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Abstract

Several metabolic monogenic diseases may be cured by liver transplantation alone (LTA) or by combined liver–kidney transplan-
tation (CLKT) when the metabolic disease has caused end-stage renal disease. Liver transplantation may be regarded as a substi-
tute for an injured liver or as supplying a tissue that may replace a mutant protein. Two groups of diseases should be distinguished.
In the first group, the kidney tissue may be severely damaged while the liver tissue is almost normal. In this group, renal transplan-
tation is recommended according to the degree of renal damage and liver transplantation is essential as a genetic therapy for
correcting the metabolic disorder. In the second group, the liver parenchymal damage is severe. In this group, liver transplanta-
tion is essential to avoid liver failure. LTA may also avoid the progression of the renal disease; otherwise a CLKT is needed. In
this review, we describe monogenic metabolic diseases involving the kidney that may have beneficial effects from LTA or CLKT.
We also highlight the limitations of such procedures and the choice of alternative medical conservative treatments.
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Introduction

Monogenic metabolic diseases involving the kidney are rela-
tively rare and primarily found in children. In these diseases,
genes encoding enzymes that allow the regulation of complex
metabolic pathways, or circulating proteins mainly produced
by the liver, are involved. In some diseases, the liver itself is
affected along with other organs. Conversely, in some cases,
the liver is free from significant parenchymal damage, but
other organs, for example, the kidneys, may be severely
injured. Tables 1 and 2 give a summary of these monogenic

metabolic diseases (1, 2). In addition to the diseases shown
in the tables, other monogenic metabolic diseases do exist
with possible involvement of the kidneys and the liver.
Alagille syndrome, Wilson’s disease, and hemochromatosis
are a few examples. For this review, the diseases listed in
Tables 1 and 2 were selected because they are more frequent
with severe renal involvement and may be cured either by
liver transplantation alone (LTA) or by combined liver–kidney
transplantation (CLKT). For some diseases, an enzyme repla-
cement therapy (ERT) is a possible option; however, ERT is
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not always available and is extremely expensive (3). A different
approach could be gene therapy but its application encounters
technical difficulties and to date is not a real option (4). When
an alternative medical and conservative therapy is not avail-
able, organ transplantation may represent the only alternative
therapy. Whether LTA or liver after kidney, or CLKT is
the preferred strategy depends on kidney function or the
availability of organs.

Due to the fact that these diseases are rare, epidemiological
data come from national or international registries. According
to the European Liver Transplant Registry (ELTR), between
1968 and 2010, orthotopic liver transplantation (OLT) for
monogenic metabolic diseases was performed in 5.4% of adults,
and in 17.3% of pediatric population (1). In the latter group,
the predominant disorder was alpha 1 antitrypsin deficiency
(AATD) (16%), followedby tyrosinemia (7%), primaryhyperox-
aluria (PH1) (7%), and glycogen storage disease (GSD) (4%).
According to the United Network for Organ Sharing (UNOS)
data (5), from 1996 to 2006, PH1 was the most predominant
disorder (20.8%) with few patients transplanted because of
atypical hemolytic uremic syndrome (aHUS) (0.8%) or AATD
(0.8%). In these data, a large number of liver transplantation is
reportedwithout clarifying theoriginal disease (33.6%).A review
performed in 2013 (6), which included only CLKT in children,
showed that PH1 prevailed with 72%, followed by aHUS (1%),
organic acidurias (1%), and AATD (0.5%). Finally, according
to the Japanese multicenter registry for living donor liver
transplantation (LDLT) for pediatric patients with metabolic
disorders, the first cause of LDLT is methylmalonic aciduria
(10.3%), followed by GSD (7.7%), tyrosinemia (6.7%), and
PH1 (4.6%) (7).

These registries report discordant data. The causes may be
multifactorial: geographic and ethnic disparities, and LDLT
data versus OLT versus CLKT data. Additionally, an impor-
tant role may have been exerted by various considerations
given to alternative treatments and different periods for
collecting the data. Finally, the lack of OLT or CLKT for
aHUS in registries such as the UNOS and ELTR, even during

periods when eculizumab was not available, means a different
therapeutic approach to the disease. The efforts of the
Organ Procurement and Transplantation Network (OPTN)
to realize guidelines for CLKT document the aforementioned
concerns (8). At the meeting held in 2012 at the University of
South California (8), the authors highlighted several previous
consensus and tried to develop recommendations for the
selection of candidates for CLKT (9, 10), but these recom-
mendations have not yet become OPTN policy. In a recent
review, Bacchetta et al. (11) pointed out that the experience
of CLKT is limited and that some issues such as the respective
place of a combined versus sequential liver kidney transplan-
tation or the role of alternative therapies remain unanswered.
According to the authors, the following key points should
be highlighted:

• CLKT has encouraging results, provided that highly
trained multidisciplinary teams are involved.

• The first issue is the safety of the procedure, principally in
smaller children or in severely sick patients.

• Specific managements after CLKT or LTA are needed to
avoid the recurrence of diseases such as PH1 and aHUS.

• The timing of CLKT, whether to perform a combined or
sequential transplantation.

In this review, we describe monogenic metabolic diseases
involving the kidney that may have beneficial effects from
LTA or CLKT. We also highlight the limitations of such
procedures and the choice of alternative medical conservative
treatments. A literature search was performed in Web of
Science, PubMed, EMBASE, Scopus, and directory of open
access journals (DOAJ). The search was performed using the
following key words: kidney–liver transplantation monogenic
diseases, hyperoxaluria, aHUS, organic acidurias, GSD, tyrosi-
nemia, and alpha-1-antitrypsin deficiency (AATD).

Metabolic monogenic diseases affectingmainly the kidney

Primary hyperoxaluria

The autosomal recessive inherited primary hyperoxaluria
types I, II, and III are caused by defects in glyoxylate metabo-
lism that lead to the endogenous overproduction of oxalate
(12). PH1 is the most severe form of the disease and is present
in approximately 80% of patients included in the two interna-
tional registries (13, 14). It is an autosomal recessive liver
disease caused by deficiency or loss of activity of peroxisomal
alanine glyoxylate aminotransferase (AGXT) (Table 3). This
results in an overproduction of oxalate and glycolate (15, 16),
with oxalate deposition in several organs and tissues includ-
ing the kidney. PH2 is caused by deficiencies of the glyoxylate
reductase/hydroxypyruvate reductase (GRHPR) enzyme.
GRHPR is ubiquitous, but its expression is higher in the liver
(17). The clinical expression is less severe although patients
may be affected by severe urolithiasis with end-stage renal dis-
ease (ESRD) (18). PH3 has only recently been described (19).

Table 1. Monogenic metabolic diseases caused by the liver
that affect the kidney or both liver and kidney

Diseases affecting the kidney

- Primary hyperoxaluria types I and II

- Atypical hemolytic uremic syndrome

- Methylmalonic acidosis

- Transthyretin amyloidosis

Diseases affecting kidney and liver

- Glycogen storage disease

- Tyrosinemia type I

- α-1-antitrypsin deficiency
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It is caused by loss of function of the mitochondrial 4-hydroxy-
2-oxoglutarate aldolase (HOGA) enzyme. PH3 does not appear
to progress to ESRD (20). Table 3 reports the incidence per-
centage of PH according to Hoppe et al. (21). It should be
highlighted that the percentage of PH2 and PH3 may be
slightly higher. Indeed, PH2 may be undiagnosed because
of the less severe clinical course.

The conservative treatment of PH1 has several limitations.
Patients should intake high quantities of fluids (22). In addi-
tion to fluid intake, patients are recommended to take alka-
line citrate or orthophosphate to increase urinary pH and

urinary citrate excretion (23). In one-third of the patients,
supraphysiological dosages of pyridoxine may reduce the
oxalate excretion (23). It has been documented that patients
with a homozygous c.508G>A mutation of the AGXT gene
experience a better response from pyridoxine therapy (24).
Oxalate-degrading bacteria usually colonize the intestinal
tract. Oxalobacter-driven activation of the intestinal trans-
porter results in an increased oxalate elimination with feces,
and a decrease of plasma oxalate (25). Peritoneal dialysis
and hemodialysis are relatively ineffective in removing
oxalate (26).

Table 2. Diseases involving the kidney amenable to LTA or CLKT as surgical therapy

Disorder, type,
and acronym

Gene symbol Inheritance
Mechanism of

disease
Deficient
enzyme

Liver features Clinical features

Primary hyper-
oxaluria type I

AGXT AR
Calcium oxa-
late accumula-
tion in tissues

Alanine-glyox-
ylate-amino-
transferase

Normal liver
Nephrolithia-
sis; renal failure

Atypical
hemolytic ure-
mic syndrome
(aHUS1)

CFH AR, AD

Thrombotic
microangiopa-
thy, comple-
ment activa-

tion

Complement
factor H

Normal liver
Acute renal

failure; hyper-
tension

Methylmalonic
acidemia
(MMA)

MUT AR

Disorder of
methylmalo-
nate and coba-
lamin leading
to methylma-
lonyl-CoA

accumulation

Methylmalo-
nyl CoA
mutase

Normal liver
Toxic encepha-
lopathy; acido-
sis; renal failure

TTR familial
amyloid poly-
neuropathy
TTR1-FAP

TTR AD

Deposit of
insoluble pro-
tein fibrils in
the extracellu-
lar matrix

Transthyretin Normal liver

Polyneuropa-
thy; cardio-
myopathy;
renal failure

Glycogen sto-
rage disease
type Ia

G6Pase AR

Abnormal
accumulation
of glycogen in
the tissues

Glucose-6-
phosphatase

Glycogen in
the liver; Ade-
nomas HCC

Hepatomegly;
Nephromegaly;
Growth retar-

dation

Tyrosinemia
type I

FAH AR
Lack of tyro-
sine degrada-

tion

Fumarylace-
toacetate
hydrolase
(FAH)

Liver failure;
HCC

Secondary
renal tubular
dysfunction

α-1 antitrypsin
deficiency
(AATD)

PI AR

Lack of inhibi-
tory action

against neutro-
phil elastase

Protease inhi-
bitor

Cirrhosis HCC
Emphysema;
glomerulone-

phritis

AATD, α-1antitrypsin deficiency; AD, Autosomal dominant; AGXT, Alanine-glyoxylate aminotransferase; AR, Autosomal recessive; CFH,
Complement factor H; G6Pase, Glucose-6-Phosphatase; FAH, Fumaryl-acetoacetate hydroxylase; MMA, Methylmalonic academia; MUT,
Methylmalonyl-CoA mutase; PI, Protease inhibitor; TTR, Transthyretin; TTR1-FAP, Transthyretin-type familial acidosis polyneuropathy.

Liver or combined liver-kidney transplantation
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The best transplantation strategy for a patient affected by
PH1 has been a matter of discussion. Preemptive LTA is the
best strategy for patients before the occurrence of ESRD,
and to prevent systemic oxalosis (27). LTA is the best strategy
for patients with glomerular filtration rate (GFR) higher than
40 mL/min/1.73 m2 (28). CLKT is the preferred option when
GFR is below 40 mL/min/1.73 m2 (29). The transplant out-
come is optimal in CLKT according to the International
Primary Hyperoxaluria Registry (30) and the recently pub-
lished French experience (31), which concludes that CLKT
for PH1 provides better kidney graft survival, less rejection
rate, and is not associated with an increased short-time mor-
tality risk. Medical treatment is effective in PH2; in patients
with ESRD, kidney transplantation alone is the treatment
of choice, as the defective enzyme is not liver-specific (17).
Reports of CLKT for PH2 do exist (32); however, kidney
transplantation followed by appropriate measures to decrease
oxalate levels is the method of choice (33).

Atypical hemolytic uremic syndrome

aHUS is a rare disease often associated with mutations in
genes encoding complement regulatory proteins, causing

secondary disorders of complement regulation. CFH muta-
tions (gene encoding factor H) are the most common, but
mutations in genes encoding complement factor I (CFI), C3,
complement factor B (CFB), and thrombomodulin (THBD)
have also been recognized (34). The mortality rate is high
(35) and many patients progress to ESRD. Kidney transplan-
tation is a therapeutic measure, but disease recurrence in the
transplanted kidney frequently occurs (36) as the liver does
not produce the normal protein. Conservative treatment
with plasma exchange and plasma infusion reduces mortality
rate (35) but is unable to cure the disease or prevent recur-
rences after kidney transplantation. Several studies documen-
ted the efficacy of eculizumab, a human monoclonal antibody
directed against the complement protein C5 (37). The best
option is still a matter of debate. A comparison between
kidney transplantation alone with chronic eculizumab and
CLKT is given in Table 4 (38). It should be highlighted that
certain gene mutations are associated with altered response
to eculizumab. For example, mutations in diacylglycerol
kinase epsilon (DGKE) gene are associated with complement-
independent forms of aHUS and are resistant to eculizumab
(39). Also, genetic variants in C5 confer resistance to
eculizumab (40).

Table 3. Different types of primary hyperoxaluria

Type Gene/gene product/locus PH cases (%) Definition Mode of inheritance

PH 1 AGXT/AGT/2q37.3 70–80

Uox >1 mmol/1.73 m2

per day/elevated urin-
ary oxalate to creati-

nine ratios

AR

PH II
GRHPR/GRHPR/

9q11
~10

Uox >1 mmol/1.73 m2

per day/elevated urin-
ary oxalate to creati-

nine ratios

AR

PH III
HOGA1/ HOGA1/

10q24.2
~10

Uox >1 mmol/1.73 m2

per day/elevated urin-
ary oxalate to creati-

nine ratios

AR

AGXT, Alanine-glyoxylate aminotransferase; AR, Autosomal recessive; GRHPR, Glyoxylate and Hydroxypyruvate Reductase; HOGA 1,
4-hydroxy-2-oxoglutarate aldolase 1.

Table 4. Comparison of transplant approaches in aHUS

Kidney transplantation alone with chronic eculizumab Liver–kidney transplant

Lower short-term risk
Long-term outcomes yet to emerge
Long-term dependence to prevent aHUS
More “immunosuppressive”
Increased infection risk?
Lower rejection risk?

IV infusion every 2 weeks
Limited availability worldwide
Very high financial cost

Higher short-term mortality
Long-term outcomes stable
aHUS recurrence unlikely
Less immunosuppressive

Lower rejection risk
Better lifestyle-no infusions
Lower monetary cost
More widely available
Limited organ (liver) resource
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In 2009, a Consensus Study Group identified the guidelines
for CLKT and LTA (41).With the adoption of suchmeasures,
the mortality rate decreased, and 16 out of 20 patients (80%)
could be safely cured with CLKT (42). In a 2016 interna-
tional consensus statement by experts from Europe, Canada,
Turkey, and the United States, prophylactic eculizumab is the
recommended treatment after kidney transplantation alone.
The consensus group recognized that LTA or CLKT is the
only therapeutic measure to definitively cure aHUS in patients
with mutations of complement factors synthesized in the liver
(43). They also recommended that CLKT should be discussed
with the family and patients, with emphasis on risks and
benefits of the alternative treatments.

Organic acidurias

Organic acidurias are inborn errors of organic acid metabo-
lism, characterized by the excretion of nonamino organic
acids in the urine. The two commonest forms are methylmalo-
nic acidemia (MMA) and propionic acidemia. Only MMA is
of interest to kidney because of the nephrotoxicity of methyl-
malonate to renal tubular epithelial cells (44). MMA is a rare
autosomal recessive disorder caused by complete or partial
deficiency of methylmalonil-CoA mutase or by defects in
the synthesis of its cofactor adenosylcobalamin (45). If the
acute metabolic crises are not corrected by maintenance ther-
apy, ESRD may occur. In such conditions, a CLKT may be
indicated (46). Otherwise, LTA can be performed (47).

Conservative management to correct acute metabolic crisis
relies on protein restriction (low-protein and high-caloric diet
with overnight continuous feeding), amino acids supplementa-
tion, carnitine, and cobalamin (44). Although dietary manage-
ment has been the major component of MMA therapy for a
long time, patients are at risk for renal, cardiac, ophthalmolo-
gical, and neurological complications (47). Due to poor prog-
nosis, LTA has been attempted and CLKT is indicated when
ESRD occurs. In addition to the aforementioned series, and
the one from Kasahara et al. (45) who reported 13 children
who received LTA and 5 who received CLKT, numerous
patients with MMA have undergone either LTA or CLKT
(48–55). The most recent report is the one by Niemi et al.
(56) who reported six MMA patients with LTA and eight
MMA patients with CLKT. The results of this study are excel-
lent with a 3-year patient survival of 100% and liver survival of
93%. The same study reports a UNOS 5-year survival of 88%,
with a 99% survival for children older than 2 years. However,
the effectiveness of LT in patients with MMA caused by
methylmalonyl-CoA mutase deficiency is questionable because
in such patients the de novo synthesis of propionyl-CoA within
the central nervous system leads to brain methylmalonate
accumulation that is not affected by transplantation (53).

Transthyretin-type familial amyloidosis polyneuropathy

Transthyretin-type familial amyloidosis polyneuropathy (TTR-
FAP) is a rare adult onset progressive disorder characterized

by extracellular amyloid fibril formation with polymerized
TTR accumulation. The disorder is inherited as an autosomal
trait, and about 100 different mutations or deletions in the
TTR gene are known (57). Clinical manifestations are repre-
sented by progressive polyneuropathy and in the final stages
patients die fromESRD or, most frequently, from heart failure.
A number of drugs, for example, Diflunisal (58) and
Benzoxazoles (59), stabilize TTR or inhibit fibril formation.
The most promising drug is Tafamidis (60). As the liver pro-
duces most of the amyloidogenetic TTR, LTA has been tried
to stop the variant of TTR. The results of LTA for TTR-FAP
are good as reported by the data of single institutions (61)
or by the transplant registry (62). The worse outcomes are
related to cardiac amyloidosis (63), and in a few cases com-
bined heart–liver transplantation has been attempted (64, 65).

Metabolic monogenic diseases affecting both kidney
and liver

Glycogen storage disease

GSDs are inherited disorders that affect glycogen metabolism
and cause abnormal accumulation of glycogen both in quan-
tity and in quality (66). In general, liver and muscles are the
two major tissues abundant in glycogen and thus the most
seriously affected in GSDs. To date, 23 types (or subtypes)
of GSDs have been identified. In all 23 types, gene mutations
have been detected. This has been the result of a gene-by-gene
sequencing technique in combination with the detection of
biochemical and clinical hallmarks (67). GSDs are classified
depending on the organ affected and the enzyme deficiency
involved. To date, seven GSDs affect mainly the liver, nine
GSDs affect mainly the muscles, and three GSDs the heart.
A simplified and useful classification is shown in Table 5 (68),
where, in addition to GSDs affecting liver and/or muscles,
GSDs also affecting the kidney are shown. The latter are
described in detail as may be treated by LTA or CLKT accord-
ing to the clinical conditions.
GSD type I (GSDI) is an autosomal recessive inborn error

of carbohydrate metabolism caused by defects in the glucose-
6-phospate transporter (G6PT)/glucose-6-phosphatase
(G6Pase) complex (69, 70). Deficient activity of G6Pase
causes GSDIa (71), and deficient activity of G6PT causes
GSDIb (72). The human G6Pase gene was cloned by Lei et al.
(71). These authors identified mutations causing GSDIa. The
human G6PT gene, which causes GSDIb, has also been cloned.
Approximately, 80% of people with GSDI have type Ia and
20% have type Ib. GSD type 1a is characterized by hypoglyce-
mia, hepatomegaly, nephromegaly, hyperlipidemia, hyperurice-
mia, and growth retardation (73).Renal findingsmay be diverse.
Focal segmental glomerulosclerosis caused by hyperfiltration
has been frequently found; amyloidosis, Fanconi-like syndrome,
renal stones, and nephrocalcinosis may be found as well (66).
Interstitial fibrosis may develop and some patients may progress
to ESRD (74, 75). Almost 70% of patients affected by GSDI

Liver or combined liver-kidney transplantation
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develop hepatic adenomas with the potential of transforming
into hepatocellular carcinoma (HCC) (76, 77).

GSDIII results from a defect in glycogen debranching
enzyme activity that leads to the accumulation of an abnor-
mal form of glycogen in affected tissues. In the United States,

more than 80% of patients with GSDIII have both liver and
muscle involvement (78). Renal function is often normal, but
cases of acute renal failure (79) are reported even if the patho-
genesis is not clear. Full guidelines on the GSDI diagnosis
and management have been published by the American

Table 5. Different types of glycogen storage diseases and main clinical findings

Number Name Enzyme defect Glycogen structure Clinical manifestations

1
Glucose-6-phospha-
tase deficiency (Von
Gierke’s disease)

Glucose-6-
phosphatase

Normal

Enlarged liver and
kidneys; failure to
thrive; hepatic
adenomas; Focal
segmental
glomerulosclerosis
and interstitial
fibrosis; Amyloidosis;
Fanconi-like syn-
drome Renal stones/
nephrocalcinosis

2
Infantile acid maltase
deficiency (Pompe’s
disease)

Acid maltase Normal
Cardiorespiratory
death

3
Late infantile and
adult acid maltase
deficiency

Acid maltase
Abnormal short outer
chains

Hip weakness; slow
motor development

4
Debrancher deficiency
(Cori’s disease)

Amylo-1,
6-glucosidase

Abnormal short outer
chains, increased
branch points

Hepatomegaly; Renal
tubular acidosis

5 Brancher deficiency
Amylo-1,4→1,
6-transglucosidase

Abnormal
Cirrhosis; growth
failure; muscle wasting

6
Myophosphorylase
deficiency (McArdle’s
disease)

Muscle phosphorylase Normal
Atrophy in older
patients;
myoglobinuria

7
Hepatophosphorylase
deficiency

Muscle phosphorylase Normal
Hepatomegaly;
cirrhosis

8
Phosphorylase kinase
deficiency

Phosphorylase kinase Normal
Marked hepatome-
galy; cirrhosis

9
Phosphoglucomutase
deficiency

Phosphoglucomutase Normal
Weakness; regression
in motor development

10
Phosphohexose
isomerase deficiency

Phosphohexose
isomerase

Normal Myopathy

11
Phosphofructokinase
deficiency

Phosphofructokinase Normal
Atrophy in older
patients;
myoglobinuria

12
Glycogen synthetase
deficiency

Glycogen synthetase Normal
Mental retardation;
seizures

Salvadori M and Tsalouchos A

Journal of Renal and Hepatic Disorders 2017; 1(2): 29–40 34



College of Medical Genetics and Genomics (80). The differ-
ential diagnosis among the different types of GSD is essential.
Laboratory testing and genetics are essential. The principal
findings are the following:

• Blood/plasma hypoglycemia, lactic acidosis, hypercholes-
terolemia, hypertriglyceridemia, and hyperuricemia are
consistent with GSDI.

• Neutropenia suggests GSD Ib.
• Diagnosis should be confirmed by full gene sequencing of
the GSPC and SLC37A4 genes.

• If liver biopsy is performed, histology typically shows fat
and glycogen in hepatocytes without fibrosis.

• Diagnostic studies should be performed to follow renal
manifestations, including:

∘ Renal ultrasound to assess kidney size, nephrolithiasis,
and nephrocalcinosis

∘ Urinalysis for hematuria and proteinuria
∘ Measurement of blood urea nitrogen and serum creati-
nine with calculation of estimated GFR (eGFR)

Medical and nutritional treatment

• Maintaining blood glucose levels > 70 mg/dL is important
to achieve a good metabolic control.

• Avoid fasting for more than 5 h.
• Access via NG or G tube placement is recommended for
emergencies in infants.

• Multivitamins, calcium, and vitamin D are necessary
because of the restricted nature of the diet.

For the kidney

• Consider initiating an ACE inhibitor or ARB with the
evidence of hyperfiltration.

• Initiate an ACE inhibitor or ARB for persistent microal-
buminuria.

• Initiate citrate supplementation for hypocitraturia.
• Consider a thiazide diuretic for hypercalciuria.
• Maintain normal blood pressure for age.

Liver transplantation is indicated in case of liver failure and to
avoid the transforming of adenomas into HCC. Isolated liver
transplantation has been performed in GSDI patients with
multiple unresectable adenomas, poor metabolic control,
and progressive liver failure (81, 82). Indications for pediatric
liver transplantation in GSDI children are multiple liver
adenomas, growth failure, and poor metabolic control (83).
A 15-year follow-up after liver transplantationwith an optimal
outcome has been reported (84). The Japanese registry (7)
reports LDLT for 15 patients with a 10-year graft and patient
survival of 67%. However, the group included 70% of patients
with GSD type IV. In a recent review, Boers et al. (85)

identified 58 patients with GSDIa who underwent a liver
transplantation between 1982 and 2012. The authors conclude
that there are stillmany complications related to the liver trans-
plant procedure (18/58) as well as complications related to
immune suppressive therapy. Taking into account of these
complications, the authors highlight the relevance of new
therapies such as hepatocyte and liver stem cell transplantation.
There have been reports of CLKTs that have been successfully
performed in GSDIa patients (83, 86–90). The physicians
involved in liver–kidney transplantation recommend that
CLKT should be considered for patients with ESRD secondary
to GSDIa.

Tyrosinemia type I

Tyrosinemia type I (TT1) is an autosomal recessive metabolic
disorder characterized by the deficiency of the enzyme fumar-
ylacetoacetate hydrolase (FAH) involved in the final step of
the catabolism of tyrosine and phenylalanine (91). Mutations
occur in the gene FAH located on chromosome 15. The
incidence of TT1 is around 1:100,000, but is higher in areas
where specific programs for diagnosing have been carried
out (92, 93). The deficient enzyme causes the accumulation
of toxic metabolites such as fumarylacetoacetate and malely-
lacetoacetate. These metabolites induce apoptosis of both
hepatocytes and kidney tubular cells. The toxic metabolites
may affect hepatocyte DNA, increasing the risk of HCC.
The acute form of tyrosinemia I is characterized by acute
renal failure and its incidence is higher up to the fourth
month of life. The chronic form is characterized by chronic
liver disease, cardiomyopathy, Fanconi-like tubular dysfunc-
tion, rickets, and renal failure (94).
A conservative treatment of the disease is available with 2-

(2-nitro-trifluoromethylbenzoyl)-1, 3 cycloexemedione (NTBC)
(95), which blocks the formation of toxic metabolites. With
NTBC and a phenylalanine- and tyrosine-restricted diet, an
improvement in kidney and liver function is achieved (96–98).
After the introduction in therapy of NTBC, the need for
LTA dropped from 35% to 12% (93). To date, the indications
for LTA are as follows:

• Patients failing with the first-line medications
• Onset of acute renal failure
• HCC
• Poor quality of life

According to some group, a nodular liver is also an indication
for LTA, due to the high risk of HCC (99). CLKT was
indicated in the pre-NTBC era, but is no longer indicated.
The highest number of LTA for tyrosinemia I are those
reported by Arnon et al. (100), who analyzed the UNOS data-
base, and Herzog et al. (101), who reported 27 LTA followed
by stabilization or improvement of the renal function. The
1-year graft survival is higher than 88%, and only in selected
cases NTBC treatment is needed after LTA.

Liver or combined liver-kidney transplantation
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Alpha1-antitrypsin deficiency

The most common genetic cause of liver disease in children
is AATD (102), an autosomal recessive disorder caused by
mutations in the SERPINA 1 gene (103). AAT protects tissues
from proteases such as neutrophil elastase. The phenotype
PiMM (protease inhibitor MM) is present in 95% of the
population. Several mutations have been described, the most
common related to alleles being PiZ and PiS that result in
reduced circulating levels of AAT. Liver disease develops in
children with PiZZ mutation. Lung disease occurs mainly
in PiZZ and PiSZ phenotypes, and is related to low plasma
levels, causing lack of anti-inflammatory activity of AAT
in the alveoli (104). Glomerular diseases, mainly mesangio-
capillary glomerulonephritis, develop in some children with
AATD and may progress to ESRD (105).

The pathologic features usually involve the liver, lung,
and kidneys. The study by Davis et al. (106) evaluated renal
specimens from 34 patients affected by AATD. Glomerular
lesions were found in 79%, including mesangial proliferative
glomerulonephritis, mesangiocapillary glomerulonephritis,
and focal segmental glomerulonephritis. PiM and PiZ were
found in the subendothelial region of glomerular basement
membrane and this fact suggested a possible role for these pro-
teins in the pathogenesis of these lesions. Several approaches
to medical treatment of AATD are possible (107). Deficient
AAT can be replaced using recombinant AAT. This replace-
ment therapy (usually by inhalation) may slow the progression
of lung disease, but not liver or kidney disease. The same lim-
itations occur with gene therapy and stem cell therapy (108).
The indication for LTA in AATD is either end-stage liver dis-
ease (ESLD) or HCC. LTA not only cures the ESLD but also
prevents the development of lung disease, as the recipient
develops the Pi phenotype of the donor. Hughes et al. (109)
reported a single-center largest series of LTA with a 5-year
patient survival of 76.5%. Concerning the effect of LTA on
the kidney, Grewal et al. (105) did not document the reversal
of membranoproliferative glomerulonephritis. By contrast, the
reversibility of the glomerulonephritis was documented by
Elzouki (110) after LTA. The success of CLKT in the case
of ESRD has been repeatedly documented (86, 111). The latter
authors recommend native kidney biopsy and GFR measure-
ment in all patients with AATD referred for LTA.

Conclusion

These monogenic metabolic diseases affecting either kidney
or liver account for 10 out of 1000 births, and represent a
frequent cause of mortality, mainly in the pediatric population.
Effective medical conservative treatments are rarely available
with the exception of aHUS and TT1. The introduction of
the eculizumab changed the therapeutic prospective of aHUS
principally after renal transplantation. The introduction of
NTBC for TT1 dropped the indication for LTA from 35%
to 12%. For other diseases, organ transplantation remains
the standard of care treatment. Whether to adopt LTA or

CLKT continues to be a matter of debate. In PH1, CLKT
should be the treatment of choice in the case of ESRD. LTA
may represent the preferred option if renal function is still
over 40 mL/min/1.73 m2. Reversal of renal damage after LTA
has been observed. LTA offers a curative approach in patients
with primary hepatic parenchymal damage and also in liver-
based genetic disorders with prevalent extra-hepatic lesions.
When the genetic defect is ubiquitous and the liver is one
among several targets for systemic injury, the results of liver
transplantation may be quite poor. The identification of the
genetic defect allows for a better understanding of the disease
and an improvement of treatment after transplantation. ERT
could represent a viable option, but ERT is extremely expensive
and not available everywhere. Gene therapy has recently shown
great promise as an effective treatment for a number of meta-
bolic diseases caused by genetic defects in both animal models
and human clinical trials. Most of the current success has
been achieved using a viral-mediated gene addition approach
(112, 113). Successful studies in animals have been conducted
for PH1 (114) and GSDI (115). Studies in humans are ongoing
for GSDI and MMA (116). A phase II clinical trial for AATD
has been terminated (117).
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