

J. Serb. Chem. Soc. 86 (7–8) 663–672 (2021) JSCS–5452 JSCS-info@shd.org.rs • www.shd.org.rs/JSCS Original scientific paper

Crystal structure of K₃EuSi₂O₇

SABINA Z. KOVAČ*, PREDRAG Z. DABIĆ and ALEKSANDAR S. KREMENOVIĆ

University of Belgrade, Faculty of Mining and Geology, Department of Mineralogy, Crystallography, Petrology and Geochemistry, Laboratory of Crystallography, Đušina 7, 11000Belgrade, Serbia

(Received 18 February, revised 15 March, accepted 31 March 2021)

Abstract: As part of research on the flux technique for growing alkali rare-earth elements (REE) containing silicates, tripotassium europium disilicate, $K_3EuSi_2O_7$, was synthesized and characterized by single-crystal X-ray diffraction. It crystallizes in the space group $P6_3/mcm$. In the crystal structure of the title compound, one part of the Eu cations are in a slightly distorted octahedral coordination and the other part are in an ideal trigonal prismatic coordination environment. The disilicate Si₂O₇ groups connect four EuO₆ octahedra and one EuO₆ trigonal prism. Three differently coordinated potassium cations are located between them. Silicates containing the larger rare earth elements usually crystallize in a structure that contains the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment.

Keywords: alkali rare-earth silicates; crystal structure; flux synthesis; single-crystal X-ray diffraction.

INTRODUCTION

Silicates containing rare-earth elements (REE silicates) have been the subject of intense research in recent decades. Many studies were performed on REE silicates because of their wide range of optical and magnetic properties combined with high thermal stability,^{1–9} which make them very interesting and promising materials for different applications. REE silicates also exhibit broad structural diversity.¹⁰ A highly adaptive framework can incorporate almost all REEs and this opens the possibility of synthesizing numerous structures and structural series of REE-containing silicates. Small but systematic variations in the cation radii among the lanthanides allow extensive cation substitutions.

Several ternary potassium–REE silicates with the stoichiometric composition $K_3REESi_2O_7$ that crystallize in the space groups $P6_3/mcm$ and $P6_3/mmc$ have hitherto been described: $K_3EuSi_2O_7$,¹¹ $K_3NdSi_2O_7$,¹² $K_3REESi_2O_7$ (REE = Gd–

^{*}Corresponding author. E-mail: sabina.kovac@rgf.bg.ac.rs https://doi.org/10.2298/JSC210218026K

–Lu),¹³ K₃ScSi₂O₇,¹⁴ K₃YSi₂O₇ (2 polymorphs),⁶ K₃SmSi₂O₇⁷ and K₃ErSi₂O₇ (2 polymorphs).¹⁵

During our investigations focused on the synthesis of new potassium-REE silicates, single crystals of K₃EuSi₂O₇ were obtained. K₃EuSi₂O₇ crystallizes in the hexagonal space group $P6_3/mcm$ (No. 193) and is isostructural with K₃NdSi₂O₇,¹² K₃*REE*Si₂O₇ (REE = Gd–Yb),¹³ K₃YSi₂O₇,⁶ K₃SmSi₂O₇⁷ and K₃ErSi₂O₇.¹⁵ The reported compound was already known in the literature. Bondar and co-authors¹¹ stated the existence of this phase, however, they reported only the unit cell parameters (a = 9.98(1), c = 14.44(2) Å), space group ($P6_3/mcm$), chemical composition and described the morphology of crystals. Myers¹⁶ outlined the successful synthesis of K₃*REE*Si₂O₇. Thus, the crystal structure of this compound, K₃EuSi₂O₇, has not hitherto been described in the literature.

EXPERIMENTAL

Materials and measurements

All the materials were of analytical reagent grade and used as received without further purification. The crystal structure of $K_3EuSi_2O_7$ was analyzed by the single-crystal X-ray diffraction method. Diffraction experiments were conducted on a Gemini S (Oxford Diffraction) four-circle diffractometer equipped with a Mo-anode sealed tube and a Sapphire3 CCD detector. Diffraction data were processed with CrysAlis^{Pro}.¹⁷ The synthesized products were tested using X-ray powder diffraction (XRPD). A small amount of material was finely ground and tested on a Philips PW1710 X-ray powder diffractometer at room temperature using Bragg–Brentano geometry and CuK α radiation. The diffractometer was operated at 40 kV and 30 mA, while the 2θ scan range was from 3 to 60°, with a step size of 0.02° and time per step of 1.25 s. PDXL 2 software¹⁸ was used for analysis of the powder diffraction. The analyses were performed on a single crystal using a JEOL JSM-6610LV instrument equipped with an Oxford INCA Energy 350 EDS detector.

Synthesis and crystallization

The following chemicals were used in the high-temperature flux synthesis experiment: Eu_2O_3 (Sigma–Aldrich, 99.99 %), SiO₂ (Merck, p.a.) and KF (Centrohem, 99 %). A total of 0.055 g of a mixture of Eu_2O_3 and SiO₂ in a molar ratio of 1:4 was added to 1 g of KF. The resulting mixture was homogenized in an agate mortar, transferred to a platinum crucible covered with a platinum lid and placed in a resistance-heated furnace. The mixture was heated to 1173 K at a rate of 200 K h⁻¹ and kept for 10 h at that temperature. The temperature was lowered to 973 K at a rate of 2 K h⁻¹ and then the furnace was switched off. After cooling to room temperature, the resulting material was manually removed from the crucible, washed with distilled water and dried in air. Bow-tie aggregate colorless crystals up to 300 µm in size embedded in a polycrystalline matrix were observed.

X-Ray structure determination

A selected elongated prismatic colorless single crystal was fixed on glass fiber using nail polish as glue and X-ray diffraction data were collected at room-temperature. Relevant information on the crystal data, data collection and structure refinement are compiled in Table I.

664

CRYSTAL STRUCTURE OF K3EuSi2O7

An analytical absorption correction based on indexed crystal faces using the procedure of Clark & Reid¹⁹ in combination with an empirical absorption correction using spherical harmonics (implemented in SCALE3 ABSPACK scaling algorithm) was applied during the data reduction. The K₃EuSi₂O₇ crystallizes in the space group $P6_3/mcm$. Since it is isostructural with K₃ErSi₂O₇,¹⁵ atomic coordinates of this structural analogue were used as a starting model for structure refinement. When Er³⁺ was replaced with Eu³⁺, the model converged rapidly, and the crystal structure was refined to R = 3.5 %. The structure was refined on F^2 by full-matrix least-squares techniques using SHELXL programs.²⁰ Selected bond lengths and angles are presented in Table II. All figures of the crystal structures were prepared using the Vesta program.²¹

TABLE I. Experimental details

Crystal data		Data collection		
Chemical	K ₃ EuSi ₂ O ₇	Diffractometer	Gemini S (Oxford	
formula	,		Diffraction)	
M _r	437.44	Absorption correction	Analytical + empirical	
Crystal system	Hexagonal	Measured reflections	10007	
Space group	$P6_3/mcm$	Independent reflections	528	
Temperature, K	298	Observed ($I > 2\sigma(I)$) reflections	392	
a / Å	9.9512 (3)	$R_{\rm int}$	0.077	
<i>c</i> / Å	14.4480 (4)	$(\sin \theta / \lambda)_{\text{max}} / \text{Å}^{-1}$	0.641	
α/°	90	Refinement		
γ/°	120	$R[F^{2} > 2\sigma(F^{2})]$	0.035	
$V/Å^3$	1239.05 (8)	$wR(F^2)$	0.069	
Ζ	6	S	1.13	
Radiation type	ΜοΚα	No. of reflections	528	
μ / mm^{-1}	9.39	No. of parameters	40	
Crystal size, mm	0.27×0.04×0.04	$\Delta \rho_{\rm max}, \Delta \rho_{\rm min} / e {\rm \AA}^{-3}$	1.01, -0.69	

 TABLE II. Selected geometric parameters for K₃EuSi₂O₇. Symmetry codes: ix-y, -y, z;

 ii-y+1, x-y, z; iii-x+1, -x+y, z; i^vy , -x+y, -z; vx, x-y, -z; v-x+1, -x+y, -z+1/2; viix-y, -y, -z+1/2; viiy, x-1, z; i^xy , x-1, -z+1/2; x-x+y, y, -z; xiy, x, z; xii-y, -x, -z; xii-x, -y, -z; xivx-y, x-1, -z; xv-x+1, -y, -z; xviy, x, -z+1/2; xviix, y, -z+1/2; (xviii)y+1, x, z

Bond	Bond length, Å	Bond	Bond length, Å
K101	2.770(5)	K3–O2 ^{xii}	2.754(7)
K1–O1 ⁱ	2.770(5)	K3–O2 ^{xiii}	2.754(7)
K1–O2 ⁱ	2.962(3)	K3–O2	2.754(7)
K1-O2	2.962(3)	Eu1–O1 ^{iv}	2.282(4)
K1–O1 ⁱⁱ	3.006(6)	Eu1–O1 ⁱ	2.282(4)
K1–O1 ⁱⁱⁱ	3.006(6)	Eu1–O1 ^{xiv}	2.282(4)
K1–O1 ^{iv}	3.049(5)	Eu1–O1 ⁱⁱⁱ	2.282(4)
K1–O1 ^v	3.049(5)	Eu1–O1 ^{viii}	2.282(4)
K2–O1 ⁱ	2.923(4)	Eu1–O1 ^{xv}	2.282(4)
K2–O1 ^{vi}	2.923(4)	Eu2–O2 ^{vii}	2.334(7)
K2–O1 ^{vii}	2.923(4)	Eu2–O2	2.334(7)
K2–O1 ⁱⁱⁱ	2.923(4)	Eu2–O2 ^{xi}	2.334(7)
K2–O1 ^{viii}	2.923(4)	Eu2–O2 ⁱ	2.334(7)

Bond	Bond length, Å	Bond	Bond length, Å
K2–O1 ^{ix}	2.923(4)	Eu2–O2 ^{xvi}	2.334(7)
K2–O3 ^{viii}	3.029(3)	Eu2–O2 ^{xvii}	2.334(7)
K2–O3	3.029(3)	Si1-O1 ⁱⁱⁱ	1.616(5)
K2–O3 ⁱⁱⁱ	3.029(3)	Si1–O1 ⁱⁱ	1.616(5)
K3–O2 ⁱ	2.754(7)	Si1-O2xviii	1.622(7)
K3–O2 ^x	2.754(7)	Si1–O3	1.661(4)
K3–O2 ^{xi}	2.754(7)		
Bond	Bond angle, °	Bond	Bond angle, °
O1 ⁱⁱⁱ –Si1–O1 ⁱⁱ	111.0(4)	O1 ⁱⁱ –Si1–O3	106.7(2)
O1 ⁱⁱⁱ –Si1–O2 ^{xviii}	110.9(2)	O2xviii–Si1–O3	110.5(4)
O1 ⁱⁱ –Si1–O2 ^{xviii}	110.9(2)	Si1-O3-Si1xvii	136.7(6)
O1 ⁱⁱⁱ –Si1–O3	106.7(2)		

TABLE II. Continued

666

RESULTS AND DISCUSSION

Description of the crystal structure

As a result of an extensive study of the flux technique for growing new alkali rare-earth elements (REE) containing silicates, $K_3EuSi_2O_7$ was synthesized and characterized by single-crystal X-ray diffraction. The compound crystallizes in the space group $P6_3/mcm$ and is isostructural with disilicates $K_3ErSi_2O_7^{15}$ and $K_3YbSi_2O_7^{22}$ The crystal structure is comparable to the sorosilicate structure type reported earlier by Vidican and co-authors.¹³

The crystal structure of the title compound consists of Si_2O_7 groups and EuO_6 polyhedra that form a 3D framework with potassium ions in the holes (Fig. 1).

Fig. 1. The framework of the crystal structure of K₃EuSi₂O₇ along [001]. Color code: K atoms and polyhedra are black, EuO₆ polyhedra are grey (octahedra: OC-6; trigonal prisms: TPR-6), Si atoms are dark grey and O atoms are white.

Available on line at www.shd.org.rs/JSCS/

CRYSTAL STRUCTURE OF K3EuSi2O7

The disilicate groups Si_2O_7 connect four EuO_6 octahedra (OC-6), as well as one EuO_6 trigonal prism (TPR-6, Fig. 2). Three differently coordinated potassium cations are located between them. The structure can also be described as regular alternation of two types of layers, which are parallel to the (001) plane: (I) octahedral layers and (II) sorosilicate layers, formed by a mixture of Si_2O_7 groups and K2 O_{6+3} polyhedra (Fig. 3).

Fig. 2. The Si₂O₇ groups and EuO₆ polyhedra (octahedra: OC-6; trigonal prisms: TPR-6) in the crystal structure of $K_3EuSi_2O_7$ oriented approximately along [120] (*c*-axis is vertical) showing their connections. Potassium cations have been omitted for clarity. Color code: Eu atoms and polyhedra are grey, Si atoms are dark grey and O atoms are white.

Fig. 3. Projection of structure along [120] showing two types of regularly alternating layers, which are parallel to the (001) plane: (I) octahedral layers and (II) sorosilicate layers. K atoms and polyhedra are black, Eu atoms and polyhedra are grey, SiO₄ polyhedra are dark grey and O atoms are white.

The structure is characterized by two crystallographically distinct six-coordinated sites occupied by Eu1 and Eu2: Eu1O₆ is an octahedron (OC-6) and Eu2O₆ is a trigonal prism (TPR-6). Two types of polyhedra around europium cations are distinguished by a small difference in the Eu–O distances: all Eu1–O distances are 2.282(4) Å, while all Eu2–O bond lengths are 2.334(7) Å. Each Eu1O₆ octahedron (OC-6) shares its six corners with six different Si₂O₇ groups, while each Er_2O_6 trigonal prism (TPR-6) also shares six corners, but only with three different Si₂O₇ groups.

Each Si₂O₇ group is connected to five different cations, *i.e.*, four Eu1 and one Eu2. The disilicate group consists of two SiO₄ tetrahedra sharing an O atom, denoted O3, with a bridging bond angle Si–O–Si of 136.7(6)°. The observed individual Si–O distances are within the acceptable range for silicate structures. The bridging Si–O bond (1.661(4) Å) is expectedly longer than the nonbridging Si–O bonds (1.616(5) and 1.622(7) Å). The O–Si–O bond angles range from 106.7(2) to 111.0(4)°.

The three potassium cations show three different coordination environments. The coordination sphere of K1 includes eight oxygen ions and forms a $K1O_{2+4+2}$ coordination polyhedron that could be described as a distorted hexagonal pyramid with a split apex (distances range from 2.770(5) to 3.049(5) Å). The K2 atom is coordinated by nine oxygen atoms with distances from 2.923(4) to 3.029(3) Å providing a regular tricapped trigonal prism (K2O₆₊₃). The coordination of the K3 atom (CN=6) could be described as an undistorted trigonal antiprism (K–O length = 2.754 (7) Å).

Bond-valence calculations showed that the bond valences are well balanced and the K–O, Eu–O and Si–O bond lengths are consistent with the presence of K⁺, Eu³⁺, Si⁴⁺ and O^{2–} in the structure. Only the bond-valence sum for Eu1 is oversaturated (3.42 v.u.), which could be attributed to the environment of the Eu1O₆ octahedron. All oxygen atoms from the Eu1O₆ octahedron are common to all adjacent polyhedra around the K1 and K2 atoms for which BVS shows slightly undersaturated values. This means that slightly deviating bonds are formed in order to satisfy the local valence disagreement due to structural disorder. These values are in accordance with the literature data for K₃REESi₂O₇¹³ that contains the rare-earth cation in both slightly distorted octahedral and an ideal trigonal prismatic coordination environment. The results of bond-valencesum calculations (VaList software;²³ bond valence parameters: Brown & Altermatt²⁴ and Brese & O'Keeffe²⁵), are presented in Table III.

Atom	Bond valence, v. u.					$\Sigma_{\rm H}$ / $_{\rm H}$ $_{\rm H}$	
	K1 ^a	K2 ^a	K3 ^a	Eu1 ^a	Eu2 ^a	Sib	Δv_{ij} v. u.
01	0.178×2	0.118×6		0.57×6		1.022×2	2.066
	0.094×2						
	0.084×2						
O2	0.106×2		0.186×6		0.495×6	1.005	1.898
O3		0.089×3				0.905	1.988
Σv_{ij} / v. u.	0.924	0.975	1.116	3.42	2.97	3.954	
an 0 1 1	24 hp	0.0177.00	25				

TABLE III. Bond valence sums for the cations and anions in K₃EuSi₂O₇

^aBrown & Altermatt²⁴; ^bBrese & O'Keeffe²⁵

Available on line at www.shd.org.rs/JSCS/

X-Ray powder diffraction (XRPD)

Collected XRPD data are shown in Fig. 4. A diffraction pattern calculated using the CIF file obtained from the single-crystal data of K3EuSi2O7 was overlaid. The experimental XRPD patterns are in good agreement with those calculated from the CIF.

Fig. 4. X-ray powder diffraction pattern of K3EuSi2O7. Upper pattern represents experimental data while lower pattern represents overlaid positions of Bragg's peaks calculated from K₃EuSi₂O₇ CIF.

Scanning electron microscopy (SEM)

The crystal morphology of a single K₃EuSi₂O₇ crystal obtained by SEM is shown in Fig. 5. An elongated prismatic crystal is clearly visible. The crystal

Fig. 5. A scanning electron microscope (SEM) picture of a K₃EuSi₂O₇ crystal.

appears to be homogeneous. Similar crystal morphology was also reported by Bondar and co-authors,¹¹ although their crystals were much thicker and less elongated.

CONCLUSIONS

Single crystals of K₃EuSi₂O₇ were prepared by high-temperature flux crystal growth and characterized by single-crystal X-ray diffraction, powder X-ray diffraction and SEM analysis. The compound crystallizes like disilicates containing larger REEs, *i.e.*, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Y, with the exception of Er and Y, which can crystallize as polymorphs in space groups $P6_3/mcm$ and $P6_3/mmc$. Their effective ionic radii ranged from 0.983 Å for VINd³⁺ to 0.868 Å for VIYb³⁺ (VIEu³⁺ = 0.947 Å).²⁶ The structure of these compounds contain the rare-earth cation in both a slightly distorted octahedral and an ideal trigonal prismatic coordination environment.

SUPPLEMENTARY MATERIAL

The crystallographic data for this paper have been deposited at the Cambridge Crystallographic Data Centre under deposition number CCDC 2062974.

Acknowledgements. The authors gratefully acknowledge financial support from the Ministry of Education, Science and Technological Development of the Republic of Serbia (Grant No. III45007 and III45015); the Ministry of Education, Science and Technological Development of the Republic of Serbia & the Austria Federal Ministry of Education, Science and Research (Project No. 451-03-02141/2017-09/14; WTZ project No. SRB 14/2018). The authors also thank the Laboratory for Scanning Electron Microscopy at the Department of Mineralogy, Crystallography, Petrology and Geochemistry, University of Belgrade, Faculty of Mining and Geology and the Laboratory of X-ray diffraction at the Department of Physics, University of Novi Sad, Faculty of Sciences.

и з в о д КРИСТАЛНА СТРУКТУРА К₃EuSi₂O₇

KI HEIAJIIA CII J KI J I A K3EU31207

САБИНА З. КОВАЧ, ПРЕДРАГ З. ДАБИЋ и АЛЕКСАНДАР С. КРЕМЕНОВИЋ

Универзишеш у Беоїраду, Рударско-їеолошки факулшеш, Дейаршман за минералоїију, крисшалоїрафију, йешролоїију и їеохемију, Лаборашорија за крисшалоїрафију, Ђушина 7, 11000 Беоїрад

У оквиру испитивања алкалних силиката елемената ретких земаља добијених методом флукса из растопа, синтетисан је трикалијум еуропијум дисиликат, K₃EuSi₂O₇. Кристална структура одређена је методом рендгенске дифракције на монокристалу. Кристалише у просторној групи $P6_3/mcm$. У кристалној структури испитиваног једињења, део Еи катјона је у благо дефорисаној октаедарској координацији, а други део је у идеалном тригонално-призматичном координационом окружењу. Дисиликатне групе Si₂O₇ повезују четири EuO₆ октаедра и једну EuO₆ тригоналну призму. Између њих се налазе три различито координисана катјона калијума. Силикати који садрже веће јоне ретких земаља имају структуру која садржи катјон ретке земље у два различита координациона окружења: у благо искривљеном октаедру и у идеалном тригонално-призматичном окружењу.

(Примљено 18. фебруара, ревидирано 15. марта, прихваћено 31. марта 2021)

Available on line at www.shd.org.rs/JSCS/

CRYSTAL STRUCTURE OF K3EuSi2O7

REFERENCES

- J. Felsche, In The Crystal Chemistry of the Rare-Earth Silicates. Rare Earths. Structure and Bonding, Vol. 13, Springer, Heidelberg, 1973 (<u>https://doi.org/10.1007/3-540-06125-</u> <u>8_3</u>)
- A. Kitai, In Luminescent Materials and Applications, John Wiley & Sons Ltd., Chichester, 2008 (Online ISBN:9780470985687)
- A. M. Latshaw, W. M. Chance, N. Trenor, G. Morrison, M. D. Smith, J. Yeon, D. E. Williams, H.-C. zur Loye, *CrystEngComm* 17 (2015) 4691 (https://doi.org/10.1039/C5CE00630A)
- A. M. Latshaw, K. D. Hughey, M. D. Smith, J. Yeon, H.-C. zur Loye, *Inorg. Chem.* 54 (2015) 876 (<u>https://doi.org/10.1021/ic502185b</u>)
- A. M. Latshaw, B. O. Wilkins, K. D. Hughey, J. Yeon, D. E. Williams, T. T. Tran, P. S. Halasyamani, H.-C. zur Loye, *CrystEngComm* 17 (2015) 4654 (<u>https://doi.org/10.1039/C5CE00671F</u>)
- A. M. Latshaw, G. Morrison, K. D. zur Loye, A. R. Myers, M. D. Smith, H.-C. zur Loye, *CrystEngComm* 18 (2016) 2294 (<u>https://doi.org/10.1039/C6CE00177G</u>)
- A. M. Latshaw, J. Yeon, M. D. Smith, H.-C. zur Loye, J. Solid State Chem. 235 (2016) 100 (https://doi.org/10.1016/j.jssc.2015.12.013)
- G. Morrison, A. M. Latshaw, N. R. Spagnuolo, H.-C. Zur Loye, J. Am. Chem. Soc. 139 (2017) 14743 (<u>https://doi.org/10.1021/jacs.7b08559</u>)
- B. R. Figueiredo, A. A. Valente, Z. Lin, C. M. Silva, *Micropor. Mesopor. Mat.* 234 (2016) 73 (<u>https://doi.org/10.1016/j.micromeso.2016.07.004</u>)
- F. Liebau, Structural chemistry of silicates: structure, bonding and classification, Springer, Heidelberg, 1985, p. 347 (<u>https://doi.org/10.1007/978-3-642-50076-3</u>)
- I. A. Bondar, T. F. Tenisheva, Y. F. Shepelev, N. A. Toropov, *Dokl. Akad. Nauk SSSR* 160 (1965) 1069
- (http://www.mathnet.ru/links/df924f2db1305a2430f200e3f58341c7/dan30741.pdf)
- M. S. Hwang, H. Y.-P. Hong, M. C. Cheng, Y. Wang, Acta Cryst., C 43 (1987) 1241 (<u>https://doi.org/10.1107/S0108270187092308</u>)
- 13. I. Vidican, M. Smith, M., H.-C. zur Loye, J. Solid State Chem. **170** (2003) 203 (<u>https://doi.org/10.1016/S0022-4596(02)00029-4</u>)
- J. D. Napper, R. C. Layland, M. D. Smith, H. Loye, J. Chem. Crystallogr. 34 (2004) 347 (<u>https://doi.org/10.1023/B:JOCC.0000028666.53348.fc</u>)
- P. Dabić, M. G. Nikolić, S. Kovač, A. Kremenović, Acta Cryst., C 75 (2019) 1417 (<u>https://doi.org/10.1107/S2053229619011926</u>)
- A. Myers, J. South Carolina Acad. Sci. 12 (2014) 200 (<u>https://scholarcommons.sc.edu/jscas/vol12/iss1/1</u>)
- Rigaku Oxford Diffraction, CrysAlis^{Pro} Software system, Rigaku Corporation, Oxford, 2018
- Rigaku PDXL 2: Integrated powder X-ray diffraction software. Version 2.8.3.0, Rigaku Corporation, Tokyo, 2007 <u>https://www.rigaku.com/en/service/software/pdxl</u>
- 19. R. C. Clark, J. S. Reid, Acta Cryst., A 51 (1995) 887 (<u>https://doi.org/10.1107/S0108767395007367</u>)
- 20. G. M. Sheldrick, Acta Cryst., C 71 (2015) 3 (https://doi.org/10.1107/S2053229614024218)
- 21. M. Momma, F. Izumi, J. Appl. Cryst. 44 (2011) 1272 (https://doi.org/10.1107/S0021889811038970)

- 22. P. Dabić, V. Kahlenberg, B. Krueger, M. Rodić, S. Kovač, J. Blanuša, Z. Jagličić, Lj. Karanović, V. Petríček, A. Kremenović, *Acta Cryst., B*, under review
- 23. A. S. Wills, VaList, 2010, Program available from www.CCP14.ac.uk
- 24. I. D. Brown, D. Altermatt, *Acta Cryst.*, *B* 41 (1985) 244 (<u>https://doi.org/10.1107/S0108768185002063</u>)
- 25. N. E. Brese, M. O'Keeffe, *Acta Cryst.*, *B* 47 (1991) 192 (https://doi.org/10.1107/S0108768190011041)
- 26. R. D. Shannon, *Acta Cryst., A* **32** (1976) 751 (https://doi.org/10.1107/S0567739476001551).

Available on line at www.shd.org.rs/JSCS/

672