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Abstract

Stearoyl-coenzyme A desaturase 1 (SCD1) is a microsomal enzyme that controls fatty acid metabolism and is highly expressed in 
hepatocytes. SCD1 may play a key role in liver development and hepatic lipid homeostasis through promoting monounsaturated 
protein acylation and converting lipotoxic saturated fatty acids into monounsaturated fatty acids. Imbalanced activity of SCD1 
has been implicated in fatty liver induction, inflammation and stress. In this review, the role of SCD1 in hepatic development, 
function and pathogenesis is discussed. Additionally, emerging novel therapeutic agents targeting SCD1 for the treatment of liver 
disorders are presented.
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Introduction
Stearoyl-coenzyme A desaturase 1 (SCD1) was discovered in 
1988 when Ntambi and colleagues identified an mRNA tran-
script whose expression was highly induced during adipogenic 
differentiation (1). SCD1 is an iron-containing lipid- regulating 
enzyme that is highly expressed in the liver and is the main en-
zyme responsible for de novo synthesis of monounsaturated 

fatty acids (MUFAs). Palmitoyl-CoA and stearoyl-CoA are 
the main substrates of this enzyme, converting them into 
palmitoleoyl-CoA and oleoyl-CoA, respectively (2).

SCD1 is coded by its gene on the long arm of chromosome 
24, in the sub-band 3 of region 24 (3). Promoter  activity  region 
is located within the initial 609 bp upstream of transcription 
initiation site which constitutes a CCAAT-box identified as 
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a cis-element binding site. Sterol regulatory element-binding 
transcription factor 1 (SREBP-1c), liver X receptor (LXR), 
peroxisome proliferator-activated receptor alpha (PPAR-α) 
and CCAAT/enhancer-binding protein alpha (C/EBP-α) are 
among the most important transcription factors that bind 
to SCD1 promoter and control its gene expression (4). The 
pseudogene of SCD1, containing two premature stop codons 
downstream of the original start codon, is located on the short 
arm of chromosome 24 in the sub-band 32 of region 11 (5).

SCD1 protein is a microsomal enzyme containing four 
transmembrane domains in which both the N-terminus and 
C-terminus are located in the cytoplasm (Figure 1). Eight his-
tidine residues on the single cytoplasmic loop and C- terminus 
are conserved and important for desaturase catalytic activ-
ity (6). Purified SCD1 protein migrates as a 37 kDa band by 
SDS gel electrophoresis (7, 8). As fatty acids are important 
components of phospholipids, triglycerides and esterified 
cholesterol, changes in SCD1 expression and activity can af-
fect membrane stability, lipid metabolism and the amount of 
adipose tissue; consequent changes may be associated with 
obesity, fatty liver, cancers, diabetes and atherosclerosis (9). 
This review provides an overview of the role of SCD1 on var-
ious aspects of liver pathophysiology such as development, 
hepatic lipogenesis and inflammation. It also summarizes 
the role of novel small molecules targeting SCD1 as potential 
agents for the treatment of various liver disorders.

SCD1 Activity Contributes to Liver Development 
through Protein Acylation
The Wnt family of proteins are signaling molecules that 
orchestrate numerous homeostatic events from embryonic 
development to adult tissue function (10). Their malfunc-
tion causes various hepatic abnormalities. The products of 
SCD1 can regulate Wnt trafficking and function through 
MUFA acylation or lipidation (Figure 2). Monounsaturated 
fatty acyl moieties render Wnts hydrophobic and insoluble 
in aqueous environment (11). During the embryonic stage, 
the inner layer, endoderm, is partitioned into three regions 
termed as foregut, midgut, and hindgut, with the foregut 
containing liver precursors. The liver and biliary tracts de-
velop from the foregut at the 4th week of gestation (12). The 
intermediate germ layer, mesoderm, produces Wnt which 
contributes to the development of hindgut in the posterior 
endoderm. In the anterior endoderm, however, suppression 
of Wnt signaling retains foregut fate and allows subsequent 
development of the liver (13, 14). Overall, Wnt signaling is 
tightly regulated during embryo development, which is par-
ticularly important at the initial stages of liver development. 
Absence of Wnt signaling activity will result in impaired he-
patic development. This is supported by the elevated expres-
sion of Wnt downstream core transcription factors during 
the terminal differentiation of hepatocytes (15).

SCD1 shows a determinant role in the in vitro differentia-
tion process of human-induced pluripotent stem cells toward 
hepatic lineage. Inhibition of SCD1 by a selective inhibitor 
in early stages of in vitro induced differentiation has resulted 

Figure 1.  Stearoyl-coenzyme A desaturase 1 (SCD1) 
is an iron-containing transmembrane enzyme. SCD1 
protein is  exclusively localized on the ER membrane 
with both the N- and C-terminal domains stretched into 
the cytosol. It has four transmembrane helices (purple 
cylindrical shapes). The eight histidines (hexagonal shapes) 
on the single cytoplasmic loop and C-terminus are highly 
conserved, particularly regions surrounding the  di-iron  
center. The cytosolic domain provides a structural frame for 
the regioselectivity and stereospecificity of the desaturation 
reaction (6).

Figure 2.  Stearoyl-coenzyme A desaturase 1 (SCD1) 
contributes to liver development and regeneration by 
modulating Wnt activity. Microsomal SCD1 produces 
monounsaturated fatty acids that can be attached to 
Wnts. This process, termed acylation, enables Wnt secretion 
and activation. Wnt acylation is also a prerequisite for the 
formation of  concentration and activity gradients of  Wnts. 
The Wnt gradients mediate zonal development of  liver and 
regeneration. 
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in decreased hepatic markers. In the rescue experiments with 
the combination of the SCD1 inhibitor and its main product 
oleate, the effect of inhibitor was strongly reversed (16). Our 
ongoing in vivo work is to identify the role of SCD1 in the 
early stages of liver organogenesis and development, espe-
cially its role in the formation of a complete liver before birth.

Apart from hepatocyte differentiation, Wnt signaling path-
way plays a central role in liver zonation (17). Hepatocytes 
 adjacent to portal vein are named periportal hepatocytes 
(zone 1) and involved in glyconeogenesis and β-oxidation, 
whereas those near the central vein are called pericentral hepa-
tocytes (zone 3) and play a distinct role in drug metabolism 
and glycolysis. Hepatocytes in zone 2 exhibit an intermediary 
role having both periportal and pericentral functions. In a re-
cent study, a high β-catenin-dependent Wnt signaling activity 
was observed in zone 3 (17–19). These findings collectively 
highlight the importance of the SCD1- produced MUFAs in 
 mediating liver development through Wnt regulation.

Recent studies using animal models of partial hepatec-
tomy have also implicated the direct involvement of Wnt 
signaling pathway in liver regeneration. The expression and 
nuclear translocation of β-catenin significantly increase 
within minutes of hepatectomy and promote hepatocyte pro-
liferation rate (20). In acetaminophen-induced liver injury, 
Wnt/β- catenin not only induces the expression of enzymes 
involved in drug metabolism such as cytochrome P450 2E1 
and cytochrome P450 1A2 but also helps liver regeneration 
(21, 22). In line with this finding, SCD1 gene expression was 
increased 3.5-fold in  regenerating liver following major liver 
resection (23). After tissue damage, the residual cells start 
the repair process (24), and the proliferating cells accumulate 
several categories of lipids  including triglycerides, fatty acids 
(both saturated and unsaturated), and cholesterol esters (25). 
These lipids are thought to undergo oxidation and provide 
the required energy for cell proliferation. In addition, they 
are the main components of newly synthetized membranes. 
Besides, these lipids can contribute to various signal trans-
duction cascades related to cell proliferation and differentia-
tion such as Wnt and hedgehog signaling pathways (26). It is 
hypothesized that MUFAs produced by SCD1 not only pro-
vide metabolic energy source and structural components, but 
also promote protein acylation–mediated signaling, which 
are essential for liver regeneration.

SCD1 Prevents Lipotoxicity and Controls Hepatic 
Lipogenesis
Palmitic acid and stearic acid are the major de novo synthe-
sized lipotoxic saturated fatty acids (SFAs) in the liver. SCD1 
mediates the addition of a double bond to the saturated 
carbon chain. On one hand, SCD1 activity attenuates SFAs 
lipotoxic effects through their conversion into the MUFAs 
palmitoleic acid and oleic acid (27). On the other hand, SCD1 
generates unsaturated fatty acids serving as rate-limiting 

substrates for lipogenesis (28). Thus, an improper increase in 
its activity may cause hepatic lipid accumulation.

Despite oleate being the major dietary MUFA, SCD1 
expression is highly regulated in response to developmen-
tal, dietary, environmental, and hormonal factors. De novo 
synthesized MUFAs are the preferred substrates for neutral 
hepatic lipid synthesis including triglycerides and cholesterol 
ester. SCD1 inhibition protects against high-fat high-carbo-
hydrate diet, leptin-deficiency-induced obesity, and hepatic 
steatosis (29). Leptin-deficient mice exhibit SCD1 overex-
pression causing palmitoleate and oleate accumulation in 
liver as fat droplets. Recent studies on high-carbohydrate-fed 
rats have revealed that deficiency in SCD1 decreased lipid 
synthesis, elevated fatty acid oxidation and thermogenesis, 
and insulin susceptibility in different tissues, especially in the 
liver (30).

Sampath et al. (31) showed that stearate-rich diet causes 
SCD1 induction and hepatic lipid accumulation in wild-type 
mice but not in scd1-/- mice. However, in scd1-/- mice, stearate 
does not induce genes involved in lipogenesis. Additionally, 
sterol regulatory element-binding protein-1c (SREBP-1c) 
and peroxisome proliferator-activated receptor coactiva-
tor-1 (PGC-1) transcription factors, which are necessary 
mediators for pro-lipogenic activities of saturated fatty acids 
(SFAs), were downregulated in scd1-/- mice. Instead, fatty 
acid oxidation genes such as carnitine palmitoyltransferase-1 
(CPT-1) were induced, resulting in hepatic glycogen deple-
tion. Lui et al. (32), in a study on zinc finger transcription 
factor knockout mouse model, showed a significant decrease 
in SCD1 expression and triglyceride accumulation compared 
to controls. Binding of this transcription factor to SCD1 pro-
moter in hepatocytes was also reported in this study, indicat-
ing its critical role in the activation of SCD1 expression.

The role of SCD1 in gut microbiota-dependent hepatic 
lipogenesis has been studied by Singh et al. (28). They re-
ported that mice with deficient Toll-like receptor-5, which is 
expressed in gut epithelial cells and plays an important role 
in microbiota homeostasis, exhibit a microbiota-dependent 
metabolic syndrome with elevated hepatic lipogenesis, SCD1 
expression and activity, and hepatic neutral lipids accumula-
tion with a high oleate and palmitoleate content.

Furthermore, the expression level of SCD1 and fatty 
acid synthase along with endoplasmic reticulum (ER) stress 
markers was downregulated in response to the inhibition of 
poly ADP-ribose polymerase (PARP), which is overexpressed 
in long-term high-fat high-sucrose diet in mice, indicating the 
PARP-SCD1 interaction as a major mechanism in the in-
duction of non-alcoholic fatty liver disease (33). The role of 
SCD1 in an alcoholic fatty liver disease model was studied by 
Louinis et al. (34). In that study, mice fed with a low-MUFA 
diet containing 5% ethanol for 10 days and a single ethanol 
gavage (5 g/kg) developed severe hepatic injury. Liver-specific 
Scd1-knock-out (SCD1-LKO) mice were resistant to such 
hepatic injury.
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In a recent cross-sectional clinical study, it has been shown 
that the serum SCD1 activity index is significantly related to 
the risk of non-alcoholic fatty liver disease in patients with 
primary dyslipidemia (35). Of course, while interpreting 
these data, it should be noted that the index of serum SCD1 
activity is not solely determined by the liver. In this field, 
the Ntambi laboratory has recently shown that hepatic tri-
glyceride accumulation in mice may be induced by increased 
hepatic trafficking of MUFAs originating from non-liver 
 tissues (36). The latter finding further supports the hypoth-
esis that fine-tuning of hepatic SCD1 activity is critical in 
variable metabolic states.

SCD1 Modulates Hepatic Inflammation and 
Oxidative Stress
Current evidence indicates the regulatory role of fatty acids 
in cellular inflammation. SCD1 plays an important role in 
maintaining the balance between SFAs and MUFAs. Toxic 
accumulation of SFAs that are reflected as MUFAs/SFAs 
imbalance leads to activation of oxidative stress imbalance 
in hepatocytes (37, 38). SFAs mediate cellular inflammatory 
response through binding to Toll-like receptor-4, CD14, and 
myeloid differentiation protein-2, causing increased produc-
tion of bacterial lipopolysaccharides, oxidized phospholip-
ids, and oxidized low-density lipoproteins through intestinal 
microbiota modification (39). These findings support the hy-
pothesis that SCD1 activity may be protective against SFA-
induced oxidative stress and hepatic inflammation. Lu et al. 
(40) reported that IKK2 (an activator of NFκB) activation 
can induce hepatic SCD1 overexpression and triglyceride 
accumulation in mouse. However, such activation decreased 
the expression of oxidative stress and prevented hepatic in-
flammation and fibrosis. Paradoxically, there is evidence that 
increased SCD1 activity may contribute to inflammation and 
oxidative stress. In the high-carbohydrate or high-sucrose, 
very-low-fat diet, oleate supplementation leads to decreased 
hepatic injury and oxidative stress in mice with liver-specific 
SCD1-LKO (41). A high-fructose diet in female C57BL/6J 
mice also induced oxidative stress characterized by hepatic 
SCD1 overexpression and elevation of inducible nitric oxide 
synthase levels (42). Ochi et al. (43) also showed the associa-
tion of SCD1 with the development of non-alcoholic steato-
hepatitis (NASH) under induced stress condition. Indeed, a 
knockout C57BL/6 mice model with a low expression and 
activity of SCD1 showed lower hepatic lipid accumulation 
and steatosis following tunicamycin-induced ER stress than 
the wild-type mice with ER stress.

Overall, as illustrated in Figure 3, balanced activity of 
SCD1 is important for stabilizing the ratio of unsaturated to 
saturated fatty acids. An increase in this ratio can lead to lipid 
accumulation and a decrease in this ratio is associated with 
lipotoxicity. A rise in both lipid accumulation and lipotox-
icity may lead to hepatic inflammation and oxidative stress.

SCD-1 as a Potential Therapeutic Target
The aforementioned studies highlight the significant role 
of  SCD1 activity in hepatic pathophysiology. Therapeutic 
strategies targeting SCD1 may have applications in man-
aging liver disorders. Several studies have examined small 
molecule inhibitors in this regard. The following sections 
review recent advances in small molecule SCD1 inhibitors 
and their potential therapeutic application in hepatic disor-
ders (Table 1).

MK-8245

SCD1 enzyme is expressed in many cell types of the body. 
Therefore, potential SCD1 inhibitors for the treatment of 
liver diseases will have a lot of side effects although they 
might be highly selective toward SCD1. For example, SCD1- 
knockout rodent models and SCD1 inhibitor–treated rats de-
velop severe skin and eye abnormalities (44, 45). Therefore, 
liver-specific targeting of SCD1 may be an effective strategy 
for the treatment of liver-related disorders. One such in-
hibitor is MK-8245 (46). It has a transporting element that 
specifically interacts with heptocytes via the liver-specific 
organic anion transporting polypeptides. Administration 
of MK-8245 to mice fed with a high-fat diet did not reduce 
food intake. Despite this, a reduction in liver steatosis and a 
decrease in liver triglyceride levels were observed. MK-8245 
also exhibited anti-diabetic and anti-dyslipidemic proper-
ties. Administration of MK-8245 to individuals with type 
2  diabetes mellitus in a phase II clinical trial showed no se-
rious adverse events (47). MK-8245 may also be an option 
for anti-hepatitis C virus (HCV) therapy as evaluated using 
recombinant HCV culture systems (48). The potential thera-
peutic effects of this compound on liver diseases are yet to be 
clinically examined.

Figure 3.  Stearoyl-coenzyme A desaturase 1 (SCD1) 
activity is associated with normal liver function. The 
schematic balance represents that the equilibrium between 
saturated fatty acids (SFAs) and monounsaturated fatty acids 
(MUFAs) is important in the physiological state. The loss 
of this equilibrium is due to overactivity and underactivity 
of SCD1 in hepatic lipid accumulation and  lipotoxicity, 
respectively.
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Hydroxy pyridone

Another compound that was used for targeted liver SCD1 
inhibition is 4-hydroxy pyridine (49). According to the 
pharmacokinetic analysis, this SCD1 inhibitor had a sig-
nificantly higher concentration in liver than in plasma and 
eyelid. It showed a good potency in reducing the mouse liver 
ratio of  palmitoleate to palmitate as a biomarker for SCD1 
activity (49).

Pyridazine derivative

A piperazine-based SCD-1 inhibitor, N-(2-hydroxy-2-
phenylethyl)-6-[4-(2 methylbenzoyl)piperidin-1-yl]pyridaz-
ine-3-carboxamide, has been shown to produce beneficial 
effects in experimental modes of  NASH (50, 51). When 
administered orally for 8 weeks, once daily, triglyceride 
accumulation in the liver was reduced by 80% from the 
fourth week. It also attenuated the increase of  aspartate 
aminotransferase and alanine transaminase by 86% and 
78%, respectively. Hepatic steatosis, hepatocellular degen-
eration, and inflammatory cell infiltration were also amelio-
rated after the treatment (50).

Thiazole analogs

Current evidence shows that host cell lipid homeostasis 
plays a critical role in the pathogenesis of HCV by facilitat-
ing the formation of viral membrane-associated replication 
complex. Since inhibiting lipogenesis has a negative effect 
on virus proliferation, inhibiting the lipid synthesis enzyme 
SCD1 is a potential strategy for HCV treatment (52, 53). Lyn 
et al. (54) showed that the thiazole compound MF-152 can 
repress HCV infection in human hepatoma cells by modify-
ing membrane functions which are required for HCV rep-
lication. Cell imaging studies showed that the inability of 
viral RNAs to interact with modified membranes exposes 
them to degradation by endogenous nucleases. This process 

ultimately prevents the formation of HCV viral complexes 
and arrests HCV replication.

Thiazole-4-acetic acid derivative

Another potent liver-selective SCD1 inhibitor, compound 
48 (a thiazole-4-acetic acid derivative), has recently been 
discovered through high-throughput screening efforts fol-
lowing an ex vivo assay approach on mice liver and eyelids 
(55). Administration of  compound 48 to mice fed a high-
fat diet for 43 days improved glucose tolerance and de-
creased body weight without adverse effects on skin or eyes. 
Furthermore, compound 48 significantly attenuated hepatic 
triglyceride accumulation in rats fed a high-sucrose, very-
low-fat diet (55). These findings suggest that compound 48 
may have clinical benefits in the treatment of  diabetes, he-
patic steatosis, and obesity through targeting SCD1 activity 
in liver.

Conclusion
SCD1, one of  the predominantly expressed enzymes in the 
liver, is a major factor in fatty acid metabolism. It plays 
a regulatory role in posttranslational protein modifica-
tions via protein acylation. Wnts play an important role 
in  hepatic differentiation, zonation, and regeneration. 
The Wnts pathway, at least in part, is regulated by SCD1-
mediated palmitoleoylation and oleoylation. In addition, 
SCD1 is crucial for SFA detoxification and MUFA produc-
tion. SFAs overproduction induces hepatic inflammation 
and oxidative stress, and SCD1 attenuates these effects via 
monounsaturation of  SFAs. Meanwhile, de novo produced 
MUFAs promote and participate in cellular lipogenesis 
and their overproduction can lead to hepatic lipid accu-
mulation. Targeting SCD1 as a novel therapeutic approach 
may be beneficial in liver disorders. In this regard, several 
studies have tested small molecule inhibitors of  SCD1 

Table 1. Stearoyl-coenzyme A desaturase 1 small molecule inhibitors with potential applications for hepatic diseases.

Compound Liver-selective Therapeutic application Current evidence Reference

MK-8245 + Diabetes, dyslipidemia, 
HCV

Preclinical/animal/
phase II clinical trial

(46, 48)

Hydroxy pyridone + Dyslipidemia- In vivo (49)

N-(2-hydroxy-2-phenylethyl)-6-[4-
(2-methylbenzoyl)piperidin-1-yl]
pyridazine-3-carboxamide

- Reduction in triglyceride 
accumulation in NASH

In vivo (50, 51)

Thiazole analogs - HCV infection In vitro (54)

Thiazol-4-acetic acid derivatives + Diabetes, hepatic steatosis 
and obesity

In vivo (55)

HCV, hepatitis C virus; NASH, nonalcoholic steatohepatitis; OATP, organic-anion-transporting polypeptide.
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in vitro and in vivo, which opens a promising point of  view 
in the treatment of  liver metabolic diseases.
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