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Abstract: Based on theoretical analysis, we select the relevant data of 30 provinces (autonomous 
regions and municipalities) in China from 2013 to 2019, and empirically test the impact of financial 
technology on the development of big data industry and its mechanism using dynamic panel data 
model, mediating effect test method and threshold effect model. The benchmark regression results 
show that the regression coefficient of financial technology to big data industry is significantly 
positive at the significance level of 10%, indicating that the financial technology can directly 
promote the development of big data industry. The regression coefficient of the dynamic lag term 
of big data industry is negative, but not significant, indicating that the dynamic lag effect of big data 
industry is not obvious. The mediating effect test results show that the financial technology can 
indirectly promote the development of big data industry by alleviating the big data enterprise 
financing constraints. The big data enterprise financing constraints have a partial mediating effect, 
and the mediating effect account for 27.63% of the total effect. In addition, the threshold effect test 
results show that the direct effect of financial technology on big data industry is significantly 
enhanced when the development level of financial technology is higher than 5.8790, that is, there is 
a positive threshold effect of financial technology directly promoting the development of big data 
industry. However, the indirect effect of financial technology on big data industry is relatively weak 
when the development level of financial technology is higher than 5.4328, that is, financial 
technology indirectly promotes the development of big data industry by alleviating the big data 
enterprise financing constraints, which has a negative threshold effect. 

Keywords: Financial Technology; Big Data Enterprise; Financing Constraints; Big Data Industry; 
Mediating Effect; Threshold Effect 

 

1. Introduction 

Big data industry refers to related economic activities focusing on data production, collection, 
storage, processing, analysis, and services, including data resource construction, big data software 
and hardware product development, sales and leasing activities, and related information technology 
services. Seizing the opportunity to promote the development of the big data industry is of great 
significance to improving government governance capabilities, optimizing people's livelihood public 
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services, promoting economic transformation and innovative development ("Big Data Industry 
Development Plan (2016-2020)" (Ministry of Industry and Information Technology (2016)) No. 412)). 
The State Council put forward the policy opinion of “encouraging financial institutions to strengthen 
and improve financial services and increase support for big data companies” in the "Action Program 
for Promoting the Development of Big Data" (Guo Fa [2015] No. 50). In the context of big data, 
encouraging and guiding financial institutions to apply big data technology to improve financial 
service level and risk prevention and control capabilities has become an important way to accelerate 
the integrated development of finance and big data industries.  

The definition that financial technology is a technology-driven financial innovation, as proposed 
by the Financial Stability Board (FSB) in 2016, becomes a global consensus. Financial technology aims 
to use modern science and technology to transform or innovate traditional financial products, 
financial business processes, and financial industry business models, to fully empower financial 
development to improve quality and increase efficiency [1-2]. According to the research of FSB, the 
development of modern emerging cutting-edge technologies such as big data, artificial intelligence, 
cloud computing, and blockchain has brought a significant impact on the traditional financial market 
and traditional financial service industry, forcing financial institutions to accelerate the development 
of financial technology [3]. According to the axiom of action and reaction, the big data industry acts 
on financial technology, it is countered by financial technology at the same time. On the one hand, 
the development of financial technology has stimulated the demand for big data technology products 
and technical services in the financial industry, thereby directly promoting the development of the 
big data industry; on the other hand, the development of financial technology can also broaden 
financing channels, reduce financing costs and increase financing efficiency, which can alleviate the 
financing constraints faced by big data companies [4], thereby indirectly promoting the development 
of the big data industry. Therefore, in-depth exploration of the impact of financial technology on the 
development of the big data industry and its mechanism is of great significance for accelerating the 
integrated development of the financial and big data industries and cultivating new momentum for 
high-quality economic and social development.  

At present, researches resulting on financial technology promoting the development of the big 
data industry are relatively rare, and the relevant researches mainly focus on the discussion of the 
relationship between financial technology and industrial structure upgrading [5-6]. On that account, 
we select relevant data from 30 provinces (autonomous regions and municipalities) in China from 
2013 to 2019, and use dynamic panel data models, intermediary effect test methods, and threshold 
effect models to empirically test the impact of financial technology on the development of the big 
data industry and its mechanism. The remainder of this article is organized as follows: In section 2, 
we provide theoretical analysis and research hypotheses. Section 3 refers to empirical model setting, 
variable selection, research samples and data sources. In Section 4, we take benchmark regression, 
intermediate effect test, threshold effect test and robustness inspection. Finally, conclusion and policy 
recommendations are given in Section 5. 

2. Theoretical Analysis and Research Hypotheses 

Financial technology is the result of the in-depth application of modern emerging frontier 
technologies in the financial industry, and is an inevitable product of a new round of information 
technology progress [7]. Chishti and Barberis [8] believe that financial technology refers to start-up 
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or small and medium-sized technology companies that continuously provide innovative applications 
and financial product development in the financial industry according to the needs of the financial 
industry. Arner et al. [9] think that financial technology is a new combination of financial services 
and information technology, and a financial solution supported by modern information technology. 
Based on the definition of financial technology in current researches, it can be considered that 
financial technology is the financial innovation that modern information technology is applied to 
improve financial products, improve the quality of financial services, strengthen the governance of 
financial institutions, thus improving the efficiency of financial markets [10]. It can be seen from the 
connotation of financial technology that the development of financial technology can stimulate the 
demand for big data technology products and technical services in the financial industry, thereby 
directly promoting the development of the big data industry. As a result, hypothesis H1 is proposed.  

Hypothesis H1: Financial technology can directly promote the development of the big data 
industry.  

From a macro perspective, financial technology can promote economic growth. Financial 
technology can also bring about changes in traditional financing methods and payment methods 
from a micro perspective [11]. On the one hand, compared with traditional sources of capital, 
financial technology, a new and alternative financing method, can provide companies with lower-
cost and more convenient financing channels, thereby improving the availability of company 
financing to a certain extent. On the other hand, the widespread application of financial technology 
in digital payment systems helps to establish corporate credit records, thereby improving the 
availability of corporate formal financing through data driven [12]. With the help of digital payment 
systems and the relevance of various financing channels, financial technology can ease the credit 
constraints of enterprises to a certain extent [13]. Relevant empirical studies have proved the effect 
and mechanism of financial technology in alleviating corporate financing constraints [4,12]. As a 
result, hypothesis H2 is proposed.  

Hypothesis H2: Financial technology can effectively alleviate the financing constraints of big 
data companies. 

It is generally believed that corporate financing constraints will restrict the growth of corporate 
performance to a certain extent, thereby inhibiting the development of related industries. Rajan and 
Zingales [14] selected sample data from 41 countries and empirically examined the relationship 
between financing constraints and industrial growth. They found that financing constraints have a 
significant negative impact on industrial growth. Based on the research of Rajan and Zingales, Xie 
and Zhang [15] further empirically analyzed the relationship between financing constraints, foreign 
direct investment and industrial growth, and the results showed that financing constraints had a 
significant negative impact on industrial growth. In addition, Yang et al. [16] showed that corporate 
financing constraints are an important reason for the low-end evolution of strategic emerging 
industries. As a result, combined with hypothesis H2, hypothesis H3 is proposed.  

Hypothesis H3: Financial technology can indirectly promote the development of the big data 
industry by alleviating the financing constraints of big data companies. 

Financial technology may have different impacts on the big data industry in different 
development stages. In initial stage, due to insufficient infrastructure, laws and regulations, low 
coordination between departments, untimely financial supervision, and increased financial risks, the 
cost of financial technology development is relatively high while the process of it is far from 
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satisfactory [17]. Under this circumstance, the demand of financial technology for big data technology 
products and technical services in the financial industry is relatively limited. The effect that financial 
technology eases the financing constraints of big data companies by broadening financing channels, 
reducing financing costs, and improving financing efficiency is not strong enough, and the indirect 
effects of financial technology on the big data industry are relatively limited. In the middle and 
advanced stage, with sound infrastructure, laws and regulations, financial risk is under control, and 
the linkage between financial technology and the big data industry is enhanced continuously [17], 
the direct and indirect effects of financial technology on the big data industry become increasingly 
prominent. As a result, hypothesis H4a and hypothesis H4b are proposed. 

Hypothesis H4a: Financial technology directly promotes the development of the big data 
industry with a positive threshold effect. 

Hypothesis H4b: Financial technology indirectly promotes the development of the big data 
industry by alleviating the financing constraints of big data companies, and there is a positive 
threshold effect. 

3. Research Design 

3.1. Empirical Model Setting 

Economic behavior has dynamic characteristics for the fact that it has continuity and inertia, and 
is affected by factors such as preference. The dynamic panel data model introduces the dynamic lag 
term of the explanatory variable into the static panel data model to reflect the dynamic lag effect. Due 
to the correlation between the dynamic lag term of the explained variable and the individual effect, 
the endogeneity of the coefficient estimate is formed [18]. We select the dynamic panel data model to 
test the direct effect of financial technology on the big data industry, and the dual logarithmic model 
is set as follows:  

1 1 1 1 1 1 1ln ln ln lnk k
it it it it i itDldbi Dldbi FinTech X u           (1)

where i indicates region, t indicates year, itDldbi   indicates big data industry development level, 

1itDldbi   indicates the dynamic lag term of big data industry development level, itFinTech  indicates 
financial technology development level, k

itX  indicates the kth control variable, iu  is the individual 
effect, and it  is random disturbance term. 

The following three double logarithmic models are set up to test the indirect effect of financial 
technology on the big data industry through the financing constraints of big data companies, 
according to the causal stepwise regression test method of intermediary effects [17]:  

2 2 1 2 2 2 2ln ln ln lnk k
it it it it i itSA SA FinTech X u           (2)

3 3 1 3 3 3 3ln ln ln lnk k
it it it it i itDldbi Dldbi SA X u           (3)

4 4 1 4 5 4 4 4ln ln ln + ln lnk k
it it it it it i itDldbi Dldbi SA FinTech X u            (4)

where SAit is the financing constraint of big data companies, and SAit-1 is the dynamic lag term of the 
financing constraints of big data companies. 

The mediating effect is tested as follows: the first step is to test formula (1). We can say financial 
technology directly promote the development of the big data industry if the regression coefficient 1
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is significant. If not, the mediating effect test is over. The second step is to test formula (2). We can 
say financial technology significantly affect the financing constraints of big data companies if the 
regression coefficient 2 is significant. If not, the mediating effect test is over. The third step is to test 

formula (3). We can say big data corporate financing constraints significantly affect the big data 
industry, and the mediation effect test is passed if the regression coefficient 3 is significant. If not, the 

mediating effect test is over. Finally, we test formula (4). Big data corporate financing constraints 
have complete mediation effect if the regression coefficient 5 is not significant, while the regression 
coefficient 4 is significant. Big data corporate financing constraints have a partial mediation effect if 
both the regression coefficients 4 and 5 are significant.  

The following two threshold effect models are set up to examine the different effects of financial 
technology and big data enterprise financing constraints on the development of the big data industry 
under different financial technology development level. Firstly, the double logarithmic model is set 
as follows to examine the different effects of financial technology on the development of the big data 
industry under different financial technology development level:  

5 5 1 6 1ln ln ln (ln )it it it itDldbi Dldbi FinTech FinTech        

7 1 5 5 5ln (ln ) lnk k
it it it i itFinTech FinTech X u         (5)

Secondly, the double logarithmic model is set as follows to examine the different effects of big 
data enterprise financing constraints on the development of the big data industry under different 
financial technology development level: 

6 6 1 8 2ln ln ln (ln )it it it itDldbi Dldbi SA FinTech        

9 2 6 6 6ln (ln ) ln  k k
it it it i itSA FinTech X u         (6)

where 1 and 2 are the threshold for the development level of financial technology. 

3.2. Variable Selection 

(1) Explained variable: big data industry development level (Dldbi) 
Due to the lack of big data industry statistics and considering that the electronic information 

industry is the basic industry among big data industry, this article refers to the literature [19] and 
uses the industrial scale and product type of the electronic information industry to approximate those 
of the big data industry. According to the connotation of the development of the big data industry, 
relevant research results [20-23], and the compilation principle of the "China Electronic Information 
Industry Comprehensive Development Index" issued by the Operation Monitoring and Coordination 
Bureau of the Ministry of Industry and Information Technology, following the selection principles of 
scientific, objective, systematic, performance, functionality, dynamics, relative independence, 
feasibility (or operability), and comparability, the evaluation index system is constructed from three 
dimensions of industry scale, product type, and infrastructure, including three primary indicators 
and 17 secondary indicators, which is shown in Table 1. The entropy weight method [24] is used to 
determine the index weight (see Table 1), and the TOPSIS method [25] is used to evaluate big data 
industry development level in 30 provinces (autonomous regions and municipalities) in China from 
2013 to 2019 (Evaluation results are available on request). 
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Table 1. Big data industry development level evaluation index system. 

Destination layer Criterion layer  Index layer (unit) Index weight 

Big data industry 
development level 

Industry scale 

Number of enterprises above designated 
size (enterprise) 

0.043 

Main business income (billion yuan) 0.053 
Total profit (billion yuan) 0.064 

Main business cost (billion yuan) 0.050 
Total asset (billion yuan) 0.060 

Total liability (billion yuan) 0.064 

Product Type (Export) 

Communication equipment (thousand 
dollars) 

0.089 

Computer (thousand dollars) 0.081 
household appliances (thousand dollars) 0.115 
Electronic components (thousand dollars) 0.094 

 Electron device (thousand dollars) 0.073 
Electronic material (thousand dollars) 0.042 

Electronic equipment (thousand dollars) 0.107 

Infrastructure  

Mobile phone base station (base station) 0.015 
Mobile phone exchange capacity 

(thousand) 0.014 

Length of long-distance optical cable line 
(kilometer) 

0.017 

Internet broadband access port (thousand 
port) 0.018 

(2) Core explaining variable: financial technology development level (FinTech) 
This article refers to the design ideas of Huang et al. [12], Tian and Zhang [17], and use the 

provincial digital inclusive finance index issued by the Digital Finance Research Center of Peking 
University(https://idf.pku.edu.cn/yjcg/zsbg/485016.htm) as a proxy variable for the level of financial 
technology development in China’s 30 provinces (autonomous regions and municipalities). 

(3) Mediating variable: big data enterprise financing constraints (SA) 
Enterprise financing constraints refer to the difference between internal financing cost and 

external financing cost caused by market incompleteness (asymmetric information, agency cost, etc.), 
which are generally measured by enterprise behavior characteristics such as investment-cash flow 
sensitivity [26]. The financing constraint index calculated based on enterprise-level data [27] is not 
applicable for regional data, as a result, this article draws on the method of Harrison and McMillan 
[28] and uses a single variable to measure the level of financing constraints of regional big data 
companies. Considering that current structure of corporate financing is still dominated by indirect 
financing, namely, bank loans, which often require fixed assets or intellectual property as collateral 
[29]. There is a certain negative correlation between collateral and bank loan cost, so as enterprise 
financing constraints. Therefore, we use the reciprocal of the sum of fixed assets and intangible assets 
of the regional electronic information industry to approximate the level of financing constraints of 
regional big data enterprises. The larger the reciprocal is, the greater the level of financing constraints 
of regional big data companies. 

(4) Control variable 
We select the basic support capacity of big data industry development, regional technological 

innovation capacity, the degree of opening, and the degree of government connection as the control 
variables. Among them, the regional per capita GDP (Pgdp) and the proportion of regional tertiary 
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industry (Pti) are used to measure the basic support capacity for the development of the big data 
industry. The regional technology innovation ability is measured by the intensity of regional R&D 
expenditure (Rds) and the number of regional patents granted (Npg). The degree of openness by the 
ratio of regional export value to total industrial output value (Dou). The degree of government 
connection by the proportion of government funds in the regional R&D expenditure (Gc) [30-32]. 

3.3. Research Samples and Data Sources 

We take 30 provinces (autonomous regions and municipalities) in China as research object (Note: 
The original data in Tibet is seriously missing, so it is not listed as the research object). The selected 
time range is 2013-2019. Among them, the data related to the big data industry comes from the 
"Statistical Yearbook of China's Electronic Information Industry" and the website of the National 
Bureau of Statistics. The original financial technology data comes from the Peking University Digital 
Finance Research Center. The original data on big data enterprise financing constraints comes from 
the "China Electronic Information Industry" Statistical Yearbook. The original data of each control 
variable comes from "China Statistical Yearbook" and "China Science and Technology Statistical 
Yearbook". Since the provincial digital inclusive finance index released by the Digital Finance 
Research Center of Peking University is only updated to 2018, the provincial digital inclusive finance 
index in 2019 is estimated by the exponential smoothing method. The remaining missing data were 
estimated by means of imputation and manual imputation. The descriptive statistics of all variables 
are shown in Table 2. 

Table 2. Descriptive statistics of variables. 

Variable (unit) Number of 
samples 

Average Standard 
deviation  

Minimum  Maximum 

Dldbi 210 0.088 0.148 0.000 0.879 

FinTech 210 237.398 57.782 118.010 377.730 

SA (1/million) 210 1.644 20.450 0.001 296.472 

Pgdp (thousand yuan) 210 57.700 26.130 23.150 140.210 

Pti (%) 210 0.482 0.089 0.342 0.810 

Rds (%) 210 0.017 0.011 0.005 0.062 

Npg (grant) 210 56526.173 78508.547 502 478082 

Dou (%) 210 0.326 0.345 0.025 1.595 

Gc (%) 210 0.241 0.136 0.069 0.573 

4. Empirical Analysis 

4.1. Benchmark Regression 

We use the system generalized moment (SYS-GMM) method in Stata16.1 to estimate the 
coefficient of formula (1) (benchmark regression). In order to choose between a fixed-effects model 
and a random-effects model, a Hausman test is first performed before the benchmark regression. The 
Hausman test results show that the P value is 0.0006<0.01, that is, the null hypothesis of random 
effects is rejected at the 1% significance level. Therefore, the fixed effects model is selected for 
benchmark regression. The results of the benchmark regression are shown in Regression I in Table 3. 
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It can be seen from Regression I in Table 3 that the regression coefficient of financial technology 
to the big data industry is positive and significant at 10% significance level. The results of the 
Arellano-Bond autocorrelation test accept the null hypothesis that there is no first-order 
autocorrelation in the residual series. The Hansen over-identification test results accept the null 
hypothesis of the validity of the instrumental variables, indicating that the setting of formula (1) is 
reasonable and the instrumental variables are efficient. Therefore, accept the null hypothesis H1: 
Financial technology can directly promote the development of the big data industry.  

The regression coefficient of the dynamic lag of the big data industry is negative, but not 
significant, indicating that the dynamic lag effect of the big data industry is not yet obvious, which 
may be related to the short development history of the big data industry. Among the control variables, 
the regression coefficients of the proportion of regional tertiary industry, the intensity of regional 
R&D expenditures, the ratio of regional export value to total industrial output value, and the 
proportion of government funds in regional R&D expenditures are significantly positive under the 
significance level of 5%, 5%, 5%, and 10% respectively, indicating that these control variables can 
significantly promote big data Industrial Development. In addition, the regression coefficients of 
regional GDP per capita and the number of regional patent grants are both positive, but not 
significant, indicating that the impact of regional per capita GDP and regional patent grants on the 
development of the big data industry is not yet obvious. 

4.2. Intermediate Effect Test 

Under the framework of the dynamic panel data model, the causal stepwise regression test 
method [17] is used to test the intermediate effect of big data enterprise financing constraints. Step 1 
is to use equation (1) to test the impact of financial technology on the big data industry, and get 
Regression I in Table 3. The results show that the regression coefficient of financial technology on the 
big data industry is significantly positive at significance level of 10%. Step 2 is to use formula (2) to 
test the impact of financial technology on big data enterprise financing constraints, and get 
Regression II in Table 3. The results show that the regression coefficient of the constraint is 
significantly negative at significance level of 10%, indicating that financial technology is effective in 
alleviating big data enterprise financing constraints, that is, accepting the null hypothesis H2: 
Financial technology can effectively alleviate the financing constraints of big data companies. Step 3 
is to use equation (3) to test the impact of big data enterprise financing constraints on the big data 
industry, which is shown in the Regression III in Table 3. The results show that the regression 
coefficient of big data enterprise financing constraints to the big data industry is significantly negative 
at a significance level of 10%, indicating that alleviating big data enterprise financing constraints will 
promote the development of the big data industry. Step 4 is to use formula (4) to test the impact of 
financial technology and big data enterprise financing constraints on the big data industry, and obtain 
the Regression IV in Table 3. The results show that the regression coefficient of financial technology 
to the big data industry is significantly positive at significance level of 5%, however, the regression 
coefficient of big data enterprise financing constraints to the big data industry is significantly negative 
significance level of 5%, indicating that big data enterprise financing constraints have intermediate 
effect partly, the ratio of the intermediate effect to the total effect is: (-4.0716)×(-0.1194)/1.7595=27.63%, 
that is, accepting the null hypothesis H3: Financial technology can indirectly promote the 
development of the big data industry by alleviating big data enterprise financing constraints. 
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Table 3. Regression results of benchmark regression and intermediate effect test. 

Variable 
Regression Ⅰ Regression Ⅱ Regression Ⅲ Regression Ⅳ 

Dlbdi SA Dlbdi Dlbdi 

Lag1 
-0.1198 0.0157 0.0207 -0.0842 

(0.3480) (0.9080) (0.9060) (0.3640) 

FinTech 
1.7595* -4.0716*  1.8812** 

(0.0590) (0.0710)  (0.0120) 

SA 
  -0.1078* -0.1194** 

  (0.0500) (0.0360) 

Pgdp 
0.8583 -1.4893 0.2828 1.7066* 

(0.3150) (0.4110) (0.5290) (0.0600) 

Pti 
2.7963** 6.3937** 0.9414 3.2920* 

(0.0210) (0.0480) (0.2610) (0.0750) 

Rds 
1.6306** -2.9760** -0.1744 0.1178 

(0.0240) (0.0280) (0.5520) (0.9070) 

Npg 
0.1293 -1.1776** 0.5989** 0.1942 

(0.6960) (0.0300) (0.0120) (0.5670) 

Dou 
0.6120** 0.5350 0.6324** 0.6632** 

(0.0170) (0.2970) (0.0140) (0.0120) 

Gc 
0.4335* 4.8790 0.2336 0.4160 

(0.0620) (0.1280) (0.6300) (0.3180) 

_cons 
-7.9334** -1.7637 -9.6530*** -18.1407** 

(0.0130) (0.8240) (0.0070) (0.0190) 

AR(1) 
-1.93 -3.13 -1.75 -1.72 

(0.0540) (0.0020) （0.0810） (0.0850) 

AR(2) 
-1.63 0.92 -1.18 -1.41 

(0.1030) (0.3580) (0.2390) (0.1600) 

Hansen test 
26.94 25.22 24.76 19.08 

(0.9660) (0.9860) (0.9840) (1.0000) 

①***P<0.01, **P<0.05, *P<0.1, and the value in parentheses is the P value. ②Lag1 corresponds to the lagging period of 

the explained variable. 

4.3. Threshold Effect Test 

Under the framework of the dynamic panel data model, formulas (5) and (6) are used to test the 
different effects of financial technology and big data enterprise financing constraints on the 
development of the big data industry under different financial technology levels. First, we use 
equation (5) to test the different effects of financial technology on the development of the big data 
industry under different financial technology levels (recorded as regression V). Second, we use 
equation (6) to test the different effects of big data enterprise financing constraints on the 
development of the big data industry under different financial technology levels (denoted as 
regression Ⅵ). We test the existence of the threshold effect before the threshold effect regression. For 
Regression V, the P value of the single-threshold test is 0.067, so the null hypothesis is rejected, 
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indicating that there is a threshold. The P value of the double-threshold test is 0.244, so the null 
hypothesis is accepted, indicating that there is no dual threshold. Therefore, there is a single threshold 
in Regression Ⅴ. For Regression VI, the P value of single-threshold test is 0.050, so the null hypothesis 
is rejected, indicating that there is a threshold. The P value of double-threshold test is 0.122, so the 
null hypothesis is accepted, indicating that there is no double threshold. Therefore, regression VI also 
exists single threshold. The single-threshold likelihood ratio function diagrams of Regression V and 
Regression VI are shown in Figure 1 and Figure 2. 

 

Figure 1. Single-threshold likelihood ratio function diagram of Regression V. 

 

Figure 2. Single-threshold likelihood ratio function diagram of Regression VI. 

We use formula (5) to perform threshold effect regression, and get Regression V in Table 4, the 
results show that when the development level of financial technology is lower than 5.8790, the 
regression coefficient of financial technology to the big data industry (2.0884) is significantly positive 
at significance level of 1%, indicating that financial technology can significantly promote the 
development of the big data industry. When the development level of financial technology is higher 
than 5.8790, the regression coefficient of financial technology to the big data industry (2.1684) is 
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significantly positive at significance level of 1%, indicating that financial technology can more 
significantly promote the development of the big data industry. It shows that there is a bottleneck in 
financial technology's direct promotion of the development of the big data industry. When the 
development level of financial technology breaks through this bottleneck, the direct effect of financial 
technology on the big data industry is significantly enhanced. Therefore, we accept the null 
hypothesis H4a: Financial technology directly promotes the development of the big data industry 
with a positive threshold effect.  

Table 4. Regression results of threshold effect. 

Variable 
Regression Ⅴ Regression Ⅵ 

Coefficient t value P value Coefficient t value P value 

Lag1 -0.0413 -0.80 0.423 -0.0237 -0.45 0.654 

FinTech (FinTech≤γ1) 2.0884*** 3.40 0.001    

FinTech (FinTech＞γ1) 2.1684*** 3.55 0.001    

SA (FinTech≤γ2)    -0.1761*** -3.01 0.003 

SA (FinTech＞γ2)    -0.0362 -0.58 0.560 

Pgdp 1.2243** 1.98 0.049 0.6450 1.30 0.196 

Pti -2.7037 -1.41 0.162 -1.2723 -1.53 0.128 

Rds 0.2532 0.67 0.502 0.2317 0.59 0.558 

Npg 0.2176 1.05 0.294 0.4759** 2.35 0.020 

Dou 0.2764** 2.08 0.039 0.5457*** 3.61 0.000 

Gc -0.4650 -1.53 0.128 -0.3860 -1.41 0.162 

_cons -16.1841*** -3.98 0.000 -8.9509*** -2.66 0.009 

Threshold 5.8790 [5.8665, 5.8978] 5.4328 [5.3962, 5.4353] 

①***P<0.01, **P<0.05, *P<0.1. ②Lag1 corresponds to the lagging period of the explained variable. ③The 
confidence interval is shown in square brackets. 

We use equation (6) to perform threshold effect regression, and get regression Ⅵ in Table 4. The 
results show that when the development level of financial technology is lower than 5.4328, the 
regression coefficient of big data enterprise financing constraints to the big data industry is 
significantly negative at significant level of 1%, indicating that the alleviation of big data enterprise 
financing constraints can significantly promote the development of the big data industry. When the 
development level of financial technology is higher than 5.4328, the regression coefficient of big data 
enterprise financing constraints to the big data industry is negative, but not significant, indicating 
that the relief of big data enterprise financing constraints no longer significantly promotes the 
development of the big data industry. It shows that there is also a bottleneck in financial technology’s 
indirectly promotion the development of the big data industry by alleviating big data enterprise 
financing constraints, when the development level of financial technology breaks through this 
bottleneck, although the indirect effect of financial technology on the big data industry is enhanced, 
there are many internal and external causes of big data enterprise financing constraints [33], leading 
to the result that the increase in the indirect effect of financial technology on the big data industry 
may be smaller than the increase in the direct effect of financial technology on the big data industry . 
There are many internal and external causes of big data enterprise financing constraints [33]. The 
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increase in the indirect effect of financial technology on the big data industry may be less than the 
increase in the direct effect of financial technology on the big data industry, that is, compared with 
the direct effect, the indirect effect of financial technology on the big data industry is relatively 
weakened. Therefore, we reject the null hypothesis H4b: Financial technology indirectly promotes 
the development of the big data industry by alleviating the financing constraints of big data 
companies, and there is a positive threshold effect. 

4.4. Robustness Inspection 

In order to test the robustness of the regression results of the dynamic panel data model, this 
article starts from the econometric model and uses the static panel data model to re-estimate the 
coefficients of formulas (1)-(6). Regression Ⅰ  shows that the regression coefficient of financial 
technology to the big data industry is significantly positive at significance level of 5%. Regression Ⅱ 
shows that the regression coefficient of financial technology to big data enterprise financing 
constraints is significantly negative at significance level of 5%. Regression III shows that the 
regression coefficient of big data enterprise financing constraints to the big data industry is 
significantly negative at significance level of 10%. Regression IV shows that the regression coefficient 
of financial technology to the big data industry is significantly positive at significance level of 5%, 
while the regression coefficient of big data enterprise financing constraints to the big data industry is 
significantly negative at significance level of 10%. Regression V shows that when the development 
level of financial technology is lower than 5.7323, the regression coefficient of financial technology to 
the big data industry (2.0363) is significantly positive at significance level of 5%. When the 
development level of financial technology is higher than 5.7323, the regression coefficient of financial 
technology to the big data industry (2.1143) is significantly positive at significance level of 5%. The 
regression VI shows that when the development level of financial technology is lower than 5.2972, 
the regression coefficient of big data enterprise financing constraints to the big data industry is 
significantly negative at significance level of 5%. When the development level of financial technology 
is higher than 5.2972, the regression coefficient of big data enterprise financing constraints to the big 
data industry is negative, but not significant. Comparing the coefficient estimation results of the 
dynamic panel data model and the static panel data model, it can be found that the regression 
coefficient signs of important variables are the same, and the significance is slightly different, 
indicating that the regression results of the dynamic panel data model are relatively robust. 

5. Conclusions, Discussions and Policy Recommendations 

5.1. Conclusions 

(1) Results of Regression I (benchmark regression) show that the regression coefficient of the 
development level of financial technology (FinTech) to the development level of the big data industry 
(Dlbdi) is 1.7595, and the P value is 0.0590<0.10, indicating that under significance level of 10%, if 
FinTech increase by 1%, Dlbdi will increase by 1.7595%. The regression coefficient of the dynamic lag 
item (Lag1) to the development level of the big data industry (Dlbdi) is -0.1198, and the P value is 
0.3480, indicating that Lag1 has no significant effect on Dlbdi. Financial technology can directly 
promote the development of the big data industry, but the dynamic lag effect of the big data industry 
is not yet obvious.  
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Among the control variables, the regression coefficient of the proportion of the regional tertiary 
industry (Pti) to the development level of the big data industry (Dlbdi) is 2.7963, and the P value is 
0.0210<0.05, indicating that under significance level of 5%, if Pti increase by 1%, Dlbdi will increase 
by 2.7963%. The regression coefficient of regional R&D investment intensity (Rds) to Dlbdi is 1.6306, 
and the P value is 0.0240<0.05, indicating that under significance level of 5%, if Rds increase by 1 %, 
Dlbdi will increase by 1.6306%. The regression coefficient of the ratio of regional export value to total 
industrial output value (Dou) to Dlbdi is 0.6120, and the P value is 0.0170<0.05, indicating that under 
significance level of 5%, if Dou increase by 1%, Dlbdi will increase by 0.6120%. The regression 
coefficient of the proportion of government funds in the regional R&D expenditure (Gc) to Dlbdi is 
0.4335, and the P value is 0.0620<0.10, indicating that under significance level of 10%, if Gc increase 
by 1%, Dlbdi will increase by 0.4335%. The regression coefficient of the regional per capita GDP (Pgdp) 
on Dlbdi is 0.8583, and the P value is 0.3150, indicating that Pgdp has no significant impact on Dlbdi. 
The regression coefficient of the number of regional patent grants (Npg) to Dlbdi is 0.1293, and the P 
value is 0.6960, indicating that Npg has no significant impact on Dlbdi. The basic support capacity 
for the development of the big data industry, the regional technological innovation capacity, the 
degree of openness, and the degree of government connection can significantly promote the 
development of the big data industry to varying degrees.  

(2) The regression Ⅱ shows that the regression coefficient of the development level of financial 
technology (FinTech) on big data enterprise financing constraints (SA) is -4.0716, and the P value is 
0.0710<0.10, indicating that if FinTech increase by 1%, SA will fell by 4.0716%. Financial technology 
can effectively alleviate big data enterprise financing constraints, which is like the research results of 
literature [4] and [12]. Regression III shows that the regression coefficient of SA to the development 
level of the big data industry (Dlbdi) is -0.1078, and the P value is 0.0500=0.05, indicating that under 
significance level of 5%, if SA drop by 1%, Dlbdi will increase by 0.1078%. The alleviation of big data 
enterprise financing constraints will promote the development of the big data industry, which is like 
the research results of literature [14], [15] and [16]. The results of regression Ⅰ, regression Ⅱ and 
regression Ⅲ show that big data enterprise financing constraints have an intermediary effect, and 
financial technology can indirectly promote the development of the big data industry by alleviating 
big data enterprise financing constraints. 

Regression IV shows that the regression coefficient of the development level of financial 
technology (FinTech) to the development level of the big data industry (Dlbdi) is 1.8812, and the P 
value is 0.0120<0.05, indicating that under significance level of 5%, if FinTech increase by 1%, Dlbdi 
will increase by 1.8812%. At the same time, the regression coefficient of big data enterprise financing 
constraints (SA) to Dlbdi is -0.1194, and the P value is 0.0360<0.05, indicating that under significance 
level of 5%, if SA decrease by 1%, Dlbdi will increase by 0.1194%. Big data enterprise financing 
constraints have a partial intermediary effect, and the intermediary effect accounts for 27.63% of the 
total effect.  

(3) Regression V shows that when the development level of financial technology (FinTech) is 
lower than 5.8790, the regression coefficient of FinTech to the development level of the big data 
industry (Dlbdi) is 2.0884, and the P value is 0.001<0.01, indicating that under significance level of 1%, 
if FinTech increase by 1%, Dlbdi will increase by 2.0884%. When FinTech is higher than 5.8790, the 
regression coefficient of FinTech to Dlbdi is 2.1684, and the P value is 0.001<0.01, indicating that under 
significance level of 1%, if FinTech increase by 1%, Dlbdi will increase by 2.1684%. There is a positive 
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threshold effect in the direct promotion of the development of the big data industry by financial 
technology, which is like the research results of the literature [17].  

The regression VI results show that when the financial technology development level (FinTech) 
is lower than 5.4328, the regression coefficient of the big data enterprise financing constraint (SA) on 
the big data industry development level (Dlbdi) is -0.1761, and the P value is 0.003<0.01, indicating 
that under significance level of 1%, if SA drop by 1%, Dlbdi will increase by 0.1761%. When FinTech 
is higher than 5.4328, the regression coefficient of SA to Dlbdi is -0.0362, and the P value is 0.560, 
indicating that the impact of SA on Dlbdi is not significant. Financial technology indirectly promotes 
the development of the big data industry by alleviating big data enterprise financing constraints, and 
there is a reverse threshold effect. 

5.2. Discussions 

We select relevant data from 30 provinces (autonomous regions and municipalities) in China 
from 2013 to 2019, and use dynamic panel data models, intermediary effect testing methods, and 
threshold effect models to empirically test the direct promotion of financial technology to the 
development of the big data industry, the indirect promotion of financial technology to the 
development of the big data industry by alleviating big data enterprise financing constraints, and the 
threshold effect of financial technology in promoting the development of the big data industry. 
Compared with literature [4] and [12], this article extends the research on financial technology to ease 
enterprise financing constraints by studying how it promote industrial development. Compared with 
literature [14], [15] and [16], This article expands the research on alleviating enterprise financing 
constraints and promoting industrial development to alleviating enterprise financing constraints and 
promoting industrial development through financial technology. Compared with the literature [17], 
this article expands the intermediary effect and the threshold effect of financial technology on 
economic growth by improving the efficiency of financial resource allocation to the intermediary 
effect and threshold effect of financial technology that affect the development of the industry by 
alleviating enterprise financing constraints. This paper analyzes the impact of financial technology 
on the development of the big data industry and its mechanism in depth, which is of great 
significance for clarifying the interaction mechanism between financial technology and the big data 
industry and accelerating the integrated development of the finance and big data industry.  

Due to the difficulty of data acquisition and the limitation of cognition, many shortcomings still 
exist, which need to be improved in the future. Future research directions are as follows: First, 
establishing a comprehensive evaluation index system for the development level of regional financial 
technology, and using a comprehensive evaluation method based on fuzzy sets to evaluate the 
development level of regional financial technology. Second, establishing a complete evaluation of the 
development level of the regional big data industry, which uses a comprehensive evaluation method 
based on fuzzy sets to evaluate the development level of regional big data. Third, exploring the 
construction of a more scientific and reasonable method for measuring the financing constraint level 
of regional big data companies, and improving the convincing power of the empirical analysis results. 
Fourth, testing the normality of the panel data. If the panel data is skewed normal, use the skewed 
normal panel data model for empirical analysis. Fifth, selecting more control variables that have a 
stronger impact on the development of the big data industry to improve the convincing power of the 
empirical analysis results. Sixth, considering the spatial spillover effects of financial technology, and 
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establishing a spatial measurement model to measure the direct, indirect, and total effects of financial 
technology on the big data industry. 

5.3. Policy Recommendations 

Based on the research conclusions above, combined with the spirit of relevant departmental 
documents, the following policy recommendations are put forward: 

(1) In terms of direct effects, first, encourage financial institutions to actively use big data, 
artificial intelligence, and other technologies to deeply analyze customer financial needs and create 
smart financial products and services. Second, promote the transformation of traditional financial 
entity outlets to marketing and experience smart financial outlets, and improve the operating 
efficiency of financial outlets. Third, speed up the improvement of the credit process and credit 
evaluation models of enterprises in key areas. Fourth, optimize the mobile payment technology 
architecture system and increase technology-enabled payment services. Fifth, improve the financial 
business risk prevention and control system. Sixth, actively explore the innovation of financial big 
data application and further expand the demand for big data technology products and technical 
services in the financial industry. 

(2) In terms of indirect effects, first, accelerate the application of mobile Internet, big data, cloud 
computing, Internet of Things, artificial intelligence, and other emerging cutting-edge technologies 
in the financing of big data companies, and adhere to the balanced development of online and offline, 
and provide multi-level and all-round financing services for big data companies. Second, vigorously 
promote the construction of credit information sharing platforms to realize cross-level, cross-
department, and cross-regional interconnection, improve the acquisition, analysis, and application 
capabilities of big data enterprise financing-related data, and reduce information asymmetry, reduce 
financing costs, improve financing efficiency, and effectively alleviate the financing constraints faced 
by big data companies. 
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