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Abstract 
 

Natural convection in two-dimensional rectangular enclosure is studied numerically using a 
finite element method. In the present study, top wall is considered adiabatic, two vertical walls 
are maintained at constant low temperature, the bottom wall is maintained at constant high 
temperature and the non-heated parts of the bottom wall are considered adiabatic. The aim of 
this work is to demonstrate the capabilities of this numerical methodology for handling such 
problems. The pressure-velocity form of the Navier–Stokes equations and energy equation are 
used to represent the mass, momentum, and energy conservations of the fluid medium in the 
enclosure. The finite element formulations of the dimensionless governing equations with the 
associated boundary conditions are solved by a nonlinear coupled solution algorithm using 
six-noded triangular element discretization scheme for all the field variables. The Grashof 
number is varied from 103 to 106 and Prandtl number is taken as 0.71. This study has reported 
the effect of various aspect ratios, ranging from 0.5 to 1, and inclination angles of the 
enclosure from 0º to 30º on the thermo-fluid characteristics. Results are presented in the form 
of streamline and isotherm plots as well as  the variation of the Nusselt number at the heat 
source surface under different conditions. 
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NOMENCLATURE 
 

A Aspect ratio of the enclosure  
g Gravitational acceleration  
Gr Grashof number  
H  Height of the enclosure  
k Thermal conductivity of air  
L Length of the heat source 
p Pressure 
P  Dimensionless pressure  
Pr  Prandtl number  
T Temperature 
u, v Velocity component in x and y 

direction 
U, V Dimensionless velocity 

component in x and y direction 
W  Width of the enclosure 
x, y Cartesian coordinates 
X, Y Dimensionless cartesian 

coordinates 

Greek Symbols 
α Thermal diffusivity 
β Thermal expansion coefficient 
θ Dimensionless temperature 
ν  Kinematic viscosity 
ρ Fluid density 
Φ  Inclination angle 
ε Heat source length  
∆T Temperature difference 
Subscript 
c Cold wall   
h Hot wall 
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1. Introduction 
  
Effective cooling of electronic components has become increasingly important as power dissipation 
and component density continue to increase substantially with the fast growth of electronic technology. 
It is very important that such cooling systems are designed in the most efficient way and the power 
requirement for the cooling is minimized. The electronic components are treated as heat sources 
embedded on flat surface (Incropera, 1988 and Jaluria, 1985). In many applications natural convection 
is the only feasible mode of cooling of the heat source. Besides cooling of the electronic components, 
there are numerous other practical applications of natural convective cooling in rectangular enclosures 
with various combinations of the temperature gradients, cavity aspect ratios, placement of the heat 
source and cold surfaces, etc.  
 
Following the pioneering numerical work of Chu et al. (1976) on two-dimensional, laminar natural 
convection cooling of a single, isothermal flush-mounted heater on a vertical wall inside an air-filled 
rectangular enclosure, the heat transfer problem of natural convection in a discretely heated enclosure 
is of great research interest as indicated by the considerable research activities on this subject. A natural 
convection heat transfer experiment in a tall vertical rectangular enclosure (aspect ratio 16.5) with an 
array of eleven discrete flush-heaters has been performed by Keyhani et al. (1988). It was found that 
the discrete heating in the enclosure results in a significantly augmented local heat transfer rate over 
that for an enclosure with the uniformly heated vertical wall. A follow-up study (Keyhani et al., 1988) 
for a vertical enclosure aspect ratio 4.5 with three flush heaters further revealed that the temperature of 
the heaters is strongly affected by the stratification of fluid inside the enclosure. Moreover, the effects 
of enclosure width and Prandtl number on natural convection liquid cooling of discrete flush heaters in 
a tall enclosure cooled from the top has been investigated experimentally and numerically (Carmona 
and Keyhani, 1989 and Prasad et al., 1990). Refai Ahmed and Yovanovich (1991) performed a 
numerical study to examine the influence of discrete heat source location on natural convection heat 
transfer in a vertical square enclosure. Furthermore, the temperature field of natural convection within 
a discretely heated vertical enclosure with single and dual heaters configuration has been visualized 
using Mach-Zehnder interferometry (Chadwick et al., 1991).  
 
The problem of convective heat transfer in an enclosure has been studied extensively because of the 
wide application of such process. Ostrach (1988) provided a comprehensive review article and 
extensive bibliography on natural convection in cavities. Other articles on the topic published are 
Valencia and Frederick (1989), Selamet et al. (1992), Hasnaoui et al. (1992), Papanicolaou and 
Gopalakrishna (1995), Sundstrom and Kimura (1996), Hsu and Chen (1996), Elsherbiny et al. (1982), 
and Nguyen and Prudhomme (2001), among others, who investigated natural convection in rectangular 
enclosures under various configurations and orientations. Anderson and Lauiat (1986) studied the 
natural convection in a vertical square cavity heated from bottom and cooled from one side. 
Convection in a similar configuration where the bottom wall of the rectangular cavity was partially 
heated with cooling from one side was studied by November and Nansteel (1986). It was reported that 
the heated fluid layer near the bottom wall remains attached up to the turning corner. Ganzarolli and 
Milanez (1995) performed numerical study of steady natural convection in rectangular enclosures 
heated from below and symmetrically cooled from the sides. The size of the cavity was varied from 
square to shallow where the cavity width was varied from 1-10 times of the height. The heat source, 
which spanned the entire bottom wall, was either isothermal or at constant heat flux condition. Aydin 
and Yang (2000) numerically investigated the natural convection of air in a vertical square cavity with 
localized isothermal heating from below and symmetrical cooling from sidewalls. The top wall as well 
as non-heated parts of the bottom wall was considered adiabatic. The length of the symmetrically 
placed isothermal heat source at the bottom was varied. Two counter rotating vortices were formed in 
the flow domain due to natural convection. The average Nusselt number at the heated part of the 
bottom wall was shown to increase with increasing Rayleigh number as well as with increasing length 
of the heat source.  
The geometry and coordinate system of the problem under consideration is depicted in Fig. 1. It 
consists of a rectangular enclosure of dimension, W×H, whose sidewalls are kept at a constant low 
temperature, Tc. The aspect ratio of the enclosure is defined as A = H/W. The bottom wall is maintained 
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at constant high temperature, Th and length L. The remaining parts of the bottom wall and the entire 
upper wall are adiabatic. The present study reports the computations for enclosures at various aspect 
ratios, ranging from 0.5 to 1, and inclination angles from 0º to 30º. The natural convection parameter, 
Grashof number, Gr is varied from 103 to 106. Also the ratio of the heating element to the enclosure 
width, ε = L/W and is varied from 0.2 to 0.8. 
 

 
 

Fig. 1: Schematic diagram of the physical system. 
 
2. Mathematical Model 
 
Natural convection is governed by the differential equations expressing conservation of mass, 
momentum and energy. The present flow is considered steady, laminar, incompressible and two-
dimensional. The viscous dissipation term in the energy equation is neglected. The Boussinesq 
approximation is invoked for the fluid properties to relate density changes to temperature changes, and 
to couple in this way the temperature field to the flow field. Then the governing equations for steady 
natural convection can be expressed in the dimensionless form as:  

U V 0
X Y
∂ ∂+ =
∂ ∂

 (1)

( )
2 2U U P U UU V Gr sin2 2X Y X X Y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂ ∂ ∂ ∂+ = − + + + Φ θ
∂ ∂ ∂ ∂ ∂

 (2)

( )
2 2V V P V VU V Gr cos2 2X Y Y X Y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂ ∂ ∂ ∂ ∂+ = − + + + Φ θ
∂ ∂ ∂ ∂ ∂

 (3)

2 21U V 2 2X Y Pr X Y

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎝ ⎠

∂θ ∂θ ∂ θ ∂ θ+ = +
∂ ∂ ∂ ∂

 (4)

where X and Y are the coordinates varying along horizontal and vertical directions, respectively, U and 
V are the velocity components in the X and Y directions, respectively, θ is the temperature, P is the 
pressure, and Φ is the inclination angle of the enclosure with the horizontal direction, Gr and Pr, are the 
Grashof number and Prandtl number, respectively, and they defined as 

3

2
g T WGr

υ

β∆
=    and   υPr=

α
  (5)

The dimensionless parameters in the equations above are defined as follow: 

,
W
xX = ,

W
yY =

υ
,uWU =

υ
,vWV =

2

2υ
,pWP =

ρ

T Tc
T

−
θ =

∆
, T T Th c∆ = −  (6)
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where ρ, β, υ, α and g are the fluid density, coefficient of volumetric expansion, kinematic viscosity, 
thermal diffusivity, and gravitational acceleration, respectively.  
The boundary conditions for the present problem are specified as follows: 
Top wall:  

U V 0, 0
Y
∂θ

= = =
∂

 

Right and left wall:  
U V 0, 0= = θ =  
Bottom wall:  
U V 0= =  

0 for 0 X 0.5 and 0.5 X 1
Y 2 2

1 for 0.5 X 0.5
2 2

∂θ ε ε
= < < − + < <

∂
ε ε

θ = − ≤ ≤ +
 

(7)

The average Nusselt number (Luo and Yang, 2007) can be written as 

0
1Nu dX

Y

ε ∂θ
= −

ε ∂∫  (8)

 
3. Finite Element Formulation 
 
The basic idea of the solution algorithm proposed in this paper is to use the two momentum equations 
for solving both of the velocity components, use the continuity equation for solving the pressure, and 
use the energy equation for solving the temperature. The element assumes linear interpolation for the 
velocity components, the pressure, and the temperature as 
( ) i iU X, Y N U=  (9a)

( ) i iV X,Y N V=  (9b)

( ) i iP X,Y N P=  (9c)

( ) i iX,Y Nθ = θ  (9d)
where i = 1, 2, 3, 4, 5, 6; and Ni is the element interpolation functions. 
 
The two momentum equations, Eqs. (2), (3), are discretized using the conventional Bubnov-Galerkin’s 
method. However, a special treatment of the convection terms is incorporated. Using the standard 
Galerkin approach, each momentum equation is multiplied by weighting functions, Ni, and then the 
diffusion terms are integrated by parts using the Gauss theorem to yield the finite element equations in 
the form 

PX U aAU R R R= + +  (10a)

PY V bAV R R R= + +  (10b)
where the coefficient matrix A contains the known contributions from the convection term. The load 
vectors on the right-hand side of Eqs. (10a), (10b) are defined by 

PX i
PR N d
XΩ

∂
= − Ω

∂∫  (11a)

PY i
PR N d
YΩ

∂
= − Ω

∂∫  (11b)

U i x y
U UR N n n d
X YΓ

∂ ∂⎛ ⎞= + Γ⎜ ⎟∂ ∂⎝ ⎠
∫  (11c)

V i x y
V VR N n n d
X YΓ

∂ ∂⎛ ⎞= + Γ⎜ ⎟∂ ∂⎝ ⎠
∫  (11d)
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a iR N (Gr sin )d
Ω

= θ Ω∫  (11e)

b iR N (Gr cos )d
Ω

= θ Ω∫  (11f)

where Ω is the element area and Γ is the element boundary. 
 
To derive discretized pressure equation, the method of weighted residuals is applied to the continuity 
equation, Eq. (1), 

( )i i
i i x y

N NU VN d U V d N U n V n d 0
X Y X YΩ Ω Γ

∂ ∂∂ ∂ ⎛ ⎞⎛ ⎞+ Ω = − + Ω+ + Γ =⎜ ⎟ ⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠
∫ ∫ ∫  (12)

where the integrations are performed over the element domain Ω and along the element boundary Γ;        
nx and ny are the direction cosines of the unit normal to the element boundary with respect to X and Y 
directions, respectively. Now we consider 

U
ii i ij j i i

j i

PA U A U f N d
X≠ Ω

∂
= − + − Ω

∂
∑ ∫  (13a)

V
ii i ij j i i

j i

PA V A V f N d
Y≠ Ω

∂
= − + − Ω

∂
∑ ∫  (13b)

where U
if and V

if are the surface integral terms and the source term due to buoyancy. By assuming 
constant pressure gradient on an element, we get 

P
ii i

PU U K
X
∂

= −
∂

 (14a)

P
ii i

PV V K
Y
∂

= −
∂

 (14b)

where 

U
i ij j i

j iii

1U A U f
A ≠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑  (15a)

V
i ij j i

j iii

1V A V f
A ≠

⎛ ⎞
= − +⎜ ⎟

⎝ ⎠
∑  (15b)

P
i i

ii

1K N d
A Ω

⎛ ⎞
= Ω⎜ ⎟

⎝ ⎠
∫  (15c)

By applying the element velocity interpolation functions, Eqs. (9a), (9b), into the continuity equation, 
Eq. (10), we have 

( ) ( ) ( )i i
j j j j i x y

N N
N U d N V d N U n V n d 0

X YΩ Ω Γ

∂ ∂
Ω − Ω+ + Γ =

∂ ∂∫ ∫ ∫  (16a)

and introducing the nodal velocities Uj and Vj from Eqs. (14a), (14b), then Eq. (14) becomes, 

( ) ( )

( ) ( ) ( )

P Pi i
j j j j

i i
j jj j i x y

N NP PN K d N K d
X X Y Y
N NN U d N V d N U n V n d
X Y

Ω Ω

Ω Ω Γ

∂ ∂∂ ∂
Ω+ Ω =

∂ ∂ ∂ ∂
∂ ∂

Ω+ Ω− + Γ
∂ ∂

∫ ∫

∫ ∫ ∫
 (16b)

 
Finally, by applying the element pressure interpolation functions, Eq. (9c), the above element equations 
can be written in matrix form with unknowns of the nodal pressures as 
( )X Y U V CK K P F F F+ = + +  (17)
where 

( )P
X j j

N NK N K d
X XΩ

∂ ∂
= Ω

∂ ∂∫  (18a)
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( )P
Y j j

N NK N K d
Y YΩ

∂ ∂
= Ω

∂ ∂∫  (18b)

jU j
NF N U d
XΩ

∂
= Ω

∂∫  (18c)

jV j
NF N V d
YΩ

∂
= Ω

∂∫  (18d)

( )C x yF N U n V n d
Γ

= − + Γ∫  (18e)

The above element pressure equations are assembled to form the global equations; boundary conditions 
for the specified nodal pressures are imposed prior to solving for the updated nodal pressures. 
 
The finite element equations corresponding to the energy equation are derived using an approach 
similar to that used in deriving element momentum equations. The standard Galerkin method is applied 
to yield the element equations which can be written in matrix form as 
K Rθ =  (19)
where  

i x y
1R N n n d
Pr X YΓ

∂θ ∂θ⎛ ⎞= + Γ⎜ ⎟∂ ∂⎝ ⎠
∫  (20)

These elements equations are again assembled to yield the global temperature equations. Appropriate 
boundary conditions are applied prior to solving for the new temperature values. 
 
4. Numerical Procedure 
 
The numerical procedure used to solve the governing equations for the present work is the combined 
finite element method. The application of this technique is well documented Zienkiewicz and Taylor 
(2000). It provides the smooth solutions at the interior domain including the corner regions. The non-
linear parametric solution method is chosen to solve the governing algebraic equations. This approach 
will result in substantially fast convergence assurance. A non-uniform triangular mesh arrangement is 
implemented in the present investigation especially near the heated wall to capture the rapid changes in 
the dependent variables. Also six noded triangular elements are used in this paper since the six noded 
elements smoothly capture the non-linear variations of the field variables. All six nodes are associated 
with velocities as well as temperature, only the corner nodes are associated with pressure. Solutions 
were assumed to converge when the following convergence criteria was satisfied for every dependent 
variables at every point in the solution domain 

6new old

old
10−Ψ −Ψ

≤
Ψ

  (21)

where Ψ represents a dependent variable U, V, P, and θ. 
 
5. Results and Discussion 
 
The working fluid is chosen as air with Prandtl number, Pr = 0.71. The normalized length of the 
constant heat source at the bottom wall, ε, is varied from 0.2 to 0.8. For each value of ε, the Grashof 
number, Gr, is varied from 103 to 106, the aspect ratio, A, is varied from 0.5 to 1 while the inclination 
angle, Φ, is varied from 0º to 30º. To test and assess grid independence of the present solution scheme, 
many numerical runs are performed for higher Grashof number as shown in Table 1. These 
experiments reveal that a non-uniform spaced grid of 6394 elements for the solution domain is 
adequate to describe correctly the flow and heat transfer processes inside the enclosure. In order to 
validate the numerical model, the results are compared with those reported by Sharif and Mohammad 
(2005), for A = 1.0, Gr = 103 to 106, ε = 0.2 and Φ = 0°. In Table 2, a comparison of the average 
Nusselt number of the square enclosure is presented. The agreement is found to be excellent with a 
maximum discrepancy of about 1.01%, which validates the present computations indirectly. 
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Table 1: Comparison of the results for various grid dimensions (A = 1.0, Gr = 106, ε = 0.2, Φ = 0°). 

Elements 1970 2902 3540 4608 4828 6394 12606 
Nu 16.229 16.854 16.379 16.487 16.534 16.581 16.581 

Table 2: Comparison of the average Nusselt number of the square enclosure for ε = 0.2 and Φ = 0°. 

Average Nusselt Number, Nu Gr Sharif and Mohammad (2005) Present Work Error (%) 
103 5.927 5.939 0.2 
104 5.946 5.954 0.13 
105 7.124 7.117 0.1 
106 11.342 11.226 1.02 
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 Gr = 103 Gr = 106 
Fig. 2: Evolution of the flow in the enclosure with the variation of Gr for A = 1.0, ε = 0.4 and Φ = 0º. 

5.1 Effect of Grashof Numbers: 

The evolution of the flow and thermal fields with Grashof number for an enclosure of aspect ratio, A = 
1 for a representative case with ε = 0.4 and Φ = 0º is presented in Fig. 2. For various Gr = 103-106, the 
flow pattern is characterized by two symmetrical rolls with clockwise and anti-clockwise rotations 
inside the enclosure. The hot fluid rises in the central region as a result of buoyancy forces, and then it 
descends downwards along the vertical walls and turns horizontally to the central region after hitting 
the bottom wall. The flow then rises along the vertical symmetry axis and gets blocked at the adiabatic 
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top wall, which turns the flow horizontally towards the cold vertical walls. Thus a pair of counter-
rotating rolls is formed in the flow domain. At Gr = 103, as can be expected, heat transfer from the 
discrete heat source is essentially dissipated via a conduction-dominated mechanism as indicated by the 
isotherm pattern shown in Fig. 2. For Gr > 103, the buoyant convection flow in the central region 
between the rolls distorts the isotherms field. The distortion of the isotherm field increases with 
enhanced buoyancy as Gr increases, where the heat transfer becomes increasingly advection 
dominated. With increase of Gr to 106 a transformation from a primarily two symmetrical rolls pattern 
to a structure characterized by two large vortices near the central regions, moving towards upper wall. 
Therefore, the prevailing conductive heat transfer for Gr = 103 and the mushroom profile of the 
isotherms for Gr = 106 are presented in Fig. 2. Also viscous forces are more dominant than the 
buoyancy forces at lower Gr. At higher Gr when the intensity of convection increases significantly, the 
core of the circulating rolls moves up and the isotherm patterns changes significantly indicating that the 
convection is the dominating heat transfer mechanism in the enclosure. 

 Streamlines Isotherms 

A
 =

 1
.0

 

  

A
 =

 0
.5

 

  
Fig. 3: Streamlines and isotherms profiles for different aspect ratios with ε = 0.2, Φ = 0º and Gr = 104. 

 
5.2 Effect of Aspect Ratio: 

The buoyancy-driven flow and temperature fields inside the discretely heated enclosure of various 
aspect ratios are illustrated by means of contour maps of streamlines and isotherms, as exemplified in 
Figs. 3 for two different aspect ratios of 0.5 and 1.0 with Φ = 0º, ε = 0.2, and Gr = 104. As expected, 
due to the cold vertical walls, fluids rise up from middle portion of the bottom wall and flow down 
along the two vertical walls forming two symmetric rolls with clockwise and anti-clockwise rotations 
inside the cavity for all aspect ratios. However, in the convection region adjacent to the heat source, the 
isotherms become thinner and denser producing higher temperature gradients (increasing the overall 
Nusselt number) with increasing A, specially until the cavity changes from thin rectangle to square. 
This is due to the fact that the cavity volume increases with aspect ratio and more volume of cooling air 
is involved in cooling the heat source leading to better cooling effect. 

For A = 0.5, the two convection rolls appeared in the rectangular cavity, each half filled up with 
clockwise or anti-clockwise circulation in a square area. At Gr = 104, the circulation intensity is not 
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much higher and the heat transfer is almost due to conduction, as evident from the isotherm plots (Fig. 
3). During conduction dominant heat transfer, the temperature contours with θ = 0.35 occur 
symmetrically near the side walls of the enclosure. The other temperature contours with θ ≥ 0.4 are 
nearly smooth curves which span from the middle-bottom of the enclosure and they are generally 
symmetric with respect to the vertical center line. With increase of the aspect ratio of the enclosure, the 
buoyant convection flow is increasingly strengthened, exhibiting a transformation from two square size 
recirculation rolls into a structure characterized by two rectangular high strength vortices. At A = 1.0, 
the circulation on each half of the cavity becomes stronger as they expand vertically and consequently, 
the temperature contour with θ = 0.15 starts getting shifted towards the side wall and they break into 
two symmetric contour lines. The presence of significant convection is also exhibited in other 
temperature contour lines which start getting deformed and pushed towards the top plate. 

 Streamlines Isotherms 

ε 
= 

0.
2 

  

ε 
= 

0.
6 

  
Fig. 4: Streamlines and isotherms for different heat source ratios ε with A = 0.5, Gr = 106, and Φ = 0º. 

5.3 Effect of Discrete Heat Source Length: 

The flow and temperature fields in terms of computed streamlines and isotherms for two representative 
values of the dimensionless source length ε = 0.2 and 0.6 are shown in Fig. 4. In each case, the flow 
descends downwards along the moving sidewalls and turns horizontally to the central region hitting the 
bottom wall. The circulation in each half of the cavity follows a progressive wrapping around the 
centers of rotation, and a more pronounced compression of the isotherms toward the boundary surfaces 
of the enclosure occur. Visual examination of the streamlines does not reveal any significant difference 
among the different cases. However, noticeable difference is observed in the isotherm plots. For Gr = 
106, the temperature gradients near bottom and side walls tend to be significant leading to the 
development of a thermal boundary layer. Due to greater circulations near the central core at the top 
half of the enclosure, there are small gradients in temperature whereas a large stratification zone of 
temperature is observed at the vertical symmetry line due to stagnation of flow.  

The convection region adjacent to the heat source becomes thinner and denser producing higher 
temperature gradients with increasing Gr. The heat transfer rate affect significantly with the increasing 
ε because the energy transport increases due to the increased area of the heated port. Since the isotherm 
plots change with Gr, it is the parameter of focus in the analysis for all cases. For Gr ≥ 104, the 
buoyancy becomes dominant the heat transport and the isotherms with high values tend to concentrate 
near the heat source surface. It is noticed that the temperature decreases from the bottom to the top 
along the centerline of the cavity for a particular value of ε. At a fixed height, the temperature increases 
as the heat source length ε grows. The temperature profiles clearly express the heat transfer behavior 
expected from the isotherms given in Fig. 4, where the most intensive heat transfer region is located 
near the heat source surface due to the presence of large temperature gradients. The temperature 
gradients of the cooling air decrease as it ascends from the bottom. When the heat source length ε 
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increases, more heat is transferred into the system, thus the whole temperature level in the cavity is 
upgraded. 
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 Φ = 0º Φ = 30º 

Fig. 5: Evolution of the flow in the enclosure with inclination angles for A = 1, Gr = 105, and ε = 0.4. 

 
5.4 Effect of Inclination Angles: 

The evolution of the flow and thermal fields in the enclosure with increasing inclination are shown in 
Fig. 5 for a representative case of aspect ratio A = 1 and Gr = 105 with ε = 0.4. It is observed that for 
horizontal cavity (Φ = 0°), where the buoyancy force is acting only in the y-direction, two recirculation 
cell is formed and the solution is symmetric about the vertical midline due to the symmetry of the 
problem geometry and boundary conditions. For the inclined enclosure this symmetry is completely 
destroyed due to the buoyancy force components acting in both x and y directions. The effect of cavity 
inclination is clearly visible on both the flow patterns and isotherms. This is evident at Φ = 30°, when 
the left recirculating vortex becomes dominating in the enclosure while the right vortex is squeezed 
thinner and ultimately is divided into two minor corner vortices. This circulation inside the cavity is 
greater near the center and least at the wall due to no slip boundary conditions. When Gr increases, the 
convection roll located at the left half of the square enclosure tends to merge in order to form a single 
large recirculation cell compared to two minor corner vortices. The isotherms are also adjusted 
according to the changes in the flow field and pushed towards the lower part of the right sidewall 
indicating the presence of a large temperature gradient there.  
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Fig. 6: Variation of the Nu at the heated surface with Gr for various (a) aspect ratios, (b) heat source 
sizes, (c) inclination angles. 

 
5.5 Heat Transfer: 

Next attention is focused upon the influence of the aspect ratio, inclination angle and discrete heat 
source size on the heat transfer rate across the discretely heated enclosure. The variation of the average 
Nusselt number, Nu, at the heated surface with Grashof number, Gr, for the entire set of the heated 
surface lengths (ε), aspect ratios (A), and cavity inclination angles (Φ) investigated are shown in Fig. 
6(a), (b) and (c), respectively, from which some interesting trends are observed. In general, the average 
Nusselt number remains invariant up to a certain value of Grashof number and then increases briskly 
with increasing Grashof number. For low Grashof number, the curves maintain a flat trend that means 
low temperature gradients but Nu increases rapidly with Gr especially for Gr > 104. For a particular 
Grashof number, the average Nusselt number increases with increasing aspect ratio. These variations of 
the average Nusselt number differ greatly at higher Grashof number and vice versa. From these 
observations, it can be concluded that the overall heat transfer process improves as the aspect ratio 
increases until the cavity becomes square.  

The variation of the average Nusselt number against Gr is shown in Fig. 6(b) for various values of ε. 
Concentrating on each plot separately for a particular value of ε, a trend of Nu increasing with Gr, is 
observed. When Gr ≥ 104, the buoyancy aids more and more in the heat transfer process which results 
in more rapid increase of Nu. An important information obtained from this analysis is the effect of heat 
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source length on the heat transfer rate. Due to the symmetrical boundary conditions, two symmetric 
convection cells are generated and their interface behaves like an insulator. The centre of the heat 
source surface becomes the stagnation point of the heat transfer area, and attains the maximum 
temperature and minimum heat transfer rate. An increase in ε increases the rate of formation of 
convection cells which in turns decreases the average Nusselt number from the central area of the 
cavity. Maximum Nu is obtained at small heat source size for higher value of Gr while Φ = 0° for A = 
0.5 and Φ = 30° for A = 1.0. 
 
6. Conclusion 
 
Natural convection in two-dimensional rectangular enclosure where the top wall is considered 
adiabatic, two vertical walls are maintained at constant low temperature, and the bottom wall is 
maintained at high temperature has been analyzed numerically using the finite element method. The 
resulting processes are investigated to yield quantitative results regarding the cooling effects. The main 
parameters of interest are Grashof number, Gr, the dimensionless heat source length, ε, the inclination 
angle with horizontal axis, Φ, and the aspect ratio of the cavity, A. 
The resulting flow consists of two counter-rotating vortices. As far as the temperature field is 
concerned, at low values of Grashof number, the temperature is found to be more evenly distributed 
within the enclosure, and a relatively large region of the enclosure is affected by the heat source. As 
Grashof number increases and natural convection dominates, the temperature variation is restricted 
over a gradually diminishing region around the heat source. It is also noticed that the heat-affected 
region becomes larger with the increasing heat source length.  
The average or overall Nusselt number increases mildly with cavity inclination for Gr = 104 while it 
increases much more rapidly at Φ = 30º for higher Grashof number. The effect of enclosure aspect ratio 
on the average Nusselt number of the discrete heaters tends to improve with the increase of the Grashof 
number. 
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