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Abstract: Identification of chemical compounds has many applications in science 

and technology. However, this process still relies heavily on the knowledge and 

experience of chemists. Thus, the development of techniques for faster and more 

accurate chemical compound identification is essential. In this work, we 

demonstrate the feasibility of using artificial neural networks to accurately 

identify organic compounds through the measurement of refractive index. The 

models were developed based on refractive index measurements in different 

wavelengths of light, from UV to the far-infrared region. The models were 

trained with about 250,000 records of experimental optical constants for 60 

organic compounds and polymers from published literature. The models 

performed with accuracies of up to 98%, with better performance observed for 

refractive index measurements across the visible and IR regions. The proposed 

models could be coupled with other devices for autonomous identification of 

chemical compounds using a single-wavelength dispersive measurement. 

Keywords: machine learning; ANNs; classification, deep learning, materials 

identification. 

INTRODUCTION 

Organic material identification is a vital process across various industries such 

as pharmaceuticals, food, agriculture, and environmental science. The ability to 

identify organic compounds quickly and accurately is imperative for the 

development of new products, monitoring environmental pollutants, and detecting 

contaminants in food and drugs.1–3 However, traditional methods of material 

identification, such as gas chromatography and mass spectrometry, can be tedious 

and costly.4,5 Therefore, it is crucial to explore new ways to facilitate organic 
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materials identification. One such approach that has gained attention in recent 

times is the use of machine learning techniques. 

Machine learning (ML) is a branch of computer science that focuses on 

developing algorithms that can learn from and make decisions based on complex 

data.6 One recent development in ML is deep learning, a cutting-edge field that 

uses artificial neural networks (ANNs) to improve the performance of traditional 

ML models.7 ANNs are artificial systems that are modelled after biological neural 

networks and are able to learn and perform tasks without pre-programmed rules by 

being exposed to various datasets and examples.8 Deep learning is among the most 

effective, efficient, and cost-effective approaches to ML.9 Additionally, ANNs 

have the advantage of being able to increase their accuracy in production. Unlike 

traditional ML models like random forests, ANNs don’t need to be fully re-trained 

as more data becomes available; this can lead to significant cost savings in terms 

of computational resources. Therefore, ANNs are a suitable approach to ML. 

ANNs have found applications in various fields such as environmental 

science, where they are used to predict the percentage of water pollutant removal 

based on experimental variables such as temperature and treatment time.10–12

Moreover, Raman spectroscopy imaging has been widely used in combination with 

machine learning (ML) techniques to identify the properties and structures of 

organic compounds. Raman spectroscopy is a non-destructive imaging method that 

provides information about the vibrational modes of a compound, which can be 

used to determine its chemical structure and composition. 

One of the key benefits of using Raman spectroscopy imaging in conjunction 

with ML algorithms is its ability to accurately identify the chemical structure and 

composition of various organic compounds.13,14 Studies have reported ML models 

based on Raman spectra that were able to classify materials like biomolecules, 

organics, and inorganics.15–18 

Despite the higher performance of ML models using spectra images as input, 

the setup and equipment for obtaining associated spectra data is more complex and 

expensive. Therefore, a simple measurement like the refractive index (n) can offer 

alternatives. Refractive index of a sample is defined as the ratio of the speed of 

light in a vacuum to its speed in the sample medium. 

The chemical composition of a sample can also affect its refractive index 

through the presence of certain functional groups or atoms that can interact with 

light in specific ways.19 For example, refractive index has been used for detection 

of components with low chromophoric activities such as sugars, triglycerides, 

organic acids, pharmaceutical excipients, and polymers.20 So, the refractive index 

is an optical property that carries enough information related to chemical 

composition. 
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IDENTIFIFYING ORGANIC COMPOUNDS BY MACHINE LEARNING 3 

Machine learning models for predicting refractive indices of polymers have 

been previously reported.21,22 In another work, refractive index was used as input 

to ML models to differentiate normal and malignant tissues in biomedical.23 

This work was inspired by a study attempting to apply random forests (RF), a 

traditional ML algorithm and refractive index to identify  organic compounds.24 In 

order to train the machine learning models, we use data from a public database of 

refractive indices for organic compounds and polymers. The database contains data 

from literature gathered over a long period of time.25 

To the best of our knowledge, this is the first work to report the use of 

refractive index for classification of organic compounds with artificial neural 

networks (ANNs). 

EXPERIMENTAL 

Database 

Version 1.0.0 of a web scrapper built using Python was run on the refractive index website, 

which is a database for experimental optical constants from published literature since 1940.25

The scrapper targeted 60 organic compounds and polymers. The scrapped data was stored as 

comma-separated values (CSV). The file contains four columns: organic compound (book), 

wavelength (λ), refractive index (n), and extinction coefficient (k). The scrapped database has 

a total of 248,756 entries and 9645 missing values of k. 

The database was split into five categories as follows (Fig 1); ultraviolet (0-0.4 µm), visible 

(0.4 – 0.75µm), near IR (0.75 – 1.5 µm), IR (1.5 - 4µm), and far IR (>4µm).  

Fig. 1. Raw scrapped data from the refractive index website 
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Data pre-processing 

All the missing values for extinction coefficients in the raw database were replaced by 

zero. Since the UV and visible data was too small for training the models, data augmentation 

was performed on these regions using the Sellmeier equation.26 This is a mathematical formula 

that can be used to predict the refractive index of a material as a function of wavelength. Data 

augmentation was required to artificially synthesize more data using domain knowledge;27 this 

technique has been previously used with Raman spectra-based organic classifiers.16–18 

The Sellmeier equation is given by the following equation: 

‚‚ 𝑛2(λ) =  1 +
𝐵1λ2

λ2−𝐶1
+

𝐵2λ2

λ2−𝐶2
+. .. (1) 

Where n(λ) is the refractive index at wavelength λ. B₁, B₂, ... and C₁, C₂, ... are Sellmeier 

coefficients that are specific to the material. A custom python script was used to estimate the 

missing Sellmeier coefficients by curve fitting (see the supporting information). 

Artificial neural network classifiers (ANNs) for organic compounds 

Scikit-Learn, TensorFlow, and Keras Python libraries were used for training and 

evaluating the accuracy of the ANN classifiers. This was done in a Google Collaboratory 

environment.28,29 Seven different models were developed according to available categories (Fig. 

4). Each model contains three main layers: an input layer, hidden layers, and an output layer. 

The input layer takes in three independent variables: the wavelength of light (λ), refractive index 

(n), and the extinction coefficient (k). Hidden layers contain neurons; they extract and represent 

features from the input data, allowing the network to learn. The output layer performs the final 

compound classification, which is based on voting among 60 possible compounds. The 

compound with a high probability is considered the output of the model.7,28 An overview of the 

model design is shown in Fig. 2 below: 

Fig. 2. ANN organic classifier model architecture 

To evaluate the model’s performance, monitoring was performed during the training and 

testing stages. In the training stage, the loss and accuracy of all models were monitored by a 

validation data set. If the model's prediction is perfect, the loss is zero. This tells how poorly or 

well a model behaves after each iteration of the optimization.29,30 On the other hand, the testing 

stage was performed using a test data set; the test data serves as an estimate of its performance 

on new, unseen data. 

Accuracy, precision, recall, and the F1 score were used as evaluation metrics for the 

classifier. Precision tells us how many of the positive predictions were correct; recall tells us 

how many of the actual positives were identified while the F1 score gives a single metric to 
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evaluate the overall performance of the model by balancing precision and recall.28,31 These 

evaluation metrics are mathematically defined as follows: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (2) 

𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (3) 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2×𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛×𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑟𝑒𝑐𝑎𝑙𝑙
 (4) 

Where the term true positives (TP) refer to the number of samples correctly predicted as 

positive, while false positives (FP) indicate the number of samples incorrectly predicted as 

positive. Similarly, true negatives (TN) refer the number of samples correctly predicted as 

negative, and false negatives (FN) represents the number of samples incorrectly predicted as 

negative. 

RESULTS AND DISCUSSION 

Data pre-processing 

Fig. 3. Missing extinction coefficient values in raw data 

Analysis of the raw data revealed the percent of missing extinction coefficient 

values in each region as follows: UV (58.99%), visible (82.67%), near IR (7.28%), 

IR (0.32%), and far IR (0.25%). The final database with data augmentation 

contains seven categories (Fig 4). UV region data was increased from 1807 to 

132314, and visible region data was increased from 6268 to 120455. The amount 

of data in other regions was left unaltered. 
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Fig. 4. Augmented refractive index data 

Performance of artificial neural network classifiers 

Table 1.  Performance evaluation for ANN classifiers 

ANN Model Precision (%) Recall (%) F1 score (%) Accuracy (%) 

UV 79.00 81.00 79.00 59.00 

UV - augmented data 82.00 82.00 81.00 81.49 

Visible 73.00 69.00 67.00 69.22 

Visible – augmented data 86.00 87.00 85.00 86.60 

Near IR 99.00 98.00 98.00 98.44 

IR 98.00 98.00 98.00 97.72 

Far IR 85.00 84.00 84.00 84.09 
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Fig. 5.  Testing accuracies for the ANN classifiers 

The accuracies of the ANN models are listed in the following order: Near IR 

(98.44%) > IR (97.72%) > visible-augmented (86.60%) > far IR (84.09%) > UV-

augmented (81.49) > visible (69.22%) > UV (59.00%). It is observed that models 

in the near IR and IR regions outperform other regions (Fig. 5).  Moreover, from 

Figs. 6 and 7, the losses of the near IR and IR regions converge to low and stable 

values, while the accuracy reaches high and stable values. This indicates that the 

models in the near IR and IR regions are generalizing well and not overfitting.28,32

The precision, recall, and F1 scores of the near IR and IR models shows high 

performance of above 98% (Table 1).  

Meanwhile, the performance of models in the far IR, UV, and visible regions 

is unsatisfactory. The recall, precision, and F1 scores in these regions are low 

(Table 1). Their loss–accuracy plots show unstable values, and bumpy non-

converging lines, indicating their unreliability (Figs. S1–S5). For UV and visible 

regions, more than 58% of extinction coefficient values (k) were missing in their 

datasets (Fig 3), which may provide the model with less information to accurately 

learn the relationships between input and output variables. As a result, overfitting 

or poor generalization performance may be observed.33 

Nevertheless, the accuracies for UV and visible models were observed to 

increase by more than 17% with data augmentation (Fig 5); this suggests the 

possibility of improving the performance by increasing the amount of training data 

in these regions. 
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Fig. 6. Training and validation for ANN model in near IR region 

Fig. 7. Training and validation for ANN model in IR region 

The accuracy and loss plots obtained from the near IR (Fig. 6) and IR (Fig. 7) 

models are smoother, and the lines converge well, while plots for models 

containing augmented data show convergence but with bumpy lines (Fig. S1- S5). 

This implies that the validation dataset is not a good representation of the training 

data set; this may be due to artificially synthesized data from the data augmentation 

process, which introduced noise.28,32 

A
cc
ep
te
d 
m
an
us
cr
ip
t



IDENTIFIFYING ORGANIC COMPOUNDS BY MACHINE LEARNING 9 

Comparison with other machine learning organic classifiers 

The developed models are comparable with models from previous studies 

(Table 2), indicating the potential of using refractive index measurement to 

facilitate the identification of organic compounds using machine learning. 

Table 2. Comparison of this work with some previous studies using Raman spectra data with 

machine learning. ResNet = residual neural network, DRCNN = deeply-recursive convolutional 

neural network, ANN= Artificial Neural Network, CNN = convolutional neural network, KNN= 

K-nearest neighbor, ML = Machine learning 

Method Dataset Accuracy (%) Reference 

ResNet  Organic biomolecules  100.00 15 

CNN Organic and inorganic 

compounds 

100.00 16 

DRCNN  Organic compounds and minerals  98.10 17 

KNN Organic biomolecules  93.90 15 

KNN  Edible oils (fatty acids)  88.90 18 

ANN classifier Organic compounds and polymers 81.49 (UV) 

86.60 (VIS) 

98.44 (Near IR) 

97.72 (IR) 

84.09 (Far IR) 

This work 

CONCLUSION 

In this study, artificial neural network classifiers (ANNs) for identifying 

organic compounds were developed and tested successfully. The models rely on 

refractive index measurements across the UV and far IR spectral regions. 

Information related to the refractive index of an organic compound and the 

wavelength of light used facilitates its accurate identification by artificial neural 

networks. 

ANNs in the near IR and IR regions showed better performance, with accuracy 

levels above 97%, suggesting the potential of refractive index measurements in 

these regions. The observed performance is comparable to models using Raman 

spectra as inputs. Although the accuracies for the UV, visible, and far IR regions 

are slightly lower, ranging from 81% to 86%, additional data and hyperparameter 

optimizations showed the possibility of improving performance in the future. 

This study demonstrates the feasibility of using artificial neural networks 

to identify organic compounds using a single wavelength dispersive 

measurement. 

A
cc
ep
te
d 
m
an
us
cr
ip
t



10 KIRIGITI et al. 

SUPPLEMENTARY MATERIAL 

Supplementary Materials are available electronically from https://www.shd-

pub.org.rs/index.php/JSCS/article/view/12261, or from the corresponding authors 

on request. 

И З В О Д  

ИДЕНТИФИКАЦИЈА ОРГАНСКИХ ЈЕДИЊЕЊА КОРИШЋЕЊЕМ ВЕШТАЧКИХ 
НЕУРОНСКИХ МРЕЖА И ИНДЕКСА ПРЕЛАМАЊА 

INNOCENT ABEL KIRIGITI1, NANIK SITI AMINAH1 и SAMSON THOMAS2 

1Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, Surabaya 60115, 

Indonesia and 2Department of Chemistry, Faculty of Mathematics and Natural Sciences, Universitas 

Indonesia, Depok 16424, Indonesia 

Идентификација хемијских једињења има много примена у науци и технологији. 
Међутим, Овај се процес још увек много ослања на знање и искуство хемичара. Тако је од 
суштинске важности развој техника за брже и поузданије идентификовање хемијских 
једињења. У овом раду, представићемо изводљивост коришћења неуронских мрежа за 
поуздано идентификовање органских једињења мерењем индекса преламања. Развијени су 
модели засновани на мерењима индекса преламања на различитим таласним дужинама 
светлости, од UV до далеке инфрацрвене области. Модели су тренирани са око 250,000
записа експерименталних оптичких константи за 60 органских једињења и полимера из 
публиковане литературе. Модели су извођени са поузданошћу до 98%, са бољим резултатом 
опаженим за мерења индекса преламања у видљивој и ИЦ области. Предложени модели се 
могу спрегнути са другим уређајима за аутономну идентификацију хемијских једињења 
дисперзивним мерењем на једној таласној дужини. 

(Примљено 1. фебруара, ревидирано 15. фебруара, прихваћено 4. августа 2023.) 
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