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ABSTRACT
This research is devote to a description of thehods available for the analysis of unsteady floms i
pumping stations and their associated hydraulidesys. There are two basic approaches to the
solution of unsteady internal flows: solution iretime domain and in the frequency domain. The
traditional time domain methods for hydraulic systeare the most important that many unsteady
hydraulic system problems can and should be trdatg¢tie time domain or “water-hammer” methods.
Another approach is frequency domain method,suf§icient to recognize that one practical advaatag
of this method is the capability of incorporatiohexperimentally obtained dynamic information and
the greater simplicity of the experiments required obtain the necessary dynamic data, the
disadvantage of frequency domain is that the metredimited to small linear perturbations in the
flow rate. Two types of networks are tested irs ttesearch, example (1) represents very simple
network without any apparatus, and example (2) adtwontaining some complexity and containing
intakes, valves, and other apparatus. The resulesxample (1) identical for both methods, but in
example (2) the results showing clear differencestfe two approaches.
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NOMENCLATURE
A : cross-sectional area.
a :radius.
e: specific internal energy.
&7 transmission matrix.
[F]: distributed function.
6 :wall thickness of the pipe.
p :fluid density.
C : sonic speed.
Coo: sonic speed in the fluid.
E: Young’'s modulus.
N: order of the system.
P : pressure.
K: bulk modulus.
q" : vector of fluctuating quantity.
S. coordinate measuredalong the duct.
t : time.
[T;]: transfer matrix elements.
[T] : Transfer matrix based orf pni.”
[T’] :transfermatrix based on,pri”
u(s, t): volumetric velocity.
gs :acceleration due to gravity.
A : characteristic factor.
f : friction factor.
h* :piezometric head.
Q : volume flow rate.
o: frequency.
m: mass flow rate.
p': total pressure.
Re: Reynolds number.
Z: vertical elevation.

INTRODUCTION

Hydraulic transients are the time-varying phenomiiaa follow when the equilibrium of steady flow
in a system is disturbed by a change of flow tlzatuos over a relatively short time period. The tyeri

of transient pressures must be determined so Heatwmater mains can be properly designed to
withstand these additional loads. In fact, pipes @ften characterized by their “pressure ratingsit t
define their mechanical strength and have a smanifiinfluence on their cogBulos, 2004). Transient
regimes in water distribution systems are inevéadoid will normally be most severe at pump stations
and control valves, high elevation areas, locatwith low static pressures, and remote locatiomas th
are distanced from overhead storageiddman 2003). All systems will, at some time, be started up,
switched off, undergo unexpected flow changes, atud will likely experience the effects of human
errors, equipment break downs, or other risky distnces. Although transient conditions can result i
many situations, the engineer is most concernel thivse that might endanger the safety of a plant
and its personnel that have the potential to camp@pment or device damage that results in
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operational difficulties or pose a risk to the palthealth. Transient events have significant water
quality implications. These events can generateh higensities of fluid shear and may cause
suspension of settled particles as well as bio @istachment. So-called red water events have often
been associated with transient disturbances. Mereavlow-pressure transient event, say arising fro
a power failure or pipe break, has the potentiaatose the intrusion of contaminated groundwater in
a pipe at a leaky joint or break. Depending ondize of the leaks, the volume of intrusion can eang
from a few gallons to hundreds of gallorfaugk 1999, Karim, 2003 and Le Chevallier 2003).
Negative pressures induce back siphon age of nabfgotwater from domestic, industrial, and
institutional piping into the distribution systemissolved air gas can also be released steel and ir
sections with subsequent rust formation and pipeadge. Even some common transient protection
strategies, such as relief valves or air/'vacuumeslif not properly designed and maintained, may
permit pathogens or other contaminants to findackbdoor” route into the potable water distribution
system. Engineers must carefully consider all pggakedangers for their pipe designs and estimate an
eliminate the weak spots. They should then embpok @ detailed transient analysis to make informed
decisions on how to best strengthen their systamdseasure safe, reliable operatioksa(ney and
M cl nnis 1990).

THEORETICAL ANALYSIS

1-Time Domain Method

The application of time domain methods to one-disi@mal fluid flow normally consists of the
following three components. First, one establiskheaditions for the conservation of mass and
momentum in the fluid. These may be differentialapns or they may be jump conditions (as in the
analysis of a shock). Second, one must establigtoppate thermodynamic constraints governing the
changes of state of the fluid. In almost all preadticases of single-phase flow, it is appropriate t
assume that these changes are adiabatic. Howeveryliiphase flows the constraint scan be much
more complicated. Third, one must determine thpaese of the containing structure to the pressure
changes in the fluid. The analysis is made a gieat simpler in those circumstances in which it is
accurate to assume that both the fluid and thetstrel behave bar tropically. By definition, thisplhes

that the change of state of the fluid is such Hmhe thermodynamic quantity (such as the entropy)
remains constant, and therefore the fluid dengifp), is a simple algebraic function of just one
thermodynamic variable, for example the pressur¢hé case of the structure, the assumption istthat
deforms quasi statically, so that, for example, ¢hess-sectional area of a pipe, A (p), is a simple
algebraic function of the fluid pressure, p. Ndtattthis neglects any inertial or damping effentthie
structure. The importance of the assumption of ratdegic fluid and structure lies in the fact thiat
allows the calculation of a single, unambiguousesipef sound for waves raveling through the piping
system. The sonic speed in the fluid alone is glweno where [3]

In a liquid, this is usually calculated from thdkomodulus,k = p/(dp/dp),since

tsa| =

Con = (‘H‘/p)_ (2)

However the sonic speed, c, for one-dimensionakwav a fluid-filled duct isinfluenced by the
compressibility of both the liquid and the struet(]
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The left-hand side is the acoustic impedance ofyistem, and the equationreveals that this isuhe s
of the acoustic impedance of the fluid alongClw,plus an “acoustic impedance” of the structure
given by @A/dp/A. For example,for a thin-walled pipe made of anstdamaterial of Young's
modulus, E, theacoustic impedance of the structuBa/, where a and are the radius andthe wall
thickness of the pip& @). The resulting form of equation (4), [3]

or, alternatively,

-

1 4 Epa] e
e= |—/+ —=
ez, Kb (5)
In order to solve unsteady flows in ducts, an esgimn for the sonic speed iscombined with the
differential form of the equation for conservatimnmass(the continuity equation),
S (o) b (i) =10
I'i}?‘ {.I”" J ax ix ”JII o )(6

where u(s, t) is the cross-sectionally averagedtumetric velocity, s is a coordinatemeasured glon
the duct, and t is time. The appropriate diffef@fdirm of the momentum equation is [3]

— DG —
(94 Py, da

du Ju dp pfulul
| —+u—| = —
f s (s

(7)

where gs is the component of the acceleration algeavity in the s direction, f is the friction fac,
and a is the radius of the duct. Now the barotraggumption (3) allows the terms in equation (6) to
bewritten as [3]

a PV =@ Tos @os ’as

J ) = Adp | 0O(pA) _ Adp 0A

) (8)

so the continuity equation becomes

1 dp u .'-J_u - {{"}u w 0A| ]
P | | =0

S o Al — 4+ ——
ds Adslp

c< ot c2 ds

(9)

Equations (7) and (9) are two simultaneous, firsten differential equationsfor the two unknown
functions, p(s, t) and u(s, t). They can be solgeenthe barotropic relation for the fluid(p), the
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friction factor, f, the normalcross-sectional acédhe pipe, A(s), and boundary conditions which will
bediscussed later. Normally the last term in equafb) can be approximated dufdAy/ds)/A. Note
that c may be a function of s.

In the time domain methodology, equations(7) and g8 normally solvedusing the method of
characteristics. This involvesfinding moving comate systems in which the equations may be
writtenas ordinary rather than partial differenggjuations. Consider the relation thatresults whiien
multiply equation (9) by and add it to equation (7)[3]

ou du A | Op e\ dp
Lo SIS 1 0.0 I R B
“’[at bud J@s—| T [@t ’ (“+ A) ﬁs}

AdA
N | .

0
Aﬂ (iS

4 (10)

If the coefficients obu/os andop/os inside the square brackets were identical, in etbets if 1= #c,
then the expressions in the square brackets cewdittenas

%-l—(u:tc}% and “p

. dp
ot ds at

ute) —
(eto) 5 a1

and these are the derivatives du/dt dpflitonds/dt = u +c. These lineds/dt = u £ @re the
characteristics, and on them we may write:
1. In a frame of reference moving with velocity+ c or onds/dt=u + ¢

+ ey
pcdt  Ag ds = da (12)
2. In a frame of reference moving with velocity- c or onds/dt=u - ¢

du 1 dp wedAg fulu

ﬁf- ;E E ds L da B (13)

A simpler set of equations result if the piezonwetead, h, defined as

h* = At —!—] &rfﬁ
pg g (14)

is used instead of the pressurgin equations (12) and (13). In almost allhydraplioblems of
practical interesp/pLC2<< 1 and, therefore, the tepridp/dtin equations (12) and (13) may be
approximated by(p/p)/dt. It follows that on the two characteristics [3]

Al-Qadisiya Journal For Engineering Sciences, Vol. 5, No. 2, 209-224, Year 2012 213



Maher Abdul Ameer

1 dp " gdh* u
pe dit 9% c2® (15)
and equations (12) and (13) become
1.0nds/dt=u+c
du gdh® 1 dAy  ug, I
s g, + ne— + —ujul =0
dt c dt Ay ds c 4da (16)
3. Onds/dt=u-c
du gdh* 1 dAe ugs, f _
FIRRT S Rl T TR R T a7

These are the forms of the equations conventionadlgd in unsteady hydraulic water-hammer
problems §treeter and Wylie, 1967). They are typically solved by relating the valats time t +t
{for example point C ofigure 1} to known values at the points A and B at tim@he lines AC and
BC are characteristics, so the following finitefeiience forms of equations (16) and (17) apply [3]

(o—ua) | g (hE;-hZ}JruACA( 1 fmu) ~ ua(gs)a +f,4u,11ua| _0
A

ot cq Ot A, ds CA da 18)
And,
(uc —up) g (ht: —hp) 1 dAo up(gs)s , fouplup| _
ot - E ot — uBCB (A_a ds )B + R i da =0 (19)

If CAo = Cg = C, and the pipe is uniform, so thdA0/ds = Oandfa = fg =f, then these reduce to the
following expressions fadc andh#.

uA+uB) 4 5t f 6t
U 2 +2c(ha—hs) +2¢ {Ua(0)a—Us(gd B}-b Ba {Ualuar +ug|Ug|} (20
(h sA + h * B) i ﬁ m
e - 2 +29 A uB )+2 fu (o) tun(z) B} - 84G figluAl - uglug|;

(21)

1-1-Method of Characteristics

The typical numerical solution by the method ofrelaéeristics is depicted graphicallyfigure 2. The
time interval, t, and the spatial incremenis, are specified. Then, given all values of the two
dependent variables (say u ang ht one instant in time, one proceeds as follawsnid all the value
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sat points such as C at a tigtdater. The intersection points, A and B, of themcteristics through C
are first determined. Then interpolation betweenkihown values at points such as R, S and T ack use
to determine the values of the dependent variadildsand B. The values at C follow from equations
such as (20) and (21) or some alternative ver&t@peating this for all points at time Htallows one

to march forward in time. There is, however, a maxn time intervalgt, that will lead to a stable
numerical solution. Typically this requires tltbe less thaidx/c. In other words, it requires that the
points A and B of Figure 2 lie inside of the in@n\RST. The reason for this condition can be
demonstrated in the following way. Assume for trekes of simplicity that the slopes of the

characteristics are *c; then the distances AS =3B. Using linear interpolation to findy andUg
from Ug, Us andUr leads to [2]

(HA + HB) (HR + HT) cot
2 = 2 +1, 08 (22)

But this is also a principal term in the expresgi@@) for Uc. Consequently, an error U of, say,du

would lead to an error itlc (at the same location bét later) of oucét/ds. Thus the error would be
magnified with each time step unles#/ds < 1 and, therefore, the numerical integration is mtgble

if 6t< 6x/c. In many hydraulic system analyses this placgsite severe restriction on the time interval
ot, and often necessitates a large number of timgsstA procedure like the above will also require
boundary conditions to be specified at any meshtpehich lies either, at the end of a pipe or, at a
junction of the pipe with a pipe of different sie a pump or any other component).

If the points S and C iRigure 2 were end points, then only one characteristic didislwithin the pipe
and only one relation, (18) or (19), can be usdtkréfore, the boundary condition must provide a
second relation involvingc or h*c (or both). An example is an open-ended pipe fackwthe pressure
and, therefore, 'his known. Alternatively, at a junction between tsigzes of pipe, the two required
relations will come from one characteristic in eactthe two pipes, plus a continuity equation a th
junction ensuring that the valuesugf in both pipes are the same at the junction. Hsrrémson it is
sometimes convenient to rewrite equations (16) @) in terms of the volume flow ra@ = Uag

instead ol so that [2]

1.0Onds/dt=u+c

d) = Apgdh* QedAg t)g- fAp .
dt ¢ df Ap ds ¢ 3 da QR=0 (23)

2.0nds/dt=u-c
dQ}  Apgdh* GQeddp  Qg. [fAo _
&t ¢ @ Agds T e T g clel=0

(24)
In many time domain analyses, turbomachines aatetieby assuming thatthe temporal rates of change
are sufficiently slow that the turbomachine resmoudsistatically, moving from one steady state

operating point to another.Consequently, if poiAtsand B lie at inlet to and discharge from
theturbomachine then the equations relating theegaht A and B would be

pE=gA=¢ (25)
B*B = p*d + H(Q) (26)
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where H(Q) is the head rise across the machineeafidw rate, Q. Data presented later will showt tha
the qua sistatic assumption is only valid for rateshange less than about one-tenth the frequehcy
shatft rotation. For frequencies greater than thisjpump dynamics become important.

2 Frequency domain methods

When the quai-static assumption for a device likaip or turbine becomes questionable, or when the
complexity of the fluid or the geometry makes thenstruction of a set of differential equations
impractical or uncertain, then it is clear that esmental information on the dynamic behavior af th
device is necessary. In practice, such experimémi@mation is most readily obtained by subjecting
the device to fluctuations in the flow rate or hdad a range of frequencies, and measuring the
fluctuating quantities at inlet and discharge. thié dependent variables such as the mean velagity,
mass flow rate, m, pressure, p, or total presqufe, are expressed as the sum of a mean component
(denoted by an overbear) and a complex fluctuatorgponent (denoted by a tilde) at a frequengy,
which incorporates the amplitude and phase ofltietufation [2]

p(s,t) = p(s) + Re {(s, w)e™} (27)

Jurt g

¢ TP, Sk SO S~ ) SR
p(s,t)=p (3)+ RHeqp (s,w)e’™ (28)

m(s, t) = m(s) + Re {im(s,w)e™*} (29)

wherd is (-1)"’andRe denotes the real part. Since the perturbationsssemed linea{u| € ~u, |
“m| € metc.), they can be readily superimposed, so amation over many frequencies is implied in
the above expressions. In general, the perturbajicantities will be functions of the mean flow
characteristics as well as position, s, and frequen. We should note that there do exist a number of
codes designed to examine the frequency respondg/drhulic systems using frequency domain
methods.

2-1 Order of the System

The first step in any unsteady flow analysis isstibdivide the system into components; the points
separating two (or more) components will be refétie as system nodes. Typically, there would be
nodes at the inlet and discharge flanges of a pitaping done this, it is necessary to determine the
order of the system, N, and this can be accomgish@ne of several equivalent ways. The order of
the system is the minimum number of independermtdkting quantities which must be specified at a
system node in order to provide a complete desonpif the unsteady flow at that location. It isal
equal to the minimum number of independent, simelbas first order differential equations needed to
describe the fluid motion in. In this research,agsume the system includes water-hammer analysis in
which the local area depends on the area and #ssyme elsewhere, and then the system is of order 3

2-2 Transfer Matrices

The transfer matrix for any component or devictesmatrix which relates the fluctuating quantités
the discharge node to the fluctuating quantitiethatinlet node. The earliest exploration of such a
concept in electrical networks appears to be du&ttecker and Feldtkeller, 1929). If the quantities

at inlet and discharge are denoted by subscripts and i = 2, respectively, and, tqi(”}, n=1,2—

N denotes the vector of independent fluctuatingntjtias at inlet and discharge for a system of orde
N, then the transfer matrix, [T], is defined as][10
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{}=[{a’} (30)

(- lmm] (7]
ﬁlz T’Zl TZZ Tﬁl (31)

The most convenient independent fluctuating quiastior a hydraulic system of order two are usually
1. Either the pressurg, or the instantaneous total press(lfg, Note that these are related by

7+ gL + gzp
p+ pii+ gzp (32)

Wherep is the mean density, is the fluctuating density which is bar tropicatignnected top, and

Z is the vertical elevation of the system node. Metjhg the p terms as is acceptable for
incompressible flows
P =p+pid

(33)

2. Or the velocityU™, the volume flow rate,A u™+u A; or the mass flow ratei"=p A u™ +
p U A"+u A} Incompressible flow at a system node in a rigpepmplies

The most convenient choices afe {nM} or { p~T, m  }, and, for these two vectors, we will
respectively use transfer matrices denotedTblydnd [T], defined as

{222}:[?]{21} {£}=[TJ{?§} (35)

2-3 Distributed Systems
In the case of a distributed system such as a pijgealso appropriate to define a matrix [F] batt
[10]

@ = [FENT)
(36)

Note that, apart from the frictional term, the dipres (12) and (13) for flow in a pipe will lead to
perturbation equations of this form. Furthermonemiany cases the frictional term is small, andlwan
approximated by a linear term in the perturbatigonations; under such circumstances the frictional
term will also fit into the form given by equati¢87).When the matrix [F] is independent of location
s, the distributed system is called a “uniform egst For example, in equations (12) and (13), this
would requirep, c, a, f and Ato be approximated as constants (in addition ¢olitiearization of the
frictional term).
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Under such circumstances, equation (37) can bgretied over a finite length, and the transfer
matrix[T] of the form (35) becomes

ETa (37)

Where€ " is known as the “transmission matrix.” For a systd#rorder two, the explicit relation
between [T] and [F] is [10]

Tin  =jFn {E_j}'?'f — E_j}qf} /(A2 — A1)
+ (o= TME _ Ape=3%28) [0y — X))
Tz =jF2 {E_ﬂ?f - E_j}‘if} [(Az — Aq)
Ty =jFn (%28 — =78} J(2g — Ay)
Toz = jFoz (e7722f — =728} J(2y — Ay)
+ (Age=TA2f — AjeTME) [ (Ag — A))

(38)
Wherels, A, are the solutions of the equation

A+ GMFi + Fag) — (FiiFag — FiaFo) =0 (39)

2-4 Combinations of Transfer Matrices

When components are connected in series, the éransdtrix for the combination is clearly obtained
by multiplying the transfer matrices of the indival components in the reverse order in which the
flow passes through them. Thus, for example, thebtoation of a pump with a transfer matrixA|,
followed by a discharge line with a transfer matfikB], would have a system transfer matriXg,
given by [10]

[T'S] = [TB) [T 4] 0)

The parallel combination of two components is mmeplicated and does not produce such a simple
result. Issues arise concerning the relations etwiee pressures of the inlet streams and theareat
between the pressures of the discharge streamsn @fts appropriate to assume that the branching
which creates the two inlet streams results intidehfluctuating total pressures at inlet to tet

componentsnfT]. If, in addition, mixing losses at the downstremction are neglected, so that the

fluctuating total pressurepf'] , can be equated with the fluctuating total puessat discharge from
the two components, then the transfer functidig,[for the combination of two components (order
two transfer functions denoted byA] and [TB]) become

T51 ={TAnTBi:+TBnwTA:)/(TA12 +TBs)
T5: =TATE/(TAiz +T5h5»)
T8z =TAxn +TBs
—(T' Ay =T B )(TAze —TBas)/(TA12+TB;2)

T.Szﬂ_:- = [T.423TB|2 + TBE-_-T_":I 5 : 'I[T_-"l 12 T TB[E .I (41)
On the other hand, the circumstances at the jumctidhe two discharge streams may be such that the
fluctuating static pressures (rather than the tlathg total pressures) are equal. Then, if thet istlatic
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pressures are also equal, the combined transfeix{diS*, is related to those of the two components
[TA] and [TB] by the same relations as given in equations @tBer combinations of choices are
possible. Using the above combination rules, as aglthe relations (36) between thg gnd [']
matrices, the transfer functions for very compkchthydraulic networks can be systematically
synthesized.

PRACTICAL APPLICATIONS

Case (1)

The first example network was studied earlieShyeeter and Wylie (1967) and is shown ifrigure 3.

The network comprises nine pipes, five junctionse eeservoir, three closed loops, and one valve
located at the downstream end of the system. Theeva shut to create the transieiitable 1
summarizes the pertinent pipe system charactevisitte reservoir level is clearly shown in figure

3, the analysis resulting very identical plots asvahinFigures5 and 6 [11]

Case(2)

Using a slightly larger more complex system, thehmés were applied to the network shown in
Figure 4. This represents an actual water system and ¢srig7) pipes, (4) junctions, two supply
tank, and one surge tank. Reservoir valves (odficsually permit flow in both directions. Otherejis

a valve discharging to the atmosphere is equivatean infinite area reservoir. All valves (orifg)eare
considered fully open, expect the control valvenatle (7) and pressure relief valvelable 2
summarizes the pertinent pipe system charactexistigure 8 compares the transient results obtained
using the Time domain method and the Frequency slomathod solutionschemes from node (1) to
node (7), the demand is changed by reducingrifiew to zero over a period of 6 s. the analysis
resulting in a required time step of 0.0139 s. As be seen fromRigures 7 and 8, the methods yielded
not identical results [3]

CONCLUSION

Transient (water hammer) analysis is essentialomdglesign and operation of piping systems. This
important analysis can be done using the matheatlgtitme domain method based on the method of
characteristics or the frequency domain methocfder three. The two methods are both capable of
accurately solving for transient pressures anddglowsimple water distribution networks includirnggt
effects of pipe friction. The method of characties requires calculations at interior points todie

the wave propagation and the effects of pipe bictiThe frequency domain method handles these
effects by using the transfer matrix, the trangfi@trix of order three used in this research. Tiselte
showed that for small simple networks without appgaratus the two methods given identical readings,
but for large networks with some apparatus thertvethods given different results.
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Table 1 Pipe characteristics for case 1.

Pipe Length | Diameter| Darcy Minor
number | (M) (mm) friction loss
1 610 914 0.012 0
2 914 762 0.013 0
3 610 610 0.014 0
4 457 457 0.015 0
5 549 457 0.015 0
6 671 762 0.014 0
7 610 914 0.013 0
8 457 610 0.014 0
9 488 457 0.012 0

Table 2 Pipe characteristics for case 2.
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DOMAIN AND FERQUENCY DOMAIN METHOD

Pipe Length | Diameter| Darcy Minor
number | (m) (mm) Friction | losses
1 1,002.2 1.5 0.013 0
2 2,000.0 1.000 0.012 0
3 2,000.0 0.750 0.015 0
4 502.5 0.500 0.013 0
5 502.2 0.500 0.014 0
6 1,001.2 1.000 0.014 0
7 2,000.2 0.750 0.014 0
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Figure 1 Method of characteristics.
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Figure 2 Numerical solution of method of characteristics.
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Figure 4 Network with more apparatus.
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Figure 5 Comparison of results of time domain and frequetayain methods, for case 1, at Junction
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Figure 6 Comparison of results of time domain and frequedmyain methods, for case 1, upstream
of valve.
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Figure 7 Comparison of results of time domain and frequedmyain methods, for case 2, at junction
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Figure 8 Comparison of results of time domain and frequedmyain methods, for case 2, upstream
of valve at node 7.
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