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Abstract

Our understanding of the pathophysiology of the anaemia of chronic kidney disease (CKD) has improved considerably in
the last decade with the discovery of the iron regulatory peptide hepcidin. Reduced clearance of hepcidin and the presence of a
chronic inflammatory state contribute to elevated hepcidin levels in kidney disease. The recent discovery of the various factors
and signalling pathways regulating hepcidin has opened up an exciting avenue for research into the development of newer agents
that could treat anaemia of CKD. This review highlights our current understanding of iron metabolism in health, the regulators of
hepcidin, issues associated with the current available therapies for the treatment of anaemia in CKD and potential novel therapies
that could be available in the near future targeting the various factors that regulate hepcidin.
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Introduction

Anaemia of chronic kidney disease (CKD) is widely prevalent
in patients with renal impairment and is associated with signifi-
cant morbidity and mortality (1, 2). Deficient erythropoietin
(EPO) production and reduced bioavailability of iron ulti-
mately lead to absolute or functional iron deficiency anaemia.
Hepcidin, an iron regulatory protein produced in the liver
by hepatocytes, plays an important role in iron metabolism
by regulating iron absorption from the duodenum and
iron release from macrophages by interacting with, and

inactivating, ferroportin—the iron transport protein (3). Hep-
cidin is regulated by a number of factors including iron status,
inflammation, erythropoiesis and hypoxia, which are often
affected by kidney disease.

Iron Metabolism

Iron is an essential trace element required for a number of
catabolic and metabolic processes within the body. As there
are no effective means of excreting iron, the regulation of
dietary iron absorption from the duodenum plays an
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important role in iron homeostasis. In healthy individuals,
approximately 1–2 mg of iron is absorbed from the diet per
day to maintain iron balance. Once absorbed, the iron is
bound by the plasma protein transferrin and is transported
to the tissues where most of the iron is taken up by the
bone marrow for incorporation into haemoglobin for ery-
thropoiesis and to a lesser degree by the muscle for the synthesis
of myoglobin and respiratory enzymes. Excess iron is stored
primarily in the liver. Macrophages degrade erythrocyte-
derived haemoglobin and release the iron back into the
plasma so that it can be re-utilised for erythropoiesis in the
bone marrow. If the availability of iron for erythropoiesis is
insufficient, anaemia will develop. Too much iron can result
in iron overload. Common causes include genetic diseases
such as hereditary haemochromatosis and acquired causes
such as from transfusional overload and repeated parenteral
iron infusions. Iron excess is detrimental to health as this gen-
erates free radicals causing oxidative stress and tissue damage
primarily in the liver, heart and pancreas (4–8).

Hepcidin and Its Regulators

Iron metabolism is tightly regulated by the hormone hepcidin
which is highly expressed by hepatocytes and at lower levels
in other tissues including the kidneys (9). Hepcidin, a 25-
amino acid cysteine-rich peptide, is a negative regulator of
iron absorption by the intestine and iron release from macro-
phages and hepatic stores. It is secreted into the circulation
and binds to the iron exporter ferroportin, expressed on the
surface of enterocytes, macrophages and hepatocytes, causing
ferroportin internalisation and degradation. This limits the
absorption and release of iron and increases retention in the
liver and macrophages (6, 10).

In addition to regulating iron metabolism, hepcidin may
also contribute indirectly to host defencemechanisms by redu-
cing body iron concentrations, as iron is needed for bacterial
growth and low levels of iron are thought to be bacteriostatic.
In murine models and cultured macrophages, hepcidin has
been found to modulate lipopolysaccharide-induced tran-
scription, suggesting it might have a role in modulating
acute inflammatory responses to bacterial infections (11, 12).

The two main positive regulators of hepcidin are iron sta-
tus and inflammation with higher levels limiting the availability
of iron for erythropoiesis and other iron-dependent processes.
Similarly, erythropoiesis and hypoxia downregulate hepci-
din expression, resulting in increased bioavailability of iron
(Figure 1). These factors regulate hepcidin levels via pathways
listed in Table 1, and some of these pathways could be poten-
tial targets for novel therapies to treat anaemia of CKD.

Regulation of Hepcidin

Iron status

Tissue iron stores and circulating transferrin-bound iron exert
distinct signals that regulate hepcidin expression in hepatocytes.

Hepcidin gene transcription is stimulated by the dual effect of
liver iron stores and the concentration of plasma holotransferrin
(iron-saturated transferrin), conveyed through iron-regulated
production of bone morphogenetic proteins (BMP) acting
on BMP receptors and the associated mothers against
decapentaplegic-related protein (SMAD) pathway (13). Intra-
cellular iron stores interact with hepcidin via the BMP6 path-
way activating SMAD and increasing hepcidin levels.
Circulating transferrin-bound iron exerts its effects via the hae-
mochromatosis protein (HFE)/transferrin receptor 2 (TFR2)
pathway (14, 15). Mutations of these receptors are associated
with hereditary haemochromatosis resulting in iron overload
via dysregulated hepcidin expression (16, 17).

Inflammation

Hepcidin levels are increased by states of inflammation, and
this is thought to have evolved as a host defence mechanism.
Interleukin-6, acting through the JAK2/STAT3 pathway
and, to a lesser extent, interferon γ, and interleukin-1 are
the primary inflammatory inducers of hepcidin expression
(18, 19). Recently, a new inflammatory signalling pathway
was identified, stimulating hepcidin production via activin
B, BMP receptors and SMAD (20).

Hypoxia

This is a potent inhibitor of hepcidin production, even in the
absence of anaemia, and thus increases iron availability (18).
Hypoxia-inducible factors (HIFs) are transcription factors
that regulate expression of genes in response to hypoxia
including genes required for iron metabolism and erythropoi-
esis. EPO synthesis is regulated in the liver and kidney via
HIF-2α. HIF activity is controlled by prolyl-4-hydroxylase
domains (PHD), which act as oxygen sensors. At normal oxy-
gen concentrations, PHD enzymes hydroxylate the HIF-α
subunit resulting in its rapid degradation. At lower concen-
trations of oxygen, HIF–PH activity is reduced, and there is
accumulation of HIF-α, leading to increased levels of EPO
and its receptor, and decreased hepcidin levels, ultimately
increasing iron availability and erythropoiesis (21–24). Simi-
lar effects were seen during hypoxia at high altitude. In a
study of healthy volunteers who were exposed to high altitude
levels (3400–5400 m above sea level), hypoxia induced a
marked suppression of hepcidin, which appeared to result
from the combined action of hypoxia-induced increased ery-
thropoiesis and iron depletion (25).

Erythropoiesis

Increased erythropoiesis appears to suppress hepcidin levels,
allowing for higher iron bioavailability to meet increased
demands for red blood cell production in such states. Erythro-
ferrone (ERFE), a relatively new hormone identified in 2014,
was found to regulate iron metabolism by decreasing hepcidin
levels during periods of stress erythropoiesis (26). This protein
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is thought to be the long-sought erythroid factor that inhibits
hepcidin during increased erythropoietic activity and may
contribute to the pathogenesis of iron-loading anaemias.
Kautz et al. showed in animal models that bleeding or admin-
istration of EPO leads to release of ERFE from erythroblasts,
which acts directly on hepatocytes to suppress hepcidin (26).

In ineffective erythropoiesis, ERFE secreted by the massively
increased numbers of erythroid precursorsmay overwhelm the
iron storage signal and shut off hepcidin production (26, 27).
Erythropoietin-stimulating agents (ESAs) are widely used to
treat anaemia of CKD. ESAs significantly suppress levels of
serum hepcidin and ferritin, resulting in effective erythropoiesis
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Figure 1. Schematic representation of the role of hepcidin in iron metabolism in health and in chronic kidney disease (CKD). Both
iron and erythropoietin (EPO) are required for the production of red blood cells in the bone marrow. Hepcidin regulates iron absorp-
tion from the intestine, macrophage iron recycling from senescent red blood cells and iron release from the liver via ferroportin, the
iron transport protein. Hepcidin causes degradation of ferroportin leading to cellular iron retention and decreased absorption of
ingested iron. Several factors including iron and inflammation act directly on the liver to up-regulate hepcidin production. Erythro-
poiesis and hypoxia negatively regulate hepcidin production indirectly, by increasing EPO production by the kidneys. This stimulates
synthesis of erythroferrone (ERFE) by the bone marrow, which in turn controls liver hepcidin production. In CKD, anaemia occurs
due to reduced EPO production from the kidneys and from reduced iron absorption and availability, the latter resulting from elevated
levels of hepcidin. In CKD, hepcidin levels are raised due to the combination of increased inflammation, decreased EPO levels and
reduced renal clearance. EPO therapy decreases hepcidin levels leading to iron mobilisation from body stores during erythropoiesis.

Table 1. Regulation of hepcidin

Regulators Signalling pathway

Iron status BMP6/SMAD and HFE/TFR2

Inflammation (interleukin-6) JAK2/STAT3, activin B

Hypoxia HIFs and EPO

Erythropoiesis EPO and ERFE

BMP6: bone morphogenic protein 6; SMAD: mothers against decapentaplegic-related protein; HFE/TFR2: haemochromatosis iron protein/
transferrin receptor 2; JAK: Janus kinase; STAT3: signal transducer and activation of transcription 3; HIFs: hypoxia-inducible factors; EPO:
erythropoietin; ERFE: erythroferrone.

Anaemia of chronic kidney disease
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and release of stored iron (28, 29). Honda et al. examined the
association betweenERFEand biomarkers of ironmetabolism
in haemodialysis patients and found that levels of ERFE were
inversely correlatedwith levels of hepcidin and ferritin andposi-
tively correlated with soluble transferrin receptor. They also
showed that the use of ESAs increased the levels of ERFE
that regulated hepcidin and led to iron mobilisation from
body stores during erythropoiesis (30). Additional studies of
this pathway and its potential effects in CKD are warranted.

Anaemia of CKD

Anaemia is a common feature of CKD, which increases in
prevalence as the severity of CKD progresses. Anaemia in
patients with renal failure is associated with poor quality of
life and high morbidity rates as evidenced by increased hospi-
talisations and incidence of cardiovascular disease incorpor-
ating left ventricular hypertrophy, heart failure and higher
rates of mortality from adverse cardiac events (31, 32).

Anaemia of CKD is typically normochromic and normo-
cytic and is thought to result from two main mechanisms—
deficient production of EPO by the kidney and reduced iron
absorption and availability. In CKD, iron deficiency can be
classified into absolute iron deficiency (marked by low iron
stores and circulating iron concentrations) and functional
iron deficiency (marked by low circulating iron in the setting
of normal iron stores), with both forms leading to iron-
restricted erythropoiesis that leads to anaemia of CKD as
well as ESA hyporesponsiveness (33).

The reduced absorption and bioavailability of iron is thought
to result from excessive production of hepcidin (34, 35),
partly contributed by reduced renal clearance (36–38) and
partly in response to elevated interleukin-6 or other pro-
inflammatory cytokines produced in CKD (6, 39, 40). CKD
is associated with a chronic inflammatory state, in particular,
elevated interleukin-6 plasma levels, which are a major media-
tor of the acute-phase response. In In CKD patients, higher
levels of interleukin-6 may be related to loss of kidney function,
uraemia and its sequelae (such asfluid overload and susceptibil-
ity to infections) and possibly dialysis related factors. (41).
Excess levels of hepcidin contribute to impaired dietary iron
absorption and iron release from body stores (37, 42, 43).
Reduced iron availability occurs due to retention of iron in
macrophages and hepatocytes, thus elevating iron stores but
reducing serum iron and transferrin saturation levels (func-
tional iron deficiency), causing anaemia even in the presence
of adequate iron reserves, in contrast to true iron deficiency.

Additional mechanisms have been suggested to contribute
to the pathogenesis of anaemia of CKD, including shortened
red blood cell lifespan, nutritional deficiencies (folate and
B12) due to anorexia, loss via dialysis and increased iron
losses (due to uraemia-related platelet dysfunction causing
subclinical blood loss, frequent phlebotomy and trapping of
blood in dialysis circuits) (44, 45).

More recently, there has been an interest in vitamin D and
its associations with anaemia. Initially, this was attributed to
the anti-inflammatory and pro-erythropoietic effects of vita-
min D (46). Data now suggest that vitamin D may actually
modulate iron homeostasis via hepcidin, with a study show-
ing that 1,25-dihydroxycholecalciferol directly inhibits hepci-
din expression by binding to a vitamin D response element in
the gene coding for hepcidin (47).

Current Management of Anaemia of CKD

Intravenous iron therapy and ESAs are the cornerstones of
current therapy for anaemia related to CKD; however, they
are not without their side effects.
Issues with iron therapy

With regard to iron administration during episodes of acute
infection or inflammation which results in elevated serum
ferritin levels, opinions suggest that iron therapy should be
withheld under such circumstances, citing a concern that iron
may further help in the proliferation of microorganisms. Iron
loading has been shown to be associated with worse outcomes
in infectious diseases such as malaria, tuberculosis and HIV
(48–50). However, surprisingly, the recent intravenous iron or
placebo for anaemia in the intensive care unit (IRONMAN)
clinical trial demonstrated noadverse effects of ironadministra-
tion in acutely unwell intensive care patients but there were sig-
nificant improvements in haemoglobin levels (51).
Moreover, there are concerns related to iron therapy-

induced iron overload, with a study byBarany et al. suggesting
that haemodialysis patients with very high ferritin levels have
a mean liver iron concentration similar to that of patients
with untreated idiopathic haemochromatosis (52). Iron de-
position has been associated with the pathogenesis of several
other disorders such as diabetes mellitus, neurodegenerative
diseases and atherosclerosis (53–55).
Iron could be a potential link between oxidative stress

and cardiovascular disease (56, 57). Iron has been found in
advanced human atherosclerotic plaques (58), and free iron
may play a role in plaque destabilisation post intra-plaque
haemorrhage (59), although, despite pathogenic hypotheses,
hard evidence linking iron, oxidative stress and cardiovas-
cular disease is limited (60). Also, the long-term effects of
high-dose iron therapy remain unclear.
Large prospective randomised controlled trials in the CKD

population are long overdue to assess the efficacy of recurrent
iron infusions with regard to long-term safety, mortality and
morbidity. In the absence of clear target values for serum ferri-
tin and transferrin, clinicians continue to make a case-by-case
decision on the best treatment option for their patients.

Advent of ESAs

The treatment of anaemia of CKD was revolutionised in the
1980s with the development of recombinant ESAs, which has
reduced the need for blood transfusions (which in turn
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reduces the chances of acquiring blood-borne infection and
avoids sensitisation in potential renal transplant candidates)
(61, 62) and improves exercise tolerance, quality of life symp-
toms and left ventricular hypertrophy (63, 64).

Risk profile of ESAs

The target haemoglobin level in the treatment of CKD has
been debated for some time, and a number of clinical trials
have sought to assess whether full correction of anaemia to
normal levels confers benefits; however, results have been dis-
appointing. In 2006, two large randomised control trials in
CKD showed that complete correction of anaemia had
no effect (65) or conferred a greater risk for attaining the
primary composite cardiovascular endpoint (66). The Trial
to Reduce Cardiovascular Events with Aranesp Therapy
(TREAT)-diabetic patients showed no survival benefit in
patients when a haemoglobin target of 13 g/l was set and a
secondary analysis suggested higher risk for stroke, death
resulting from cancer in patients with a history of malignan-
cies, and venous and arterial thromboembolic events (67, 68).

Another limitation of ESAs is that they also necessitate
regular injections, either subcutaneous for patients with
CKD and on peritoneal dialysis or via the intravenous
route for patients on haemodialysis. Supra-physiologic effects
of ESAs, especially at high doses, have off-target effects on
other cell types expressing EPO receptors including endothe-
lial cells. This results in adverse effects such as hypertension
(69), intimal hyperplasia especially in the setting of inflamma-
tion (70) and promotion of tumour growth (71). Other draw-
backs include the development of ESA hyporesponsiveness
(which can occur in 10%–20% of patients with end-stage kid-
ney disease). Patients needing greater doses are those with
concomitant infectious, inflammatory or malignant condi-
tions resulting in relative ESA resistance, which may contri-
bute to increased mortality (72).

Given the high costs and potential disadvantages of ESAs,
further elucidation of the molecular mechanisms of anaemia
in CKD and the development of better targeted therapies
have become a priority.

The Hunt for New Therapies

Pentoxifylline

Given that inflammation contributes to elevated hepcidin
levels and may contribute to ESA hyporesponsiveness, it
was thought that pentoxifylline might partially correct pro-
inflammatory cytokines levels in CKD, resulting in improved
iron utilisation and erythropoiesis. The drug has been shown
to have anti-inflammatory properties (anti-apoptosis, anti-
oxidant, anti-TNF-α and anti-IFN-γ) (73–75). In the hand-
ling erythopoietin resistance with oxpentifylline (HERO) trial,
which was a double-blind, randomised, placebo-controlled
trial, Johnson et al. studied the effects of pentoxifylline
on ESA hyporesponsive anaemia in 53 patients with CKD

stage 4 or 5 (including dialysis) (76). Although pentoxifylline
did not significantly modify ESA hyporesponsiveness as
measured by the erythropoiesis resistance index, it did safely
increase mean haemoglobin concentration significantly, rela-
tive to the control group. A smaller sub-study of the HERO
trial examined the effect of pentoxifylline on serum hepcidin
level but found no significant difference in patients who
received the drug as compared to those on placebo (77). A
small uncontrolled pilot study that looked at the effect of
this drug on inflammation showed that pentoxifylline reduced
levels of interleukin-6 and improved haemoglobin levels in
non-inflammatory moderate to severe CKD (78). A systematic
review and meta-analysis of 11 studies did not demonstrate
conclusive effects of pentoxifylline on haematocrit and ESA
dosing (79).Whether this drugmay provide any benefits remains
to be seen in larger randomised trials.

HIF–PH inhibitors

The role of hypoxia in hepcidin regulation has been briefly
explained above. Small-molecule inhibitors of the PHD
enzymes mimic the response to a cellular reduction in oxygen
levels, increase HIF levels and thereby increase EPO produc-
tion, thus promoting erythropoiesis. These drugs are in vari-
ous phases of clinical development for the treatment of renal
anaemia.
One such agent roxadustat, an oral HIF–PH inhibitor, was

trialled in 60 incident dialysis patients in a phase 2 clinical trial
and was shown to increase haemoglobin levels by ≥2.0 g/l
within 7 weeks, regardless of baseline iron repletion status,
C-reactive protein levels, iron regimen or dialysis modality.
It was also found to reduce serum hepcidin levels. Roxadustat
by inhibiting HIF–PHs results in increased levels of HIF and
stimulates erythropoiesis (80).
More recently, Pergola et al. studied the effect of vadadustat

as compared to placebo in 210 non-dialysis-dependent
CKD patients (stages 3–5) in a 20-week multi-centre phase
2b study (81). They showed that 55% of the candidates who
received vadadustat achieved the primary end point (percen-
tage of participants who during the last 2 weeks of the treat-
ment achieved or maintained a mean haemoglobin level of
>11 g/dl or an increase in haemoglobin level of ≥1.2 g/dl
over the pre-dose average) as compared to 10% of the placebo-
treated candidates, and the drug raised and maintained haemo-
globin in a predictable manner with no significant side effects
as compared to placebo. They noted significant increases in
both reticulocyte and total iron-binding capacity and signifi-
cant decreases in both serum hepcidin and ferritin levels.
Similar small preclinical and clinical studies have demon-

strated some pleiotropic effects of this class of drug (molidu-
stat corrected anaemia in rat studies and also helped
normalise blood pressure; daprodustat was shown to improve
cholesterol levels) (82, 83). Advantages of this new class of
drug include oral administration, low immunogenicity,
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product stability and possibly lower costs as well as potential
cardiovascular benefits (84).

Safety concerns of targeting the HIF pathway include the
potential for raised Vascular endothelial growth factor
(VEGF) production, which is a HIF-related angiogenic
growth factor known to be associated with vasculopathies
and progression of tumour growth (85), and the potential
for development of pulmonary and systemic hypertension,
given the role of HIF in regulation of vascular tone (86,
87). Results of phase 3 trials that continue to monitor for
these side effects are awaited.

Hepcidin antagonists

Several agents that can antagonise hepcidin are under devel-
opment, including neutralising hepcidin peptide by anti-
hepcidin antibodies or by engineered hepcidin binders such
as anticalins (engineered human proteins that can bind specific
target molecules). Cooke et al. demonstrated an increase in
haemoglobin by 1.5 g/dl within 1 week of injection of an
anti-hepcidin antibody in humanised murine models where
endogenous mouse hepcidin was replaced by human hepcidin
and inflammation was induced using heat-killed Brucella
abortus (88). The most effective method was the combination
of ESA and anti-hepcidin antibody, which increased haemo-
globin by >3 g/dl after 1 week compared with inflamed mice
injected with a control antibody. The improvement in haemo-
globin resulted from increased serum iron levels and better
haemoglobinisation of erythroid precursors, without affecting
inflammatory responses in these mice. Pieris pharmaceuticals
are conducting a phase 1b placebo-controlled study using a
hepcidin-antagonist in patients on dialysis, after demonstrat-
ing that the drug was shown to reduce hepcidin levels and
increase serum iron and transferrin saturation in 48 healthy
male subjects in a single ascending dose study with no signifi-
cant adverse effects (89).

Vitamin D

Recent studies have shown that vitamin D concentrations are
inversely associated with hepcidin levels and positively asso-
ciated with haemoglobin and iron concentrations (36, 90, 91).
Zughaier et al. demonstrated in vitro that vitamin D is asso-
ciated with reduced production of pro-hepcidin cytokines
such as IL-6 and interleukin-1β. In their in vivo pilot study of
38 patients with early stage (2/3) CKD who received high
doses of oral vitamin D3 as compared to placebo, the percent
change from baseline to 3 months in serum 25-hydroxy chole-
calciferol concentrationswas inversely associatedwith the per-
cent change in serum hepcidin levels (92). These findings are
relevant as a large majority of patients with CKD are vitamin
D deficient, and correction of vitamin D levels, as an adjunct
therapy, is attractive, given the inexpensive cost, easy avail-
ability, favourable safety profile and potential to reduce
dependence on other more expensive therapies.

Future Considerations

Although there is uncertainty surrounding optimal laboratory
investigations and haemoglobin targets, our understanding of
the mechanisms causing anaemia in CKD has improved over
the years. New markers of anaemia are being investigated,
and a number of new agents are in evaluation, awaiting com-
pletion of phase 2/3 clinical trials. These novel treatments
may not only be safer and cheaper but could also reduce
our dependence on iron and ESAs by providing the options
to manage anaemia using a combination of therapies.
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