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Abstract

Autosomal dominant polycystic kidney disease (ADPKD) is themost common inherited kidney disease that results frommutations
in PKD1 or PKD2. The disease is characterized by the progressive development of fluid-filled cysts derived from renal tubular
epithelial cells that destroy the architecture of the renal parenchyma and lead to kidney failure. Until recently, the causes and
the molecular pathways that lead to cystogenesis remained obscure. In the last decade, enormous progress has been made in under-
standing the pathogenesis of ADPKDand the development of new therapies. The purpose of this review is to update on the promis-
ing therapies that are being developed and tested based on knowledge of recent advances in molecular and cellular targets involved
in cystogenesis.
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Introduction

Autosomal dominant polycystic kidney disease (ADPKD)
affects 1:400-1:1.000 live births, or 12.5 million people
worldwide, and is the most common monogenic inherited
form of kidney disease across all ethnic types. ADPKD is
characterized by cyst formation and enlargement in the
kidney and other organs. It accounts for 5% to 10%
of end-stage renal disease (ESRD) cases, making it the
fourth leading global cause for kidney failure with clinically
significant impairment of renal function. ESRD usually
occurs by late middle age and requires renal replacement
therapy in approximately 50% of patients by 70 years of
age (1–2).

In 85%of cases,ADPKDoccurs as a result of germlinemuta-
tion in polycystin 1 gene (PKD1) localized within chromosome
16 [16p13.3], while in 15% of cases, it is due to germline muta-
tion in polycystin 2 gene (PKD2) localized within chromosome
4 [4q21-q23] (3). Although some authors have supposed that
there is a third PKD gene, convincing evidence to support the
existence of this gene is lacking. Polycystin-1 (PC1) and poly-
cystin-2 (PC2) interactwith eachother through theirC-terminal
cytoplasmic domains and are known to form a complex that
functions as a transient receptor potential channel involved in
the regulation of intracellular calcium homeostasis (4,5). On
average, patients with mutations in PKD1 develop ESRD at
younger ages compared with patients (aged 54.3 vs. 74 years)
with PKD2 mutations (6).
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According to a widely accepted view, cystogenesis follows a
two-hit model. ADPKD is recessive at the cellular level and
cysts develop clonally from a tubular cell only once the
cell has acquired a second somatic mutation to inactivate the
remaining normal allele (7). A somatic “second-hit”mutation,
loss of heterozygosity, or haploinsufficiency may account for
the mosaic nature of cyst formation, while in the mature
organ, broad and fast cyst formation requires a third hit
such as kidney injury (8–10). Recent evidences suggest that a
complete loss of function is not required for cystogenesis;
rather, functional PC1 or PC2 must be reduced to a certain
threshold level (1).

Although the exact mechanisms of cystogenesis remain to
be elucidated, the pathological processes that facilitate cyst
enlargement are probably the result of two specific abnormal-
ities: (1) increased fluid secretion into the cyst lumen and (2)
inappropriately increased cell division by the epithelium
lining the cyst (11). The major signaling pathways implicated
in these phenotypic changes include: the intracellular deregu-
lation of calcium homeostasis, cAMP accumulation and
activation of protein kinase A (PKA), activation of mito-
gen-activated protein and mammalian target of rapamycin
(mTOR) kinases, canonicalWnt signaling, and other intracel-
lular signaling mechanisms (12–14).

Until recently, treatment ofADPKDwas aimed at theman-
agement of secondary conditions, particularly hypertension,
to limit morbidity and mortality, after which the disease
becomes symptomatic. The recent developments arising
from a better mechanistic understanding of the molecular
pathways involved in cyst growth have allowed for targeting
the disease pathogenesis, rather than the disease complica-
tions. In this context, novel therapies with strong molecular
rationales have entered into clinical trials as potentially
modifying ADPKD. A significant factor propelling these
trials is the now accepted total kidney volume (TKV) imaging
technology bymagnetic resonance imaging (MRI). According
to the findings of the Consortium of Radiologic Imaging
Studies of PKD (CRISP), TKV correlates well with dimen-
sions of cysts within the kidneys and with eGFR. The rate of
renal growth is a good predictor of renal functional decline,
and thus it can be used as a surrogate marker of disease pro-
gression in clinical trials, along with measured glomerular fil-
tration rate (GFR) or serum creatinine change as principal
meaningful end points (15,16). The current review focuses
on these novel therapeutic approaches that interfere with the
molecular pathways of cystogenesis (Figure 1).

Drugs Targeting cAMP-Dependent Cystic

Expansion

Role of cAMP in cystogenesis

In ADPKD, disruption of intracellular Ca2+ homeostasis
due to mutations in the PKD genes leads to low intra-
cellular calcium and consequently increased levels of

intracellular cAMP. Normally, the levels of cAMP are con-
trolled by a balanced activity of membrane-bound (under
the control of G protein–coupled receptors (GPCRs] and
extracellular ligands) and soluble isoforms of adenylate
cyclase (AC), which catalyzes the formation of cAMP from
ATP, and phosphodiesterases (PDEs), which degrades
cAMP to AMP. Decreased intracellular calcium inhibits the
activity of PDEs and activates ACs, thus producing a net
increase in cAMP concentration (12). cAMP exerts its effects
via PKA which phosphorylates a number of metabolic
enzymes and promotes transepithelial fluid secretion, which
involves chloride secretion through the cystic fibrosis trans-
membrane conductance regulator (CFTR). Chloride secretion
drives sodium into the cystic cavity through paracellular
mechanisms; this causes movement of water through aqua-
porins and cyst’s expansion (17,18). In addition, despite the
evidence suggesting that cAMP is antimitogenic in normal
cells, in ADPKD cAMP promotes cyst enlargement by stimu-
lating epithelial cell proliferation through the activation of
the B-Raf/MEK/ERK pathway (19–22). cAMP/PKA signal-
ing is also involved in cell proliferation by activating mTOR
(via ERK-mediated phosphorylation of tuberin) (23,24) and
Wnt–β-catenin signaling (via phosphorylation of GSK3b
and β-catenin) (25,26). In addition, cAMP upregulates the
paired box gene 2 (Pax2) (27) and signal transducer and acti-
vator of transcription 3 (STAT3) (28–30).

Vasopressin 2 receptor antagonists

Normally, vasopressin (AVP) is secreted into the circulation
by the posterior pituitary gland, in response to an increase
in serum osmolality or a decrease in effective circulating
volume. In the kidney, AVP binds to the V2 vasopressin
receptor in the basolateral membranes of collecting duct
cells in the last portion of the nephron. The V2 receptor is a
typical member of the large superfamily of GPCRs. Thus,
occupancy of this receptor results in mediated activation of
AC and the formation of cAMP with a subsequent activation
of PKA, which promotes the fusion of cytoplasmic vesicles
containing aquaporin-2 water-channel proteins with the api-
cal membrane. As a result, this normally water-tight mem-
brane becomes water-permeable. Driven by the osmotic
gradient of sodium, water is then transcellularly reabsorbed,
entering the cells through aquaporin-2 in the apical mem-
brane and leaving the cells for the interstitium through
aquaporin-3 and aquaporin-4, which reside in the basolateral
membrane (31). In patients with ADPKD, there is a patholo-
gically hyperactive AVP/V2 receptor system. The altered
regulation of AVP serum levels in ADPKD have been reana-
lyzed in a number of recent studies. Serum concentrations of
vasopressin correlate positively with both serum osmolality as
well with total kidney size and correlates negatively with
GFR in ADPKD patients (32–35). There are two major rea-
sons for the deregulation of the neurohypophysis–kidney
axis in ADPKD. First, changes in kidney architecture cause
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a urinary concentration deficit with subsequently elevated
plasma osmolalities. Second, an altered central release of
vasopressin might exist. Indeed, Ahrabi et al. (36) observed
a syndrome of inappropriate antidiuretic hormone secre-
tion-like phenotype in PKD1 haploinsufficient rodents.
These rodents were able to reabsorb abnormally high

amounts of water supporting the idea of a nontubular basis
of the urinary concentration deficit. In addition, Ho et al.
(37) by investigating the osmoregulation parameters in
adult and pediatric ADPKD patients with intact GFR in
comparison with nonaffected controls, showed a significant
defect both in the release of vasopressin in response to plasma

Figure 1. Illustration of the key mechanisms of ADPKD pathogenesis and targets of potential treatments. Polycystin-1 and
polycystin-2 expressed in different subcellular locations and regulate (1) proliferation, (2) fluid secretion, (3) ciliary function,
(4) cell–cell adhesion, and (5) cell–matrix interaction of renal epithelial cells. Dysfunction of polycystin-1 or polycystin-2 results
in aberrant signaling pathways, including: (A) activation of cAMP, (B) decreased intracellular calcium concentrations, and (C)
activation of mTOR. The targets of candidate drugs are depicted as gray circles. Abbreviations: CFTR, cystic fibrosis transmem-
brane regulator; ER, endoplasmic reticulum; ERK, extracellular signal-regulated kinase; GlcCer, glucosylceramide; HDAC, his-
tone deacetylase; IL-6R, interleukin-6 receptor; MEK, mitogen-activated protein kinase; mTOR, the mammalian target of
rapamycin; PC, polycystin; PDE, phosphodiesterase; PKA, protein kinase A; SR, somatostatin receptor; TSC, tuberous sclerosis;
V2R, vasopressin V2 receptor.

ADPKD Treatment
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osmolality (central component) and in the V2R-mediated
response (nephrogenic component) in ADPKD patients.
Because of the aforementioned central role of cAMP in cysto-
genesis and the pathologically hyperactive AVP/V2 receptor
system in ADPKD patients, the block of the effect of AVP
on V2R is particularly appealing as AVP is the major hor-
mone responsible for cAMP generation in isolated collecting
ducts (38). Nagao et al. (39) documented the importance of
circulating AVP in the natural progression of the disease by
suppression of AVP with high water intake in PCK rats.
The authors observed that an increased water intake, for
10 weeks, reduced renal cell proliferation, cystic area, and
kidney weight, and improved renal function.

In preclinical trials, a nonpeptide vasopressin antagonist
mozavaptan (OPC-31260), administered in murine cystic
models orthologous to human disease, including the
Pkd2WS25/− mouse (ADPKD), PCK rat (ARPKD), and pcy
mouse (nephronophthisis type 3), reduced renal cAMP and
inhibited disease progression measured by the reduction in
kidney volume, the cystic area, the number of mitotic and
apoptotic cells, and the blood urea nitrogen (BUN) (40–42).
However, initiation of mozavaptan in Pkd1-deletion mouse
model later in the disease progression did not reduce cyst for-
mation, suggesting that early initiation of V2 receptor antag-
onism is most effective to decrease disease progression (43).
Additional studies were conducted to examine the effects of
tolvaptan (OPC-4106), a more potent and highly selective
human V2R antagonist, in comparison with mozavaptan
(44). Tolvaptan showed similar results on renal cAMP and
PKD progression in PCK rat model using the lowest dose,
which caused only modest aquaresis compared with the
higher dose regimens. There was also a corresponding reduc-
tion in the renal activity of the B-Raf/MEK/ERK pathway
(45). Subsequently, Reif et al. (46), in an in vitro study,
examined the effect of tolvaptan on intracellular cAMP,
ERK activity, cell proliferation, and transcellular chloride
anion secretion using human ADPKD cyst epithelial cells.
Tolvaptan caused inhibition of cAMP AVP–induced produc-
tion, ERK signaling AVP–induced, cell proliferation, and
chloride anion secretion. These effects significantly contribu-
ted to a decrease in in vitro cyst growth. Wang et al. (47) con-
firmed that the effect of these drugs in reducing disease
progression and cyst development was due to the inhibition
of AVP effects by selectively knocking out AVP in the
PCK rat. In the absence of AVP, the PCK rat had reduced
renal cAMP accumulation, ERK activity, cell proliferation,
and fibrosis, and was essentially free of renal cysts, whereas
administration of the V2R agonist 1-deamino-8- d-arginine
vasopressin fully rescues the cystic phenotype, providing
clear evidence for the roles of AVP and cAMP on cystic dis-
ease progression.

The large, randomized, double-blind, placebo-controlled,
multinational, phase III TEMPO 3:4 trial (48) confirmed
the aforementioned experimental studies. This trial enrolled
1445 patients aged 18–50 years with ADPKD, rapidly

progressive kidney growth (TKV ≥ 750 mL), as measured
by MRI and CKD stages 1–3. Tolvaptan reduced the rate
of TKV growth (primary endpoint) by 49% and the rate of
estimated GFR (eGFR) loss on treatment (secondary end-
point) by 26% per year during the median observation period
of 3 years. The effect on TKV appeared greater during the
first year of treatment than during the second or third
years. In addition, the beneficial effects on renal function
observed in all patient subgroups were greater in patients
aged ≥35 years and in patients with hypertension or a TKV
of ≥1500 mL. An early and reversible small reduction in
GFR at the start of tolvaptan therapy, observed also in
previous short-term trials (49–51), was likely caused by
alterations in tubuloglomerular feedback and/or renal hemo-
dynamics. Another important secondary endpoint was the
reduction in kidney pain occurring early and throughout
treatment. The results of TEMPO 3:4 trial suggested that
tolvaptan had no effect compared with placebo on albumi-
nuria. Conversely, a post hoc exploratory analysis documen-
ted that tolvaptan decreased albuminuria compared with
placebo, also independently of blood pressure. In addition,
the treatment efficacy of tolvaptan on changes in TKV
and eGFR was more readily detected in patients with
higher albuminuria (52). The drug was assumed in a split
dose regimen of 45 mg in the morning and 15 mg in the
afternoon, uptitrated to 90/30 mg when tolerated. Split
dose regimen was preferred based on the findings of phase
II studies (TEMPO 2:4 and 156-05-002) in patients with
ADPKD that documented that a split dose regimen was
more effective than a single dose in achieving sustained vaso-
pressin suppression, as evidenced by a 24-h urine osmolality
(53,54).
Based on the results of the TEMPO 3:4 trial, tolvaptan has

been approved to delay the progression ofADPKD in patients
with a rapid increase in TKV in Japan, Canada, European
Union, United Kingdom, and South Korea. However,
eligibility criteria for the prescription vary between countries
(Table 1). The European Renal Association-European Dialy-
sis and Transplant Association (ERA-EDTA) (55) and the
Renal Association Working Group on Tolvaptan in ADPKD
(56) have issued more detailed guidance on this topic.
Although the results of the TEMPO trial are highly

encouraging, tolvaptan cannot be considered as an option
for all patients. Tolvaptan has significant adverse effects,
including aquaretic effects (polyuria, nocturia, polydipsia)
and elevation of aminotransferase enzyme concentrations
with the potential for acute liver failure (48,57,58). Appropri-
ate patient selection is critical to optimize long-term benefits
while minimizing adverse effects and hepatotoxic risk factors.
Studies to further assess the efficacy and tolerability of

tolvaptan in patients with ADPKD are ongoing or just com-
pleted. TEMPO 4:4 is a 2-year, open-label extension of
TEMPO 3:4, completed in March 2016. This study aimed
to evaluate the long-term efficacy and safety of tolvaptan
in patients with ADPKD; the findings are waiting to be
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published soon. In addition, the long-term safety of titrated
tolvaptan in patients with ADPKD is currently being
assessed in a phase III open-label trial (NCT02251275) (59),
while the ongoing phase IIIb REPRISE trial aims to extend
the understanding of the efficacy and safety of tolvaptan in
patients with late stage 2 to early stage 4 CKD (60).

Somatostatin analogues

Somatostatin (SST) is an endogenous hormone secreted by the
pancreatic islet δ-cells and by extra-islet neuroendocrine cells
of the gastrointestinal tract, hypothalamus, and thyroid.
SST has anti-secretory and anti-proliferative effects mediated
by the interaction with five subtypes of GPCRs (SSTR1-5)
(61). SST receptors are expressed by renal tubular epithelial
cells and by cholangiocytes. In particular, SSTR1 and
SSTR2 are expressed in the ascending limb of Henle’s loop,
the distal tubule and collecting duct, while SSTR3, SSTR4
and SSTR5 are expressed in the proximal tubule (62–65). It
has been shown that SST selectively inhibits cAMP synthesis
in the epithelial cells of the distal tubules and collecting
ducts both in vitro and in vivo (66,67) and exerts similar effects
to cholangiocytes (68). As plasma half-life of the native SST
is very short (1–3 min), the synthetic analogues octreotide,

lanreotide, and pasireotide were developed as stable alterna-
tives for use in clinical practice. These analogues of SST differ
in their stability and affinity with the SST receptors.
In particular, octreotide and lanreotide have a half-life of 2

hours and present a high affinity for SSTR2 and SSTR3 and
moderate affinity for SST5. Instead, pasireotide has high affi-
nity for all the receptors of SST, except SSTR4, and its
plasma half-life is about 12 hours (69). Currently, formula-
tions of octreotide and lanreotide with long acting release
(LAR), which allow their administration every 28 days intra-
muscularly or intradermally, have been introduced into
clinical practice. Ruggenenti et al. (70) have evaluated for
the first time the effectiveness of octreotide-LAR by perform-
ing a randomized, cross-over, placebo-controlled trial in 14
ADPKD patients, which demonstrated the potential efficacy
in slowing the growth of TKV and the relative safety of the
treatment. A post hoc analysis of the same study showed
that the volume of the liver cysts decreased significantly
with octreotide-LAR (71). Following this initial experience,
a number of preclinical studies have confirmed the effective-
ness of treatment with SST analogues in inhibiting the growth
of renal and hepatic cysts. Bogert et al. (72) developed a
zebrafish model that allows for the testing of the possible
efficacy of drugs in inhibiting hepatorenal cystogenesis.

Table 1. Eligibility criteria for the approved use of tolvaptan according to country or region

Country
Chronic kidney
disease stage

Disease activity Regulatory body Approval date Guidance (if any)

Japan 1–4
TKV > 750 mL
ΔTKV > 5% per
annum

Pharmaceuticals
and Medical
Devices Agency

March 2014

Canada Not specified Not specified Health Canada February 2015

Europe 1–3
Evidence of rapid
disease progres-
sion

European Medi-
cines Agency

May 2015

European Renal
Association-
European Dialysis
and Transplant
Association

England, Wales,
and Northern Ire-
land

2–3
Evidence of rapid
disease progres-
sion

National Institute
for Health and
Clinical Excel-
lence (NICE)

October 2015 Renal Association

South Korea 1–3
Evidence of rapid
disease progres-
sion

Ministry of Food
and Drug Safety/
Health Insurance
Review and
Assessment Ser-
vice

December 2015

Scotland 1–3
Evidence of rapid
disease progres-
sion

Scottish Medi-
cines Consortium

January 2016 Renal Association

TKV, total kidney volume.

ADPKD Treatment
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In this experimental model, the exposure of zebrafish embryos
to pasireotide significantly reduced the area of the cysts. A
recent study also assessed the efficacy of pasireotide and tol-
vaptan, in a murine model of ADPKD (73). Treatment with
pasireotide or tolvaptan alone, significantly reduced the
growth of cysts, and the effect was even more marked by com-
bining the two drugs. In another randomized study, Van
Keimpema et al. (74) compared the effects of 6 months of
treatment with lanreotide or placebo in 54 patients with poly-
cystic liver disease (PLD), including 32 with ADPKD and the
remaining with isolated polycystic liver disease (PCLD). The
average volume of the liver decreased in patients treated with
lanreotide while it increased in the placebo group. Moreover,
in patients with ADPKD, TKV was reduced after treatment
with lanreotide while it increased in the placebo group. In a
subsequent open-label extension study (75), patients who par-
ticipated in the initial trial were re-enrolled to complete a
treatment period of 12 months with lanreotide. Liver volume
decreased after 12 months of treatment with lanreotide, with
the greatest effect seen during the first 6 months. In the 25
patients with ADPKD, TKV remained stable at the end of
12 months. Furthermore, in 15 patients with ADPKD, a
CT of the kidneys was repeated 6 months after the treatment
with evidence of increased TKV during this period. In
another 12 months of study, 42 patients with PLD, including
34 with ADPKD, were randomized to receive treatment with
octreotide-LAR or placebo (76). The total volume of the liver
was reduced in the treatment arm with octreotide-LAR but
increased in the placebo group. In patients with ADPKD,
the TKV remained unchanged in the octreotide-LAR group
but increased in the placebo group. In addition, renal func-
tion had a slower reduction in patients treated with
octreotide-LAR, although the difference did not reach statis-
tical significance. This study also had an open-label extension
for 12 months (77). In the group initially randomized to
octreotide-LAR, the reduction of liver volume remained evi-
dent until the end of the second year of treatment, although
the effect was not significant during the second year. Instead,
in the originally randomized placebo group who continued
with octreotide-LAR, the total volume of the liver decreased
significantly after 1 year of treatment with the drug. In the
cohort of patients with ADPKD initially randomized to
octreotide-LAR, the inhibition of kidney growth observed
during the first year was not observed in the second year of
study, while in those originally randomized to placebo,
TKV remained unchanged after 1 year of treatment with
octreotide-LAR. More recently, in the ALADIN multicenter
study conducted in Italy, 79 patients with ADPKD and
eGFR > 40 mL/min/1.73 m2 were randomized to a 3-year
treatment with octreotide-LAR or placebo (78). After the
first year, the average increase in TKV was significantly
lower in patients treated with octreotide-LAR compared
with those receiving placebo. In the third year, the average
increase in TKV in the treatment arm was lower than the
placebo group without reaching statistical significance.

During the entire study period, the annual reduction in GFR
was lower in octreotide-LAR group than in the placebo
group, although the difference did not reach statistical signifi-
cance. However, a further analysis documented that while the
reduction of GFR after 1 year was comparable in the two
groups, the chronic loss of renal function between the first and
third year was significantly slower in the treatment arm compa-
red with placebo group, with a difference of about 50%. Amore
recent open-label clinical study evaluated the efficacy of 6
months of treatment with lanreotide in 43 patients with symp-
tomatic PLD and ADPKD (estimated GFR > 30 mL/min/
1.73 m2) (79). Compared with baseline, the median liver
volume as well as that of the kidney decreased significantly.
In addition, renal function remained stable until the end of
the study. A recent meta-analysis confirmed the efficacy of
SST analogues in reducing the progressive increase of TKV,
on average with a reduction of 9% compared with the growth
observed in patients treated with placebo or conventional
therapies. However, treatment with SST analogues did not
demonstrate significant effects on the eGFR (80). Based on
these studies, in August 2015, European Medicines Agency
(EMA) attributed to lanreotide the Orphan Drug designation
for the treatment of ADPKD.
In the studies mentioned above, treatment with SST

analogues was generally well tolerated with no particular
problems, diarrhea being the most common adverse event.
However, recently, the authors of a randomized, controlled
clinical trial assessing the efficacy of lanreotide to halt disease
progression in patients with later stage ADPKD (NCT0
1616927) documented an increased risk for hepatic cyst
infection during lanreotide treatment, especially in ADPKD
patients with a history of hepatic cyst infection. A literature
review also suggested an increased risk for hepatic cyst infec-
tion during the use of somatostatin analogues (81).
Additional clinical trials of SST analogues for ADPKD

and/or PLD are currently ongoing [NCT01616927: Study of
Lanreotide to Treat Polycystic Kidney Disease (DIPAK1);
NCT01377246: Somatostatin in Patients with Autosomal
Dominant Polycystic Kidney Disease and Moderate to
Severe Renal Insufficiency (ALADIN 2); NCT02127437:
Lanreotide in Polycystic Kidney Disease Study (LIPS);
NCT01670110: Pasireotide LAR in Severe Polycystic Liver
Disease (SOM230)].

Drugs Targeting mTOR Signaling Pathway

Role of mTOR signaling pathway in cystogenesis

Serine/threonine-protein kinase mTOR is an enzyme that
plays a critical role in proliferation and cell growth (82). The
first suggestion of a prominent role of mTOR pathway in
the pathogenesis of ADPKD comes from studies in patients
with severe infantile-onset of ADPKD due to a large deletion
of chromosome 16 involving PKD1 gene [16p13.3] and the
adjacent tuberous sclerosis 2 (TSC2) gene [16p13.3] (83).
Mutations in TSC1 [9q34.13] or TSC2 are the causes of
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tuberous sclerosis complex, an autosomal-dominant, neuro-
cutaneous, multisystem disorder characterized by the forma-
tion of benign hamartomas in various organs including
kidneys that are also involved with bilateral cysts formation
(84). TSC1 and TSC2 encode, respectively, for hamartin and
tuberin. These two proteins together with TBC1 domain
family member 7 (TBC1D7) form the TSC protein complex
that acts as a critical negative regulator of mTOR complex 1
(mTORC1) (85). PC1 also has an important function in the
regulation of the mTOR pathway, as C-terminal cytoplasmic
tail of PC1 interacts with tuberin. In ADPKD, this interaction
is impaired and the mTOR pathway is inappropriately acti-
vated in cyst-lining epithelial cells of humanADPKDpatients
andmousemodels (86). Based on these data,mTOR inhibitors
have been suggested as possible therapeutic agents for
ADPKD.

mTOR inhibitors

Sirolimus, a macrocyclic lactone produced by fermentation of
Streptomyces hygroscopicus, exerts potent antiproliferative
and antifibrotic effects by inhibiting the mTOR pathway.
Sirolimus and its derivative everolimus, used in maintenance
immunosuppression in patients undergoing kidney transplan-
tation, have been proposed as potential new drugs to slow the
growth of cysts and the progression of ADPKD in ESRD.
The effects of treatment with mTOR inhibitors have
been assessed in different experimental models of ADPKD
(87–90). An early study showed that in Han:SPRD rats,
the administration of sirolimus for 5 weeks significantly
reduced the proliferation of tubular cells, inhibited cystogen-
esis and the growth of the kidney, and preserved renal
function (91). More recently, prolonged treatment with siro-
limus, in the same experimental model, has been observed
to normalize the volume of the kidney, renal function, and
blood pressure (92). These experimental studies have pro-
vided the rationale for the design of several prospective
clinical trials aimed to verify the effectiveness of treatment
with mTOR inhibitors in ADPKD patients. A first published
randomized double-blind study, compared the effects of 2
years of treatment with everolimus (5 mg/day) or placebo in
433 patients with ADPKD and GFR > 30 mL/min/1.73 m2

(93). During the first year of study, the increase of TKV
was significantly lower in the treatment arm with everolimus
compared with placebo. This effect was not confirmed at the
end of the second year. In addition, the initial effectiveness of
everolimus in slowing down TKV did not translate into an
improvement in renal function. An important bias of this
study could be the high proportion of patients who discontin-
ued the study in the everolimus group due to poor tolerability
to treatment with the mTOR inhibitor. Indeed, the urinary
protein excretion was significantly increased, and the overall
incidence of adverse events was higher in the everolimus
group; hyperlipidemia, leukopenia, thrombocytopenia, acne,
stomatitis, and peripheral edema were the most relevant

events. The SUISSE study compared the effects of treatment
for 18 months with sirolimus (2 mg/day) or conventional ther-
apy in 100 patients with ADPKD and GFR ≥ 70 mL/min/
1.73 m2 (94). The median increase in TKV was comparable
between the two groups as well as the eGFR throughout
the entire study period. In this study, proteinuria was also sig-
nificantly higher in patients treated with sirolimus than in the
control group. The randomized trial SIRENA compared the
effects of treatment with sirolimus or with conventional ther-
apy alone for 6months in 21 patients withADPKDandGFR≥
40 mL/min/1.73 m2 (95). The treatment with sirolimus was
associated with a minor increase of the TKV compared
with conventional therapy, although the difference did not
reach statistical significance. Even in this trial, appreciable
variations of GFR were not observed, and as in the above
described studies, the same adverse events (proteinuria, hyper‐
lipidemia, thrombocytopenia, stomatitis) were presented.
In a subsequent open-label study (RAPYD), 55 patients
with ADPKD and mild to moderate renal impairment were
randomized to 24 months of treatment with ramipril (control
group), ramipril in combination with high doses of sirolimus
(target blood levels: 6–8 ng/mL), or ramipril in combination
with low-dose sirolimus (target blood levels: 2–4 ng/mL)
(96). Compared with baseline, total cyst volume decreased
significantly in both treatment arms with sirolimus, while it
increased in the control group. Similarly, eGFR remained
relatively stable in both treatment groups with sirolimus but
worsened in the control group. However, at the end of
2 years of treatment, the urinary excretion of proteins and
the incidence of hyperlipidemia were significantly higher in
patients treated with high doses of sirolimus compared with
the control group. In a more recent study, 30 patients with
ADPKD and measured GFR ≥ 25 mL/min/1.73 m2 were ran-
domized to receive for 12 months low-dose sirolimus (target
blood levels 2–5 ng/mL), standard doses of sirolimus (target
blood levels >5–8 ng/mL), or conventional therapy (97).
TKV did not change significantly in the two treatment groups
with sirolimus as in the group assigned to conventional
therapy. In addition, the renal function improved (GFRmea-
sured by plasma clearance of iothalamate) with low-dose sir-
olimus, but not with the standard dose of the drug. Various
hypotheses have been formulated to explain the discrepancies
between the results obtained in experimental studies and in
clinical trials. It is possible that the dose of sirolimus or
everolimus used in clinical trials is not sufficient to inhibit
mTOR enzyme activity in renal tubular cells or that the treat-
ment was started in a too advanced stage of the disease
to obtain an improvement of the renal function (86,87,98).
In conclusion, the available clinical studies discourage the
use of mTOR inhibitors to slow the progression of renal dis-
ease in patients with ADPKD. Currently there are two
ongoing trials that test mTORs in ADPKD: Pulsed Oral
Sirolimus in Autosomal Dominant Polycystic Kidney Dis-
ease (RAP) [NCT02055079] and The Efficacy of Everolimus
in Reducing Total Native Kidney Volume in Polycystic
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Kidney Disease Transplanted Recipients (EVERKYSTE)
[NCT02134899].

Other Therapeutic Targets in Preclinical Studies

and Early Clinical Trials

Tyrosine kinase inhibitors

c-Src and Bcr-Abl are two cytoplasmatic tyrosine kinases
(TKs) involved in the development of malignancies (99).
Yamaguchi et al. (100) documented that in renal epithelia,
the switch of cAMP from an anti-mitogen to a mitogenic sti-
mulus not only correlates with decreased intracellular cal-
cium levels but is also associated with an increased activity
of Src. Furthermore, Sweeney et al. (21) evaluated bosutinib
(SKI-606), a Src/Abl tyrosine kinase inhibitor, in the BPK
and PCK rodent models of ADPKD. Bosutinib was found
to suppress kidney cyst formation by inhibiting epidermal
growth factor receptor (EGFR) activation and downregulat-
ing B-Raf/ERK signaling. In addition, bosutinib was effec-
tive in inhibiting epithelial cell proliferation and reducing
extracellular matrix adhesion in an in vitro study on mouse
inner medullary collecting duct cells and human ADPKD
cyst-lining epithelial cells. In the same study, the authors
also highlighted the ability of bosutinib to delay renal cystic
phenotype of Pkd1 orthologous ADPKD heterozygous
mice in vivo (101). Based on these evidences, a phase II,
multicenter, randomized, double-blind, placebo-controlled
clinical trial with bosutinib [NCT01233869] has been con-
ducted and completed, and we currently are expecting publi-
cation of the study results. Tesevatinib, a new tyrosine kinase
inhibitor, is being currently evaluated in two ongoing trials
[NCT02616055 and NCT01559363].

Stimulation of polycystin-2-mediated Ca2+ release

Triptolide, a natural active component derived from the
traditional Chinese medicine, Tripterygium wilfordii, was
found to restore cytosolic Ca2+ release in Pkd1−/−murine kid-
ney epithelial cells, by acting as a PC2 agonist. Through this
mechanism, triptolide has been effective in arresting cellular
proliferation and attenuating overall cyst formation in this
murine model (102,103). In a recent pilot study, triptolide
was effective in decreasing proteinuria in ADPKD patients
but there were no effects on TKV and renal function (104).
A clinical trial conducted in China has been terminated
due to a high rate of drop-outs [NCT00801268], and another
trial is under way [NCT02115659].

Raf kinase inhibitors

Sorafenib is a nonselective Raf inhibitor that decreases ERK
activity and inhibits the proliferation of various human cancer
cell lines. In an experimental model, sorafenib reduced the
basal activity of ERK, inhibited cAMP-dependent activation
of B-Raf andMEK/ERKsignaling, and caused a concentration-
dependent inhibition of cell proliferation induced by cAMP

and EGF. In addition, sorafenib completely blocked in vitro
cyst growth of human ADPKD cystic cells (105).
Conversely, in a PC2 defective mice model, sorafenib inhibi-
ted B-Raf but paradoxically activated Raf-1, resulting in an
increased ERK1/2 phosphorylation, cell proliferation, and
cyst growth in vivo. This effect has been interrupted in the
same study by co-administration of sorafenib and octreotide
with consequent simultaneous blocking of the cAMP/PKA
pathway (106). A different Raf inhibitor (PLX5568) has
been evaluated in the Han:SPRD rat model (107). In this
study, cyst enlargement attenuated without an improvement
in kidney function. Furthermore, the authors reported in-
creased renal and liver fibrosis.

CDK inhibitors

The central role of cyclin-dependent kinases (CDKs) in the
regulation of cell proliferation is well defined. PC1 directly
regulates cell cycle by inhibiting CDK2 activity through upre-
gulation of p21, inducing cell cycle arrest in G0/G1 phase
and controlling terminal differentiation of tubular epithelial
cells (108). PC2 by binding with Id2 protein (Inhibitor of
DNA binding 2 protein) prevents its translocation to the
nucleus, thus blocking cell cycle progression. InADPKD, tran‐
slocation of Id2 is connected with downregulation of p21,
leading to intensification of CDK2 activity and cell cycle
progression (109). A preclinical study with the CKD inhibitor
R-roscovitine in juvenile cystic kidney and congenital polycys-
tic kidney mouse models of PKD, effectively attenuated cysto-
genesis by inhibiting cell cycle progression, proliferation, and
apoptosis (110). In addition, a more potent second-generation
analogue of roscovitine (S-CR8) showed effective inhibition
of both renal and hepatic cystogenesis in an orthologous
mouse model of ADPKD with inactivated Pkd1 gene (111).

HDACs inhibitors

Histone deacetylases (HDACs) are part of a vast family of
enzymes that regulate specific cellular processes through dea-
cetylation of histones or nonhistone transcription factors,
leading to transcriptional repression. Altered expression of
HDCAs causes abnormal transcription of key genes control-
ling principal cellular functions such as cell proliferation,
cell-cycle regulation, and apoptosis (112). To discover poten-
tial drug candidates in the therapy of ADPKD, a pan-HDAC
inhibitor called trichostatin A (TSA) has been evaluated
in a pkd2 zebrafish model showing the ability to suppress
pronephric cyst formation (113). The same results have
been obtained after administration of valproic acid (VPA),
a class I HDAC inhibitor (113), and confirmed in Pkd1 and
Pkd2 mouse models (113–115). SIRT1 (Sirtuin 1) is a member
of a mammalian family of proteins, the sirtuins, originally
identified as a family of nicotinamide adenine dinucleotide–
dependent (NAD-dependent) class III histone deacylases (116).
Zhou et al. (117) showed that SIRT1 expression was upregu-
lated through c-MYC oncoprotein and could be induced
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by TNF-α, which is present in cyst fluid during cyst develop-
ment. Double conditional knockouts of Pkd1 and SIRT1
demonstrated delayed renal cyst formation. Increased
SIRT1 expression in mutant renal epithelial cells regulated
cystic epithelial cell proliferation through deacetylation and
phosphorylation of Rb and regulated cystic epithelial cell
death through deacetylation of p53. Furthermore, treatment
with the pan-sirtuin inhibitor nicotinamide (NAM) or a
SIRT1-specific inhibitor (EX-527) delayed cyst growth. An
uncontrolled, Open-Label, Pilot and Feasibility Study of
Niacinamide in Polycystic Kidney Disease (NIAC-PKD1)
[NCT02140814] has just been completed, and we are cur-
rently awaiting publication of the results. In addition, another
trial, the Pilot Study of Niacinamide in Polycystic Kidney
Disease (NIAC-PKD2) [NCT02558595], is currently recruit-
ing participants.

CFTR and KCa3.1 channel inhibitors

The CFTR gene, identified in the q21-31 region of chromo-
some 7 encodes a cAMP/PKA-regulated Cl− channel (118).
CFTR is an ATP-binding cassette (ABC) transporter com-
posed of two transmembrane domains (TMDs) and two
nucleotide-binding domains (NBDs), separated by a larger
regulatory domain (RD) containingmultiple phosphorylation
sites. Prior to channel opening, the RD is phosphorylated at
multiple sites by PKA (119). CFTR mRNA is expressed in
all nephron segments and its protein is involved with chloride
secretion in the distal tubule, and the principal cells of the cor-
tical and medullary collecting ducts. Several studies showed
that CFTR does not only transport Cl− but also secretes
ATP and controls other conductances such as Na+ (ENaC)
andK+ (ROMK2) channels (120). As aforementioned, the ele-
vation of intracellular cAMP inADPKDactivates the cAMP/
PKApathway and leads to a consequent accumulation of fluid
within cysts by CFTR-mediated transepithelial ion transport
(17,18). Furthermore, individuals afflicted by both CFTR
and PKD mutations showed to have attenuated polycystic
kidney disease phenotype than those with ADPKD alone
(121–123). Based on these data, each of the three chemical
classes of CFTR inhibitors has been tested in PKD models:
(1) Thiazolidinones, (2) Glycine and Malonic Acid Hydra-
zides, and (3) pyrimido-pyrrolo-quinoxalinediones (PPQs).
The best thiazolidinone, tetrazolo-CFTRinh-172, and the
best glycine hydrazide, Ph-GlyH-101, were found to inhibit
cyst formation and enlargement in MDCK (Madin–Darby
Canine Kidney) cyst models and in Pkd1 mice (124). In addi-
tion, the PPQ-class CFTR inhibitors PPQ-102 and BPO-27
showed greater potency than the thiazolidinones and glycine
hydrazides in embryonic kidney explant PKD models
(125,126). The channels for potassium, KCa3.1, located on
the basolateral membrane of cells lining the cysts, have also
an important role in the Cl− and fluid secretion as mediate
K+ efflux and maintain a negative intracellular membrane
potential which indirectly enhances apical Cl− secretion by

the CFTR. For confirmation, a specific KCa3.1 channel inhi-
bitor, TRAM-34, showed to inhibit Cl− secretion and cyst for-
mation by MDCK cells (127). In conclusion, apart from
experimental studies, currently there are no clinical trials to
confirm the use of CFTR e/or KCa3.1 inhibitors in clinical
practice.

Activation of AMPK signaling pathway

AMP-activated protein kinase (AMPK) is an extremely pre-
served metabolic sensor of intracellular adenosine nucleotide
levels that is activated when even modest decreases in ATP
production result in relative increases in AMP or ADP,
allowing for adaptive changes in growth, differentiation,
and metabolism under conditions of low energy. The most
well-described mechanism by which AMPK regulates cell
growth is via suppression of the mTORC1 pathway, by direct
phosphorylation of the tumor suppressor TSC2 and Raptor
(regulatory associated protein of mTOR) (128,129). In addi-
tion, AMPK phosphorylates and directly inhibits CFTR in
the kidney (130,131). Thus, targeting the activation of
AMPK signaling pathway in ADPKD could be useful to
arrest two major mechanisms of cystogenesis. Metformin, a
drug widely used clinically for diabetes mellitus is known to
stimulate AMPK (132,133). Recently, Takiar et al. (134)
showed, in Pkd1 mice model, that metformin inhibited
renal cystogenesis and caused a significant decrease in the cys-
tic index by activating AMPK and suppressing mTOR and
CFTR. Currently, the TAME trial [NCT02656017] is recruit-
ing participants to see if metformin is safe and well tolerated
compared with placebo in adult ADPKD patients with begin-
ning stages of chronic kidney disease. The investigators will
also measure the effect of metformin on progression of kidney
disease as reflected in the kidney size and the kidney function,
along with its effect on kidney pain and quality of life.

Agonists of PPAR-γ

Agonists of Peroxisome proliferator–activated receptor
gamma (PPAR-γ) are synthetic ligands, used in clinical prac-
tice as agents that increase insulin sensitivity in the treatment
of diabetes mellitus type II. In addition, they have been shown
to have anti-cystogenic properties in PKD animal models
(135–138). Pioglitazone has been shown to inhibit the growth
of renal and hepatic cysts in PCK rats, by inhibiting the
CFTR-mediated ionic current and the secretion of fluid
(135). In another study, pioglitazone also reduced cellular
proliferation, highlighted by a reduction in the number of
cells positive for Ki67 (a proliferation marker) in the dilated
tubules and in cysts from treated rats. The fact that it also
reduced the number of positive cells for Ki67 in noncystic
tubular cells suggest that pioglitazone can inhibit the earliest
events of cystic formation (136). Inhibition of renal cell
proliferation was mediated by the reduction of two of the
crucial intracellular pathways in PKD: the signals MEK/
ERK and AKT/mTOR. The inhibitory effect on proliferation
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was similar in the liver with a reduced rate of the same
proliferation markers. Another powerful agonist of PPAR-
γ, rosiglitazone has been used to treat Han:SPRD rats. Rosi-
glitazone delayed the onset of renal failure but was associated
with cardiac enlargement due to excessive renal sodium reab-
sorption (138). Based on these preclinical data, The Use of
Low Dose Pioglitazone to Treat Autosomal Dominant Poly-
cystic Kidney Disease (PIOPKD) trial [NCT02697617] is
currently recruiting participants to determine whether piogli-
tazone is a safe and effective treatment of ADPKD when
treated in its early stages.

Other drugs have been evaluated in preclinical studies with-
out further investigation through clinical trials. In a seminal
study, Natoli et al. (139) showed that the glucosylceramide
inhibitor, Genz-123346, was able to block cell cycle progres-
sion and proliferation through inhibition of the Akt-mTOR
pathway inmousemodels for ADPKDand nephronophthisis.
Subsequently, the same authors showed that a mutation in the
synthase gene of ganglioside GM3 led to a milder cystic phe-
notype (140). These data suggest that sphingolipids are not
only components of cell membranes but also play signaling
roles in ADPKD cystogenesis.

Some authors hypothesized that activation of purinergic
receptors by ATPmodulates fluid secretion, cell proliferation,
apoptosis and ciliary function in ADPKD (141,142). Chang
et al. (143) showed that the blockade of the purinergic recep-
tor P2X7 by a selective inhibitor reduced cyst formation in a
PKD2 zebrafish model, suggesting that P2X7 antagonists
could have therapeutic role in ADPKD.

Another pathway that could be implicated in the pathoge-
netic process of cystogenesis is the Janus kinase/signal trans-
ducer and activator of transcription (JAK/STAT) pathway.
JAK/STAT indeed plays a relevant role in kidney develop-
ment and mediates tubular cell proliferation after ischemic
injury (28,30). Indeed, pyrimethamine, a STAT3 inhibitor,
has been effective in inhibiting cyst growth in PKD1 mice
model (30). Subsequently, a STAT3 specific inhibitor (S3I-
201) confirmed these beneficial effects (30).

Curcumin (diferuloylmethane) a component of the golden
spice turmeric (Curcuma longa) can modulate multiple cell
signaling pathways (mTOR, WNT, STAT3) altered in
ADPKD and showed to reduce cystogenesis and postpone
renal failure in Pkd1 mice model (29).

Conclusion and Future Directions

Multiple signaling pathways are involved in cyst formation
and progression, and studies of these signaling pathways
have led to potential treatments for ADPKD. In this review,
we covered the successes that the scientific society obtained in
recent years in understanding the pathogenesis of ADPKD,
and presented novel therapeutic strategies targeting molecu-
lar pathways of cystogenesis. V2R antagonists and SST ana-
logues have been shown to safely slow kidney growth and
protect renal function in patients with ADPKD and represent

the most well-characterized and promising candidate thera-
pies to date. According to the results of the TEMPO3/4
study and registration by EMA, tolvaptan seems to be the
first-choice drug. Unfortunately, some medical interventions
successful in experimental models failed in clinical practice,
and others still need to be evaluated in clinical trials. It is pos-
sible that monotherapy may not be sufficient and that target-
ing multiple molecular pathways will be required to retard
cyst growth and disease progression in the future. Combina-
tion therapy is then the right direction for further clinical
trials in order to find effective treatment.
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