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Abstract

A large number of patients are affected by liver dysfunction worldwide. Liver transplantation is the only efficient treatment in a
variety of enduring liver disorders including inherent and end-stage liver diseases. The generation of human functional hepato-
cytes in high quantities for liver cell therapy is an important goal for ongoing therapies in regenerative medicine. Reprogrammed
cells are considered as a promising and unlimited source of hepatocytes, mainly because of their expected lack of immunogenicity
and minimized ethical concerns in clinical applications. Despite gained advances in the reprogramming of somatic cells to func-
tional hepatocytes in vitro, production of primary adult hepatocytes that can proliferate in vivo still remains inaccessible. As part
of efforts toward translation of cell reprogramming science into clinical practice, more careful cell selection strategies should
be integrated into improvement of dedifferentiation and redifferentiation protocols, especially in precision medicine where
gene correction is needed. Furthermore, advances in cellular reprogramming highlight the need for developing and evaluating
novel standards addressing clinical research interests in this field.
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Introduction

A large number of patients are affected by liver dysfunction
worldwide. Liver transplantation is the only efficient treat-
ment in a variety of enduring liver disorders including inherent
and end-stage liver diseases. However, there is a high shortage
of liver organ donors causing almost 40% of patients with high
rate of mortality receiving no organ transplantation. There-
fore, new strategies supporting liver transplantation are in
high demand. Familial hypercholesterolemia, Crigler–Najjar

syndrome type I, glycogen storage disease type 1a, urea
cycle defects and congenital deficiency of coagulation factor
VII, hepatitis, cirrhosis, and liver cancer are the main liver dis-
eases having clinical indications for cell therapy (1).
There are several cell sources for human liver cell therapy,

including primary hepatocytes (1), tumor cell lines (2), immor-

talized hepatocyte lines from normal human hepatocytes (3),

liver stem cells (4), hepatocyte-like cells from bone-marrow-

derived stem cells (5), hepatocyte-like cells from fetal annex
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(6) and embryo (4), or reprogrammed somatic cells (7). Among
them, reprogrammed cells are considered as a promising and
unlimited source of hepatocytes (Figure 1), mainly because
of their expected lack of immunogenicity and minimized ethi-
cal concerns in clinical applications (1). These cells can be
obtained by redifferentiation of any accessible somatic cells
including skin, mucosa, and urine cells. In the first stage,
mature somatic cells (e.g., fibroblasts) are dedifferentiated
to the pluripotent stages. Besides their full pluripotency
potential, these dedifferentiated cells are able to self-renew
in vitro, which means they can potentially produce sufficient
source for cell-based therapies. During the second stage,
pluripotent cell reservoirs are induced to differentiate into
functional hepatocytes. In the case of genetic deficiency,
dedifferentiated cells undergo gene-editing strategies before
redifferentiation.

Somatic Cell Dedifferentiation

The concept of somatic cell dedifferentiation into pluripotent
stem cells, which are capable to form the three germinal layers
and to differentiate into other cell types, provides a promising
approach for regenerative medicine. This dedifferentiation
technique enables us to obtain donor- or patient-specific plur-
ipotent stem cells (8). In the following section, current meth-
ods for dedifferentiation of somatic cells are briefly reviewed.

Somatic cell nuclear transfer into oocyte

The principles of this method involve in vitro removal of
oocyte nucleus followed by its replacement with donor

somatic nucleus. Then, cell division is stimulated by chemicals
or electricity up to blastocyst stage. At this stage, cellular mass
is isolated and cultured. The resulting embryonic stem (ES)
cells are immunologically very identical to donor cells, and
no immunosuppressant is required after transplantation to
prevent their rejection. However, mitochondrial DNA from
maternal oocytes could be potentially immunogenic (9).
Major limitations of this method for clinical application are
ethical concerns related to germ cell manipulation, chromoso-
mal disorders in derived stem cells, low efficiency of transfer
technique, and insufficient supply of human oocytes (8).

Somatic cell fusion with embryonic stem cell

An advanced method of cell fusion was developed by Cowan
et al. (10) which reprogrammed human normal diploid fibro-
blasts into ES cells. In this method, human embryonic cells
were fused with human fibroblasts, resulting in hybrid
cells with stable tetraploid DNA. Characteristics of these
cells were similar to human ES cells. However, before clinical
application, a set of technical limitations should be resolved.
The most important challenge is to abolish ES-like cells after
cell fusion.

Somatic cell dedifferentiation using cell extracts

Different cell extracts can alter gene expression profile in
somatic cells (11). Data obtained from experiments on
293T cells, an embryonic kidney cell line, have revealed
that extracts of ES cells or embryonic carcinoma cells can
induce ES cell phenotype and expression of pluripotency
genes. Expression of somatic gene markers such as lamin A
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Figure 1. Approaches for creating reprogrammed cells from somatic cells. 1: Somatic cell nuclear transfer into oocyte; 2, adding
embryonic stem cell (ES) extract to somatic cells; 3: somatic and ES cell fusion; and 4: transduction of pluripotency genes. Gen-
erated reprogrammed cells from each strategy can create three germ layers known as ectoderm, endoderm, and mesoderm.
Induced redifferentiation of these reprogrammed cells can provide functional calls and tissues.

Liver cell therapy using reprogrammed cells

Codon Publications Journal of Renal and Hepatic Disorders 2017; 1(1): 20–28 21



was reduced after this manipulation. Besides, these cells
gained the ability to differentiate into mesoderm and ecto-
derm lineages (12). Bru et al. (13) also reported the elevation
in expression of pluripotency genes including Oct3/4, Sox2,
Klf-4, and c-Myc after exposure of mouse ES cell extracts
to 293T cells for 48 h. However, these cells are generally
limited in pluripotency potential.

Somatic cell reprogramming using pluripotency-related

genes

In 2006, the discovery of somatic cell reprogramming to
induced pluripotent stem cells (iPSCs) led to a revolution in
regenerativemedicine (14). iPSCs are basically patient-specific
pluripotent cells that are produced by inserting four genes,
including Oct4, Sox2, Kfl4, and c-Myc, necessary for fibro-
blasts to evolve ES-like properties. Recent studies have indi-
cated that only the presence of Oct4 gene may be sufficient
to induce pluripotency in adult cells (15). In vitro, iPSCs
have efficiently been used for liver tissue construction (15).
Takebe et al. (16) showed that co-culture of human iPSCs-
derived hepatic endoderm cells with human umbilical vein
endothelial cells and human mesenchymal stem cells leads to
the formation of liver buds (LBs) in 3D culture condition.
Furthermore, iPSCs–LBs injection to mouse resulted in
dynamic vascularization. Therefore, these cells can potentially
be applied in vast areas including disease modeling, tissue
engineering, and drug discovery (17, 18).

Cellular Redifferentiation to Functional Liver Cells

The generation of human functional hepatocytes in high quan-
tities for liver cell therapy is an important goal for ongoing
therapies in regenerative medicine. Here, we introduce main
practical strategies for redifferentiation of pluripotent cells
to liver cells.

Precision medicine: CRISPR/Cas9 genome editing

To date, therapies based on human ES cells are associated
with controversial issues related to ethical concerns in using
human embryos and potential risk of immune-mediated tis-
sue rejection. Utilization of patient’s cells in order to avoid
ethical concerns and rejection complications is possible by
cellular reprogramming, particularly iPSCs technology (19).
Based on the present protocols, fibroblasts with skin biopsy
origin can be returned to pluripotent stage and serve as a
renewable and autologous cellular source (20). However,
the original mutation that causes disease will be present in
patient-derived pluripotent stem cells. Precise correction of
mutation is possible by gene-editing technique, “clustered reg-
ularly interspersed short palindromic repeats (CRISPR)/Cas9
system,” which evolutionarily serves as an immune system
in bacteria and archaea against virus and plasmid invasion
(Figure 2). The specificity of this technique mainly depends
on a guide RNA (gRNA) that can be readily reprogrammed
to loci of target gene (21). Editing mutations in iPSCs derived
from patients with retinitis pigmentosa was recently used
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Figure 2. Schematic presentation of clustered regularly interspersed short palindromic repeats (CRISPR/Cas9) system. It is
basically a bacterial adaptive immune system. When an exogenous viral or bacteriophage genome is inserted into a bacterium,
CAS protein, which acts as a nuclease, detects the exogenous unmethylated genome by attachment to a 3–5 nucleotide sequence.
Then, CAS protein cuts the target sequence and inserts the fragment just before 3–5 nucleotide sequence into host genome. After
transcription, crispr RNAs (crRNAs) are produced which are complementary to the exogenous genome. crRNAs can recognize
the exogenous genome if a viral reinfection occurs.

Mehdizadeh A and Darabi M

Codon Publications Journal of Renal and Hepatic Disorders 2017; 1(1): 20–28 22



through CRISPR/Cas9 approach (19), which opens a promis-
ing era in regenerative medicine and genome engineering.

Cytokines and growth factors

Hepatic regeneration is a complicated process regulated by
growth factors, cytokines, transcription factors, hormones,
microRNAs, metabolic pathways, and products of oxidative
stress (22). The use of a specific pool of cytokines in a serum-
free medium is a prerequisite for liver organogenesis step in
differentiation process (23). For example, high doses of acti-
vin A are widely used for endodermal induction in human
pluripotent stem cells (24, 25). Some protocols have added
low doses of serum for promoting essential effects of activin
A in the development of endodermal induction (26, 27).
Furthermore, fibroblast growth factor (FGF) and Wnt sig-
naling, which play important roles in normal liver develop-
ment, are also effective in endodermal induction programs
(28, 29). Researchers have also combined bone morphoge-
netic protein and FGFs to promote endodermal induction
specificity (26, 30). Hepatocyte growth factor is also widely
used in hepatic differentiation of pluripotent stem cell, mainly
because of its ability in developing hepatoblast proliferation,
migration, and survival through c-Met as tyrosine kinase
part (31). Combination of FGF10 and retinoic acid with
simultaneous inhibition of activin A is also another effective
hepatic endodermal maturation protocol (32). In addition,
oncostatin, which is a member of interleukin-6 family, in
combination with glucocorticoids, can induce hepatocyte
maturation (33, 34).

Genetic and epigenetic manipulation

Genetic manipulation for the purpose of overexpression of
specific genes involved in hepatic induction is another
approach in regenerative medicine. Transducing some tran-
scription factors such as Sox17, Gata, and hepatic nuclear
factor 4α elevates iPSC hepatic induction at specific time
intervals in culture media (35, 36). Furthermore, epigenetic
interferences have also been used to improve hepatic differen-
tiation protocols (32). For instance, sodium butyrate, a speci-
fic inhibitor of histone deacetylase, is frequently used to
differentiate pluripotent stem cells into different cell lineages
including hepatocytes in higher concentrations and longer
time intervals (37–39).

Chemicals (small molecules)

Recent studies have proposed novel growth-factor-free proto-
cols for the differentiation of pluripotent stem cells (40).
Siller et al. (40) introduced a three-phasic protocol including
1) inhibition of glycogen synthase kinase 3 by CHIR99021
for definitive endoderm induction, 2) hepatic specification
through dimethyl sulfoxide treatment, and 3) using
dexamethasone and dihexa, a hepatocyte growth factor
receptor agonist, to differentiate pluripotent stem cells

into hepatocyte-like cells. Zhu et al. (41) also used a cock-
tail of small molecules for incompletely reprogrammed
human fibroblast cells to hepatocytes. In addition, Shan.
et al. (42) identified 12,480 small molecules in a liver plat-
form, and they classified them into two large groups: func-
tional proliferation hits and functional hits, which were able
to promote the differentiation of iPSCs and the maturation
of resulted hepatocyte-like cells. Improved directed rediffer-
entiation using small molecules can improve results on a
cost-benefit basis in large-scale applications.

Transplantation of Redifferentiated Cells in
Liver Therapy

The liver cell therapy procedure involves direct injection of
prepared isolated cells into portal vein or spleen (43) or trans-
plantation of in vitro developed tissue clusters (44). Special
anatomic location of liver provides different ways for cell
transplantation, including percutaneous and intravascular
delivery through both portal vein and hepatic artery (45).
However, studies on rat model suggest that hepatic sinusoidal
delivery is the most effective approach for cell transplantation
(46). Transplantation of hepatocytes under a low flow hepatic
artery condition, accompanied with cellular attachment fac-
tors and extracellular matrix components, is another high-
throughput strategy (47). Ideally, self-regenerating capacity
of transplanted liver cells is critical for cell therapy in patients
with liver failure. Guo et al. (48) conditioned mice by admin-
istration of retrosin, a cell cycle inhibitor, for arresting prolif-
eration of native hepatocyte. After elimination of drug
effects, a fresh 2 million β-galactosidase-labeled cell suspen-
sion was injected into the spleen pole. Donor cell proliferation
was assessed after injection of three doses of CCl4, 0.5 ml/kg.
An average 20% repopulation of liver cells was recorded.
More recently, post-surgery infusion of adult-derived human
liver stem cells improved liver regeneration in a mouse
model with 70% hepatectomy (49).
Overall, the application of stem cell technology in treat-

ment of liver diseases is promising at present (50). Several
gene-editing clinical trials have just been approved and
will be started in 2017, promoting reprogrammed cell-based
therapy (51, 52).

Clinical examples

Inherent liver diseases

A major indication for liver transplantation is inherent meta-
bolic liver diseases in children (53). iPSC technology provides
a unique method for designing patient- and disease-specific
therapies (54). Yusa et al. (55) showed that a combination
of iPSCs and a transposon-based vector technology results
in biallelic correction of a point mutation in α1-antitrypsin
gene which is responsible for α1-antitrypsin deficiency. Addi-
tionally, genetic correction of iPSCs in patients with Wilson’s
disease using a lenti-viral vector could reverse the functional
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genetic defect of Wilson’s disease gene in vitro (56). In princi-
ple, genetic correction of patient-derived cells is plausible in
inherent liver diseases with known mutations (Figure 3) (57).

Liver failure

Acute liver failure (ALF) and acute-on-chronic liver failure
are two main indications for cell transplantation. iPSCs that
are originated from these diseases can provide an unlimited
cellular source (54). In vivo studies by Isobe et al. (58) showed
that liver cells differentiated from iPSCs can save rodent from
lethal drug-induced ALF. Indeed, transplanted cells exhibited
proliferative and liver functional properties (59).

Liver cirrhosis

Because of inevitable hepatocellular damage and fibrosis of
hepatic tissue in cirrhosis, therapies should mostly rely on
replacement of damaged cells and fibrosis correction (54). Dif-
ferent studies have reported that iPSC-derived hepatocytes
promote hepatic regeneration, decrease fibrosis, and stabilize
chronic liver disease in mice model (59–61). Despite these
advances, iPSC-derived hepatocytes can temporarily support
liver function and are hardly able to regenerate the original
structure of the liver and to eliminate collagen deposition
(62). Thus, other strategies are needed to help liver structure
regeneration in cirrhosis through reprogramming of fibro-
genic cells or transplantation of liver tissue construct (62).

Liver cancer

It has been reported that downregulation of cyclin-dependent
kinase inhibitor 1, an important cell cycle mediator, in pluri-
potent stem cells generated from patients with hepatocellular
carcinoma can promote differentiation into normal human
hepatoma-like cells (63). Furthermore, it was shown that
inhibition of aldo-ketoreductase 1 member B10 promotes
retinoic acid-induced differentiation. However, efficacy and
patient specificity of the first-mentioned method seem to be
higher, as it avoids the toxic effects of combination therapy
(63). Lei et al. (64) also introduced a protocol for generating
cytotoxic T lymphocytes from iPSCs as an unlimited cellular
source in breast cancer therapy. In future, this strategy can be
used as a novel method for liver cancer.

Clinical limitations

Using viral vectors for transducing Oct4, Sox2, Klf4, and c-
Myc is an exciting method for generating human iPSCs.
Despite high efficacy of this procedure, there remain some
critical limitations for the application of iPSCs in clinics
(65). Applications of retroviral-generated iPSCs are limited
because of the 1) integration of retroviral DNA into host gen-
ome with variable copy numbers which interfere with promo-
ter elements, polyadenylation signals, and coding sequences,
affecting transcription potency (20), and 2) loss of pluripo-
tency potential because of low expression of exogenous

Patient with inherent
liver disease

Mutation correction
using CRISPR/CAS9

technology

Healthy iPSCsDiseased iPSCsPatient derived skin
Fibroblasts

Differentiated healthy
cells

Cell transplantation

(Functional, efficient, safe)

Figure 3. Clinical application of clustered regularly interspersed short palindromic repeats (CRISPR/Cas9). Skin fibroblasts from
patient source can be dedifferentiated to pluripotent stem cells containing the disease causing mutation. This mutation can be
corrected by CRISPR/Cas9 technology resulting in healthy stem cells which can be redifferentiated to patient-specific healthy
cells for transplantation.
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Oct4, Sox2, Klf4, and c-Myc from viral constructs (66).
Another critical concern is the exogenous genes itself; overex-
pression of Oct4, Sox2, Klf4, and c-Myc increases the chance
of tumorigenesis (66, 67). Overexpression of Oct4 induces
epithelial cell dysplasia (68). Sox2 overexpression is also asso-
ciated with serrated adenoma and mucinous colon carcinoma
(69). Klf4 and c-Myc are also associated with breast cancer
and some other human carcinomas (70). Tumor progression
is also observed in murine chimeras after injection of retro-
viral-generated iPSCs to blastocysts which has been attribu-
ted to c-Myc overexpression (71, 72).

Despite gained advances in the differentiation of pluripo-
tent stem cells into functional hepatocytes in vitro, produc-
tion of primary adult hepatocytes that can proliferate in vivo
still remains inaccessible (73, 74). The reason for this pro-
blem is that expansion and proliferation of transplanted cells
need a tense sustain of hepatic cell mass (75). Furthermore,
besides pluripotent stem cells-related problems, cell delivery
complications are another important limiting factor of liver
cell therapy. Direct injection of cells to liver parenchyma
may increase the risk of cell entry to hepatic vein outflow
and pulmonary vein, causing embolic complications (76).
Injection of cells to hepatic or splenic artery, theoretically,
also seems to be achievable. However, these methods may
increase the risk of tissue necrosis due to embolic occlusion
of vessels. In high blood flow condition, engrafted cells may
be destroyed because of incoming mechanical forces (47).
Furthermore, in portal hypertension and chronic liver dis-
eases, the transplanted cell may be translocated to lungs
through portosystemic collaterals or channels causing cardio-
vascular problems (Figure 4) (45,77). Therefore, there is an
urgent need for clinical trial designing for the application of
successful cell delivery methods to liver sinusoids. Obviously,
standards of professional practice play an important role in
the clinical setting. There is no international standard for
reprogrammed liver cell therapy, as cell therapy in general
has been limited to heterologous primary cells with resource
scarcity and little satisfactory outcome.

The major obstacle in hepatocyte transplantation is poor
engraftment results, encouraging researchers to suggest new
strategies. Prominent among these are modifying metabolic
status in the recipients of liver cell therapy (78) and co-
transplantation of mesenchymal stem cells (79) because of
their significant effects on liver regeneration and repair.

Conclusion

The restoration of hepatic function by patient-specific cell
transplantation remains a promising strategy for liver ther-
apy. Reprogramming strategy exploits preexisting somatic
cells to produce other mature cell types or progenitors. The
cornerstone of this strategy is to keep the cellular genome sta-
bility during dedifferentiation and efficient redifferentiation.
Patient-derived hepatic cells can be transplanted directly in
the form of isolated cells or as in vitro-generated liver tissue
constructs. Animal model data suggest that liver tissue con-
structs may offer better regeneration and improved survival,
but teratoma formation and rejection by immune system
are observed in both strategies. These occur primarily due
to the presence of residual undifferentiated cells in hepato-
cytes derived from human iPSCs. As a part of efforts toward
translation of cell reprogramming science into clinical prac-
tice, more careful cell selection strategies should be integrated
into improvement of dedifferentiation and redifferentiation
protocols, especially in precision medicine where gene correc-
tion is needed. Furthermore, advances in cellular reprogram-
ming highlight the need for developing and evaluating novel
standards addressing clinical research interests in this field.
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