it, respectively 
fw Dimensionless suction velocity α Thermal diffusivity 
Fs1 Local Forchheimer number β Coefficient of thermal expansion 
g Acceleration due to gravity β∗ Coefficient of concentration expansion 
Gr Local Grashof number σ Electrical conductivity 
Gm Local modified Grashof number ρ Density of the fluid 
K Darcy permeability ν Kinematic viscosity 
kT Thermal diffusion ratio θ Dimensionless temperature 
M Magnetic field parameter φ Dimensionless concentration 
Nu Nusselt number w Condition at wall 
Pr Prandtl number ∞ Condition at infinity 
Re1 Local Reynods number   

 
1. Introduction 
 

The study of Magnetohydrodynamic (MHD) flows have stimulated considerable interest due to its 
important applications in cosmic fluid dynamics, meteorology, solar physics and in the motion of 
Earth’s core [Cramer & Pai (1973)]. In a broader sense, MHD has applications in three different
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subject areas, such as astrophysical, geophysical and engineering problems. In light of these 
applications, steady MHD free convective flow past a heated vertical flat plate has been studied by 
many researchers such as Gupta (1961), Lykoudis (1962), and Nanda and Mohanty (1970). Raptis and 
Kafoussias (1982) studied free convection and mass transfer flow through a porous medium in the 
presence of transverse magnetic field, due to the importance of mass transfer and that of applied 
magnetic field in the study of star and planets. Recently Sattar et al. (2001) obtained similar solutions 
of a steady MHD free convection and mass transfer flow with viscous dissipation. They have used the 
perturbation method to solve the problem. 

However, in all the above studies, Dufour and Soret effects were neglected, on the basis that they are 
of a smaller order of magnitude than the effects described by Fourier’s and Fick’s laws. There are, 
however, exceptions. The Soret effect, for instance, has been utilized for isotope separation and in 
mixture between gases and with very light molecular weight (H2, He), and for medium molecular 
weight (H2, air) the Dufour effect was found to be of considerable magnitude such that it can not be 
neglected [Eckert and Drake (1972)]. Dursunkaya and Worek (1992) studied the diffusion-thermo and 
thermal-diffusion effects in transient and steady natural convection from a vertical surface. Recently, 
Anghel et al. (2000) included the Dufour and Soret effects on free convection boundary layer over a 
vertical surface embedded in a porous medium. Very recently, Postelnicu (2004) studied the influence 
of a magnetic field on heat and mass transfer by natural convection from vertical surfaces in porous 
media considering Soret and Dufour effects. Hence the objective of the present paper is to study the 
above-mentioned Dufour and Soret effects on steady free convection and mass transfer flow past a 
continuously moving semi-infinite vertical porous flat plate embedded in a porous medium under the 
influence of a transversely applied magnetic field. 
 

2. Mathematical Formulation: 
 

Let us consider the steady free convection and mass transfer flow of a viscous, incompressible and 
electrically conducting fluid past a continuously moving semi-infinite vertical porous plate embedded 
in a porous medium under the influence of a transversely applied magnetic field. The flow is assumed 
to be in the x-direction, which is taken along the plate in the upward direction and y-axis is normal to 
it. Initially it is assumed that the plate and the fluid are at the same temperature T  and the 
concentration level everywhere in the fluid is same. At time >0, the plate temperature and 
concentration are instantly raised to ( > ) and ( > ), which are thereafter maintained 

constant, where and are the temperature and concentration respectively outside the boundary 
layer. The induced magnetic field is assumed to be negligible, such that B = (0, B

t
wT ∞T wC ∞C

∞T ∞C
0, 0). The equation of 

conservation of electric charge ∇.J = 0 gives Jy = constant, where J = (Jx, Jy, Jz).  Since the plate is 
electrically nonconducting, this constant is zero and hence Jy = 0 everywhere in the flow. Assuming 
that the Boussinesq and boundary-layer approximations hold and using the Darcy-Forchheimer model, 
the governing equations relevant to the problem are given by: 
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where the variables and related quantities are defined in the Nomenclature. 
The boundary conditions for the model are given by: 

( )
⎭
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where U0 is the uniform velocity and v0(x) is the velocity of suction at the plate. 
We now introduce the following dimensionless variables: 
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Also by introducing the relation (6) into equation (1) we obtain 
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Introducing equations (6) and (7) into the equations (2)-(4) we obtain the following local similarity 
equations: 
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The boundary conditions are now transformed to: 
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where 
0

0
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U
xvfw υ

−=  is the dimensionless suction velocity and prime denotes differentiation with 

respect to the variable η. 
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The parameters of engineering interest for the present problem are the local skin-friction coefficient 
(Cf), the local Nusselt number (Nu) and the local Sherwood number (Sh), which are given respectively 
by the following expressions: 

( )0Re
2
1

2
1

1 fC f ′′= ,                                                                                                              (12) 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 1: Velocity profiles for different values of Gr and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 2: Velocity profiles for different values of Gm and fw. 
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Fig. 3: Velocity profiles for different values of Sr and Du. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 4: Velocity profiles for different values of Da. 
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Fig. 5: Temperature profiles for different values of Gr and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6: Temperature profiles for different values of Gm and fw. 
 

0 1 2 3 4
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ

Gm = 5, fw = 0.5, Pr = 0.71, Sc = 0.22, Sr = 0.5,
Du = 0.12, Da = 0.5, Re1= 200 and Fs1= 1.0

Curve Gr M

1 4 0.4
2 4 1.2
3 10 0.4

0 1 2 3
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

η

θ

Gr = 10, M = 0.5, Pr = 0.71, Sc = 0.22, Sr = 0.5,
Du = 0.12, Da = 0.5, Re1= 200 and Fs1= 1.0

Curve Gm fw

1 3 0.5
2 3 1.5
3 7 0.5

 
The set of equations (8) - (10) under the boundary conditions (11) have been solved numerically by 
applying the Nachtsheim-Swigert (1965) shooting iteration technique together with Runge-Kutta sixth-
order integration scheme. From the process of numerical computation, the skin-friction coefficient, the  
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local Nusselt number and the local Sherwood number, which are respectively proportional to , ( )0f ′′
( )0θ ′−  and ( )0φ ′− , are also worked out and their numerical values are presented in a tabular form. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 7: Temperature profiles for different values of Sr and Du. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 8: Temperature profiles for different values of Da. 
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3. Results and Discussion: 
 

During the course of the discussion of the effects of various parameters on the flow field the following 
considerations are made: 
(i) The value of Prandtl number Pr is taken equal to 0.71, which corresponds, physically to air. 
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(ii) The value of Schmidt number Sc is chosen at 0.22, which represents hydrogen at approx.  250C and 
1 atm. 

(iii) The values of Dufour number Du and Soret number Sr are chosen in such a way that their product 
is constant provided that the mean temperature Tm is kept constant as well. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 9: Concentration profiles for different values of Gr and M. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 10: Concemtration profiles for different values of Gm and fw. 
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(iv) Finally, the values of the local Grashof number Gr, local modified Grashof number Gm, suction 
parameter fw, magnetic field parameter M, local Reynolds number Re1, local Darcy number Da and 
local Forchheimer number Fs1 are chosen arbitrarily. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 11: Concentration profiles for different values of Sr and Du. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 12: Concentration profiles for different values of Da. 
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Under the above assumptions, results are shown in Figs. 1-12 and in Table 1. The effects of Grashof 
number and magnetic field parameter on the velocity field are shown in Fig.1. It is seen from this 
figure that the velocity decreases with the increase of magnetic field parameter while it increases with 
the increase of Grashof number (or increase of free convection current). In Fig.2 the effects of 
modified Grashof number and suction parameter on the velocity field are shown. Fig. 2 shows that the 
velocity increases   when   the   concentration   difference   between   the mean and free stream values 
increases, whereas it decreases with an increase of suction parameter indicating suction stabilizes the 
boundary layer growth.  
 
The influence of Soret number Sr and Dufour number Du on the velocity field are shown in Fig. 3. 
Quantitatively, when η = 1.0 and Sr decreases from 2 to 0.5 (or Du increases from 0.03 to 0.12), there 
is 5.48% decrease in the velocity. On the other hand, when Sr decreases from 0.5 to 0.1, there is 3.42% 
increase in the velocity. The effect of Darcy number Da on the velocity field is shown in Fig. 4. From 
this figure we observe that velocity increases with the increase of Darcy number. For large Darcy 
number porosity of the medium increases, hence fluid flows quickly.  
 
The effects of Grashof number and magnetic field parameter on the temperature field are shown in Fig. 
5. From this figure we observe that the temperature increases with an increase of magnetic field 
parameter and decreases with an increase of free convection current. The effects of modified Grashof 
number and suction parameter on the temperature profiles are shown in Fig.6. This figure shows that 
the temperature decreases with the increase of both suction parameter and modified Grashof number. 
From Fig. 7 when 0.1=η  and Sr decreases from 2 to 0.5 (or Du increases from 0.03 to 0.12), there is 
6.19% increase in the temperature, whereas the corresponding increase is 16.97% when Sr decreases 
from 0.5 to 0.1. The effect of Darcy number Da on the temperature field is shown in Fig. 8. From this 
figure we observe that temperature decreases with the increase of Darcy number. As the fluid velocity 
increases with the increase of the Darcy number, consequently temperature surrounding the plate 
decreases.  
 
Table 1: Numerical values of skin-friction coefficient (Cf), Nusselt number (Nu) and Sherwood number 

(Sh) for Gr = 10, Gm = 4, Pr = 0.71, Sc = 0.22, fw = 0.5, M = 0.5, Da = 0.5, Re1 = 200 and Fs1 = 1.0 
 

Sr Du Cf Nu Sh 

2.0 0.03 3.4231141 1.0283189 0.1296854 

1.0 0.06 3.3457474 1.0155338 0.2992750 

0.5 0.12 3.3162482 1.0019868 0.3844602 

0.4 0.15 3.3141130 0.9965224 0.4017999 

0.2 0.30 3.3287043 0.9718535 0.4381199 

0.1 0.60 3.3828661 0.9248360 0.4602605 

 
The effects of Grashof number and magnetic field parameter on the concentration field are shown in 
Fig. 9. From this figure we observe that the concentration increases with an increase of magnetic field 
parameter and decreases with an increase of free convection current. The effects of modified Grashof 
number and suction parameter on the concentration profiles are shown in Fig. 10. This figure shows 
that the concentration decreases with the increase of suction parameter as well as the modified Grashof 
number. In Fig. 11 when η = 1.0 and Sr decreases from 2 to 0.5 (or Du increases from 0.03 to 0.12), 
there is 23.11% decrease in the concentration, whereas the corresponding decrease is 7.91% when Sr 
decreases from 0.5 to 0.1. The effect of Darcy number Da on the concentration field is shown in Fig. 
12. This figure reveals that concentration of the fluid within the boundary layer decreases with the 
increase of Darcy number. 
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Finally, the effects of Soret and Dufour numbers on the skin-friction coefficient, Nusselt number and 
Sherwood number are shown in Table 1. The behaviour of these parameters is self-evident from the 
Table 1 and hence they will not discuss any further due to brevity. 
 
4. Conclusions 
 

In this paper we have studied numerically the Dufour and Soret effects on a steady MHD free 
convention and mass transfer flow past a semi-infinite vertical plate embedded in a porous medium. 
From the present study the following conclusions can be drawn: 

• The velocity profiles decrease whereas temperature and concentration profiles increase with an 
increase of magnetic field parameter. 

• The velocity profiles increase whereas temperature and concentration profiles decrease with an 
increase of free convection currents. 

• The suction stabilizes the boundary layer growth. 

• Large Darcy number (large porosity of the medium) leads to the increase of the velocity and decrease 
of the temperature as well as concentration of the fluid within the boundary layer. 
 

• For fluids with medium molecular weight (H2, air), Dufour and Soret effects should not be neglected. 
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