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Abstract
Purpose: The use of more potent medicine for local chemotherapy of retinoblastoma
in order to minimize local and systemic adverse effects is essential. The main goal of
this investigation was to assess the biodistribution of thiolated and methylated chitosan-
carboxymethyl dextran nanoparticles (CMD-TCs-NPs and CMD-TMC-NPs) following
intravitreal (IVT) injection into rat eyes with retinoblastoma.
Methods: An ionic gelation method was used to fabricate Cy5-labelled CMD-TCs-NPs
and CMD-TMC-NPs. The NPs were characterized. Cellular internalization of Cy5-labelled
NPs was investigated using confocal microscopy and the absorption of labeled NPs
was quantified by flow cytometry in human retinoblastoma (Y79) cells. In addition,
the Cy5-labeled distribution of nanoparticles in the posterior segment of the eye was
histologically imaged by confocal microscopy after IVT injection of NPs into the eyes of
rats with retinoblastoma.
Results: CMD-TCs-NPs and CMD-TMC-NPs showed a mean diameter of 34 ± 3.78 nm
and 42± 4.23 nmand zeta potential of +11±2.27mVand +29± 4.31mV, respectively. The
in vivo study of intraocular biodistribution of Cy5-labeled CMD-TCs-NPs and CMD-TMC-
NPs revealed that there is more affinity of CMD-TCs-NPs to the retina and retinoblastoma
tumor after IVT administration while methylated chitosan nanoparticles are immobilized
in the vitreous and are not able to reach the retina even after 24 hr.
Conclusion: The ionic gelation technique was efficient in synthesizing a biocompatible
polymeric nanosystem for drug delivery into the posterior segment of the eye. The
current study demonstrated increased ocular bioavailability of CMD-TCs-NPs relative to
CMD-TMC-NPs in retinoblastoma induced rat eyes.
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INTRODUCTION

The blood–retinal barrier prevents large molecules
from passing into the retina from the blood
and choriocapillaris.[1] The presence of efflux
transporters and the pigmented structure of the
choroid are the major limiting factors affecting
therapeutic molecule penetration from the choroid
to the retina and subsequently into the vitreous.[2, 3]
Sclera mainly limits the delivery of lipophilic drugs.
The effect of the molecular radius however is
greater than that of lipophilicity, which affects
the scleral permeability of the drug.[1] Vitreous,
which consists mostly of 99% water, also contains
only a few solid components, such as collagen
and glycosaminoglycans.[4] The vitreous poses
a substantial barrier to injectable therapeutic
molecules, especially to the diffusion of suspended
solids or combinations of high molecular weight.[5]

Intravitreal (IVT) injection is the most popular
method for delivering drugs into the posterior
portion of the eye. It delivers the needed
therapeutic concentration of the drug to the
posterior segment with minimal but considerable
hazards.[6–8] With recent developments in
nanocarriers, polymeric carriers are being
employed in facilitating drug delivery to the
eye to improve the drug’s bioavailability.[9–12]
Natural polysaccharides are attractive for the
formulation of ocular medications because they
are nontoxic, economical, available, generally
biodegradable and biocompatible, and usually
amenable to chemical modification to fabricate
new derivatives.[13–18] Chemical modifications have
been recently used to fabricate derivatives with
improved properties in terms of mucoadhesion,
increased ocular bioavailability, and drug
solubilization.[19–23]

The bioavailability of NPs in the retina can be
enhanced using this technique. It is proven that
PEG-coated polystyrene NPs with neutral surface
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charge up to the size of 750 nm could freely
diffuse through bovine vitreous to reach the retina.
Diffusion coefficients in nanoparticles were found
to be greater at 100–500 nm rather than at 750 nm.
Carboxylic groups coating was used to fabricate
negatively charged beads, which were able to
readily diffuse through the vitreous. Negatively
charged nanoparticles, on the other hand, are
more impacted by size than neutrally charged
NPs, as a negative-500nm-particle was unable to
efficiently disperse through vitreous fluid.[26] When
nanoparticles made of human serum albumin
(HSA), hyaluronic acid, or a combination of the two
are injected intravitreally, they can reach the retina.
Polyethylene imine nanoparticles with positive
surface charge cannot spread through the vitreous
when intravitreally injected and are therefore not
beneficial for IVT route. Nanoparticles fabricated
from glycosylated chitosan (200–500 nm) can
reach the retina when intravitreally injected but are
not able to penetrate inner limiting membrane.[27]

To the best of our knowledge, no study has been
performed to investigate the bioavailability of Cy5
fluorescent dye oligonucleotide labeled thiolated
and methylated chitosan nanoparticles following
IVT injection in the eyes of rats with retinoblastoma.
Therefore, in this investigation, we characterized
the effects of the surface charge of thiolated and
methylated chitosan NPs on the diffusion and
tissue distribution after a single IVT injection into
the retinoblastoma bearing rat eyes.

METHODS

Materials

Medium-molecular-weight chitosan (Cs) with
a degree of deacetylation of about 89% was
purchased from Primex (Karmoy, Norway).
N-ethylcarbodiimide hydrochloride (EDC), N-
hydroxysuccinimide (NHS), carboxymethyl dextran
(CMD) sodium salt (10–20 KD, 1.1–1.5 mmol
carboxyl/g), Ellman’s reagent, RPMI-1640 tissue
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culture medium, fetal bovine serum (FBS), and
dialysis tubing (molecular weight cut-off 2, and
12 kDa)‘1 were purchased from Sigma-Aldrich
(Missouri, USA). N-Methyl-2-pyrrolidone (NMP),
sodium chloride, hydrochloric acid, and sodium
hydroxide (NaOH) were all purchased from Merck
(Darmstadt, Germany). The human retinoblastoma
cell line (Y79). All chemicals were of analytical
grade.

Synthesis and Characterization of TMC

TMC was synthesized according to the method
reported by Sieval et al.[28] The degree of
quaternization (% DQ) was distinguished using 1H
NMR spectrum of TMC which was prepared by a
600 MHz spectrometer (Bruker-Biospin, Germany).
The %DQ was estimated by the following formula:

DQ = [[(CH3)3 / [H] × 1/9] × 100,

where DQ is the level of quaternization; [(CH3)3] is
the integral of chemical shift of the hydrogens of
N+(CH3)3 groups at 3.4 ppm; and [H] is the integral
of H-1 peaks between 4.7 and 5.7 ppm.[29]

Synthesis and Characterization of TMC-
Cysteine Conjugates:

The method of synthesis was according to Margit
et al.[30] In the first step, 100 milligrams (mgr) of
synthesized TMC was dissolved in 5 ml of distilled
water (DI) and then 200mgr of cysteine was added
and then mixed until dissolved. In the second
stage, EDC and NHS were added. The mixture
was then incubated for 3 hr in the dark under
continuous stirring at room temperature and the
pH was balanced to 5. Afterward, the solution was
dialyzed (membrane dialysis MW cut-off = 2 kDa)
using 1 mM HCl for three days at 4ºC. Eventually,
the solution was lyophilized to obtain a powdery
substance (TMC-cys) and stored at 4ºC. The
amount of free thiol groups attached on the TMC
backbone was determined by photometry with
Ellman’s reagent. The thioglycolic acid standards
curve was used to determine the quantitative
amount of thiol groups.[31] FT-IR spectra of TCswere
prepared with an FTIR spectrophotometer (Vectore
22, Germany).

Preparation of CMD-TCs Nanoparticles

The nanoparticles were fabricated by a simple
coacervation technique.[32] Carboxymethyl
dextran (CMD) was used as the cross-linking
agent. Nanoparticles were prepared by adding
CMD solutions to TCs or TMC solutions. Then,
an instant vortex stirring was executed and
samples were incubated at room temperature for
2 hr.

Nanoparticles Characteristics

The particle size of the nanoparticles was
distinguished by applying dynamic light scattering
on a Malvern Zetasizer Nano-ZS (Worcestershire,
United Kingdom). A Zetasizer Nano series (Malvern
Instruments) was performed to determine the
surface charge of the NPs. Field emission
scanning electron microscopy (FESEM; ZEISS)
and transmission electron microscopy (TEM, Zeiss,
EM 900) were used to study the morphology of
nanoparticles.

In Vitro Cellular Uptake of Nanoparticles

Qualitative cellular uptake of Cy5-loaded NPs
was investigated with a confocal laser scanning
microscope (Nikon, Eclipse).[33] For this purpose,
the Y79 cells were cultured in 6-wells at the
density of 2 × 105 cells per well. When the
cells reached confluence, the cells were then
incubated with Cy5-labeled TMC-CMD-NPs and
TMC-cys-CMD-NPs suspension to track their
uptake in Y79 cells. As a result of this procedure,
the nanoparticles were well-dispersed in the
culture medium at concentrations of 100 μg/ml.
Nanoparticle dispersions were incubated at
37ºC in a 5% CO2 atmosphere for 2 hr. After
aspiration of the medium, the cells were rinsed
with 10 ml of cold phosphate buffered saline (PBS)
(pH7.4) to eliminate any traces of nanoparticles
remaining in the medium. Then, the cells were
fixed with 2% paraformaldehyde for 10 min at
room temperature and stained with DAPI (4’,6-
Diamidino-2-phenylindole dihydrochloride). The
fluorescence of the Cy5-labeled nanoparticles
was monitored applying a confocal microscope
(excitation 640.8 nm/emission 662–737 nm).
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Quantifying Level of NPs Cellular Uptake By
Flow Cytometry

The cellular internalization of Cy5-labeled CMD-
TMC-NPs and CMD-TCs-NPs were reconfirmed and
compared by flow cytometric analysis in the Y79
cells. To execute, the cells were cultured in a 6-
well plate at a density of 250 × 104 cells/well.
After 24 hr of incubation, the cells were treated
with Cy5-labeled NPs at 37ºC for 2 hr. After
the incubation, cells were washed with PBS and
analyzed for intracellular fluorescence of Cy5-
labeled NPs using BD FACS Calibur flow cytometer
(BD Biosciences, San Jose, CA, USA).[34]

Rat Xenograft Model of Retinoblastoma

For this study, 10 Wistar albino rats (male, two
months old, purchased from Pasteur Institute,
Karaj, Iran) were used. All rats were treated
in accordance with the ARVO (Association for
Vision and Ophthalmology Research) Declaration
on the Procedure of Animals in Ophthalmic
and Vision Research, approved by the University
of Medical Sciences of Tehran. Surgeries were
performed by the same surgeon (FG). The rats
were immunosuppressed with daily injections
of Cyclosporin A (CsA) (Sandimmun®; Novartis).
Approximately 1 × 106 Y79 cells were intravitreally
injected to the rat eyes.[35] After retinoblastoma
tumor formation, Cy5-labeled TMC-CMD-NPs and
TMC-cys-CMD-NPs (100 µg/ml) was intravitreally
injected. The control eyes received IVT normal
saline as same concentration. All the animals were
euthanized 24 hr after the IVT injection of
Cy5-labeled nanoparticles and enucleation was
performed on them. Afterward, tissues were cut
into 5-µm thick layers using a microtome for
investigation of qualitative ocular uptake and
biodistribution of Cy5-labeled NPs, which was
done with a confocal laser scanning microscope
(Nikon, Eclipse).

RESULTS

Nanoparticles Characteristics

The 1H NMR spectrum of TMC is shown in Figure
1. In the 1H NMR spectrum of TMC, the signals
at 3.3 to 3.8 ppm were attributed to the methyl
group at the N,N,N-trimethylated site ([H3]–[H6]).[36]

FTIR spectroscopy is an efficient tool for the
investigation of the physicochemical attributes of
polysaccharide. In this study, the syntheses of TMC
and TCs were corroborated by the FTIR spectra
illustrated in Figure 2. The TMC-cys conjugate was
synthesized by the development of amide bonds
between the amino group of methylated chitosan
and carboxylic acid group of cysteine. Meanwhile,
for TMC the peak at 1470 cm−1 corresponded to
the characteristic absorption of N–CH3. The peak
at around 1250 cm−1 in the spectra of compound
was accredited to the C–SH stretching band. Also,
the spectra of thiolated-chitosan displayed two
powerful characteristic absorptions at 1641 cm−1

and 2500 cm−1 which were attributed to the
C = O double bonds of the amido group and
stretching vibration of –SH, respectively [Figure
2].[37, 38] Furthermore, the degree of substitution of
thiols using Ellman’s protocol was determined as
11%. In addition, CMD-TCs-NPs and CMD-TCs-NPs
had diameters of 34 ± 3.78 and 42 ± 4.23and
zeta potentials of 11 ± 2.27 and 29 ± 4.31 (mV),
respectively. The polydispersity index (PI) is a
parameter used to investigate the homogeneity in
the particle size distribution of synthesized NPs,
PI values <0.3 guarantees the stability of colloidal
dispersion.[39] The size distributions of the CMD-
TCs-NPs and CMD-TCs-NPs were 0.27 ± 0.05 and
0.21 ± 0.05, respectively. As demonstrated by the
SEM images [Figures 3A & 3B], CMD-TMC-NPs and
CMD-TCs-NPs were spherical in shape.

Uptake of Cy5-Labeled Nanoparticles By Y79
Cells

The cellular uptake of Cy5-labeled CMD-TCs-NPs
and CMD-TMC-NPs by Y79 cells was visualized
using a confocal microscope after 2 hr of exposure
[Figure 4]. Meanwhile, the nuclei of the Y79 cells
were stained by DAPI (blue fluorescence) in order
to ascertain the location of internalized NPs. A
direct indicator of uptake enhancement by the
Y79 cells could be increasing the number of
uptakes of NPs, which was documented by the
increase in the intensity of the red color as seen
in Figure 4. In the Cy5-labeled NPs groups, the
red signal that appeared, was mostly located in
cytoplasm. Contrastingly, a stronger red signal
was discovered to be distributed inside the cells
treated with CMD-TCs-NPs. Compared with CMD-
TMC-NPs, more bioadhesive CMD-TCs-NPs were
better adsorbed by cell membrane, resulting in
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improved endocytosis of Y79 cells and efficacious
cellular uptake [Figure 4].

Uptake with Flow Cytometry

A rapid method for the determination of the
absorption of nanoparticles in Y79 cells using
flow cytometry has been used in this research.
The cellular uptake of Cy5-labeled CMD-TCs-
NPs and CMD-TMC-NPs by Y79 cells was further
investigated by flow cytometry analysis. The
fluorescence intensity of cell emission determined
by flow cytometry can be a good marker of the
amount of NPs internalized by Y79 cells. As shown
in Figure 5, the peak of the fluorescence intensity
shifted to a higher level when the CMD-TCs-NPs
were used, suggesting the promoted Cy5-labeled
CMD-TCs-NPs internalization by Y79.

Animal Model Diffusion Study

Within the first 24 hr after the IVT injection, the
eyes were enucleated and severed into 5 μm thick
sections. The NPs distribution was investigated by
taking confocal images after the IVT injection of
the Cy5-labeled NPs [Figure 6]. The two chitosan
compositions showed various diffusion rates in the
vitreous. After the injection, only Cy5-labeled CMD-
TCs-NPs freely disseminated all over the vitreous
cavity; 24 hr after the IVT injection, confocal
microscopy demonstrated that the Cy5-labeled
CMD-TCs-NPs had accumulated throughout the
different retinal layers [Figure 6]. Also, it showed
that cationic CMD-TCs-NPs with Zeta potentials
+11 ± 2.27 mV were able to penetrate efficiently
into the rat retina, while CMD-TMC-NPs with zeta
potential value of +29 mV were trapped in the
vitreous. The distinguished diffusion rate between
the groups receiving CMD-TMC-NPs versus CMD-
TCs-NPs might be due to the difference in surface
charges of NPs.

DISCUSSION

Chemotherapy by nanoparticles has been an
effective approach in ophthalmic research in
overcoming poor intraocular bioavailability of
drugs due to the presence of anatomical barriers
and it has also contributed toward improving
therapeutic efficiency. The main purpose in the
engineering of nano-carriers in this investigation

was to develop a promising vehicle via biopolymers
to transport drugs to the posterior part of the eye.
Chitosan is a polymer that has been discovered
by researchers for the application of ophthalmic
drug delivery systems. Mucoadhesive chitosan
formulations were also considered as an effective
strategy in overcoming the rapid elimination of
topical ophthalmic drugs.[40, 41]

Due to its solubility in acidic solutions (pH =
6), the efficacy of chitosan can be reduced at
the site of action. Hence, a chemical alteration
of chitosan was employed to fabricate a water-
soluble derivative of Cs. In this study, the NPs were
fabricated using hydrophilic biopolymers such as
TMC, TMC-cys (TCs) and CMD to design efficient
and safe drug delivery systems for the posterior
segment of the eye.[42] The solubility of TMC-
NPs may also be decreased as a consequence
of a high degree of methylation (DQ%), which
results in a high level of O-methylation. The
beneficial approach of combining TMC and cys to
fabricate TMC-cys conjugate in preparing desirable
derivatives was used in this study to improve
the solubility of fabricated NPs and minimize the
formation of agglomerates.[43, 44] Conjugation of
polymers with the thiol group is the most common
method used in the manufacture of mucoadhesive
delivery systems.[45] Endocytosis is the dominant
mechanism in the adsorption of nanoparticles with
a size of <100 nm. The rate of spherical NP
internalization is affected by size, shape, surface
charge, composition, and surface hydrophilicity.
Non-phagocytic cells absorb the highest number of
spherical nanoparticles with sizes between 20 and
50 nm.[46] By labeling NPs with Cy5, a qualitative
assessment of their number can be obtained
by evaluating the intensity of the staining seen
through the confocal microscope to compare the
cell uptake of the NPs. An increase in the red color
intensity in the staining in the NPs-treated group,
as compared to the control, could be due to better
cellular uptake of NPs by Y79 cells. Therefore,
the intensity of the red color that occurs after the
labelling can be considered as a direct criterion
for assessing the cellular uptake of NPs. As shown
in Figure 4, to prove the presence of NPs in the
cytoplasm, the cell nucleus was stained with DAPI.
Flow cytometry was also utilized in order to provide
a qualitative evaluation of the difference in cellular
uptake between the two formulations of NPs. As
can be seen in Figure 5, the cellular uptake of
thiolated chitosan NPs by Y79 cells was better,
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Figure 1. FT-IR spectra of Cs, TMC, and TCs.

Figure 2. 1H-NMR spectrum of TMC in D2O.
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Figure 3. SEM images of CMD-TMC-NPs (A) and CMD-TCs-NPs (B).

Figure 4. Intracellular localization of CMD-TMC-NPs (A–C) and CMD-TCs-NPs (D–F) in Y79 cells by Cy5-labeled NPs. Labeled NPs
appear in red in the confocal microscopy fluorescence images.

which could be due to greater bioadhesion of
TCs (TMC-cys) nanoparticles owing to the TMC
combination with the thiol group.

In this research, TCs adhesion properties were
founded by electrostatic interactions with cysteine.
When the NPs are intravitreally injected, they must
be able to cross the vitreous barrier to reach their
destination. The vitreous body is a polyanionic gel-
like mass which is made up of collagen fibers
and glycosaminoglycan.[47] Pitkänen et al showed
that the major obstacle to nonviral gene delivery

systems is the vitreous.[48] Peeters et al.[49] also
stated that only PEGylated particles <500 nm
are able to have unrestricted movement through
the vitreous. Later, it was declared that cationic
liposomes with zeta potentials below +20 mV were
allowed to defuse efficiently into the murine retina,
while liposomes with zeta potential value above
+20 mV were completely trapped in the vitreous
humor.[50, 51]

The drug bioavailability is dependent on
the route of drug administration into the eye.
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A: (FL4-H) CY5: Mean : 

90.8

B: (FL4-H) CY5: Mean : 127

Figure 5. Flow cytometry analysis of cellular uptake of Cy5-labeled (A) CMD-TMC-NPs and (B) CMD-TCs-NPs in Y79 cells after 2
hr incubation time.

Figure 6. Confocal microscopy of the retinoblastoma and retina at 24 hr after intravitreal injection of CY5-labeled NPs
into the vitreous cavity of rat with retinoblastoma. (A–E) Control group; untreated retinoblastoma (A) and untreated retina (C).
(E–H) Eyes injected with Cy5-labeled CMD-TCs-NPs. The Cy5-labeled CMD-TCs-NPs diffused to the tumor mass (F) and through
the retinal layers (H). (I–L) Eyes injected with Cy5-labeled CMD-TMC-NPs. Cy5-labeled CMD-TMC-NPs are entirely trapped in the
vitreous and are not able to reach the retina even after 24 hr.
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Effectiveness of systematically administrated
drug vehicles for ocular posterior segment
drug delivery is limited by different factors
including the wide drug distribution to the off-
target sites and the presence of the blood–retinal
barrier.[52] Therefore, in this study, in order to
achieve maximum bioavailability, IVT injection
of nanoparticles has been used. CMD-TMC
and CMD-TCs nanoparticles with identical sizes
and diverse surface charges were employed to
examine the connection between their diffusion
rates and their composition. Confocal imaging was
used to track real-time diffusion in the vitreous
cavity of the injected Cy5-labelled nanoparticles.
By comparing the images of the CMD-TMC-NPs,
CMD-TCS-NPs, and the control groups, the Cy5
signal of labeled NPs was determined, and the
variations of fluorescence intensity in the confocal
images illustrated the distribution of Cy5-labelled
NPs [Figure 6]. Two biocopolymers (TMC and
TCs) could self-assemble into NPs with identical
sizes and various surface charges. TCs could
self-assemble into 34 nm NPs and with +11mV
surface charges, while TMC NPs assembled into
42 nm NPs with a +29 mV zeta potential. The
difference in the surface charges between TMC
and TCs NPs may result in different diffusion
rates of NPs after the IVT injection. In the two
polymer confocal images of Figure 6, TCs with
the 11 ± 2.27 mV surface charges displayed the
most noticeable alterations in fluorescence signals
(red color). The results of this study indicated
that the surface charge of nanoparticles might
perform a negative or positive role in influencing
the retinal penetration of intravitreally injected
NPs. This investigation also proved that vitreous
with anionic properties is a weak barrier for
the movement of NPs with zeta potentials +11 ±
2.27mV, but vitreous can remarkably limit TMC-
diffusion with zeta potentials of +29 ± 4.31mV
in vivo [Figure 6]. TMC-NPs with zeta potentials
of +29 ± 4.31 mV are completely immobilized
in the vitreous via electrostatic interactions with
negatively charged hyaluronic acid and collagen
fibers. As shown in Figure 6, methylated chitosan
nanoparticles are completely trapped in the
vitreous and are unable to reach the retina even
after 24 hr. Thus, a powerfully positive charge
(+29 ± 4.31 mV) on the particle surface has a
remarkable negative impact on diffusion after IVT
injection.

Through comparing the fluorescence changes
in the eye injected with TCs or TMC, the results
illustrated in Figure 6 indicate that the appropriate
surface charges on the particle surface (i.e., +11 ±
2.27 mV) improved the diffusion efficacy of the
particles after IVT injection. Accordingly, surface
improving of the NPs with the thiol group in CMD-
TCs-NPs boosts the transfection efficacy of the NPs
through the development of intra-chain disulphide
bonds within the complex. After the success of
this elementary step, we plan to use nanoparticle-
based CMD-TCs as a controlled drug delivery
system for anticancer drugs for retinoblastoma
treatment.

In conclusion, an effort to facilitate the
application of more potent medicine for the
local chemotherapy of retinoblastoma to ensure
minimization of local and systemic adverse
effects, we embarked on the current study.
One challenge that is evident in delivering the
relevant medicine to the posterior of the eye
is the ability of the medicine to break through
the vitreous cavity. Nanoparticles have been
determined to be a viable alternative in targeting
specific areas for medication due to their ability
to adsorb and diffuse medication in specific areas
locally. Our study has revealed that appropriate
surface charges (preferably +11 ± 2.27 mV) on
the surface of nanoparticles NPs that were
manufactured with different chitosan derivatives
may boost their diffusion after IVT injection. A
positive charge adversely affects the rate of
vitreous diffusion of NPs. This research showed
that when NPs were intravitreally injected, the
surface, charge of NPs is the most significant
limiting factor in their penetration through the
vitreous. The cationic bio-polymer with appropriate
surface charges is able to reach the retina and
diffuse through the retinal layers. The ionic
gelation technique was efficient in synthesizing
a biocompatible polymeric nanosystem for drug
delivery into the posterior segment of the eye.
The current study demonstrated increased
ocular bioavailability of CMD-TCs-NPs relative
to CMD-TMC-NPs in retinoblastoma containing rat
eyes.
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