

J. Serb. Chem. Soc. 82 (6) 627–640 (2017) JSCS–4992 JSCS-info@shd.org.rs • www.shd.org.rs/JSCS UDC 546.96–31+542.943:547.239.2–304.2: 547.415.3+542.96 Original scientific paper

RuO₄-mediated oxidation of secondary amines.2. Imines as main reaction intermediates

CRISTINA A. FLOREA*, ANCA HÎRTOPEANU, CRISTINA STAVARACHE and HORIA PETRIDE

Romanian Academy, "Costin D. Nenitzescu" Center of Organic Chemistry, Spl. Independenței 202-B, RO-060023 Bucharest, Romania

(Received 14 September 2016, revised 4 April, accepted 24 April 2017)

Abstract: Oxidation by RuO₄ (generated *in situ* from RuO₂ and NaIO₄) of secondary amines such as Bn–NH–CH₂R (1; R=H, Me) gave complex reaction mixtures, but mainly amides. In the presence of cyanide, the leading products were α -aminonitriles. Comparison of the oxidation products of 1 with those from the corresponding imines PhCH=N–CH₂R and Bn–N=CH–R showed that formation of the indicated imines is the first main step in the oxidation of 1. A detailed mechanism is proposed.

Keywords: oxidation; secondary amines; ruthenium tetraoxide; imines; α -aminonitriles.

INTRODUCTION

Several mechanisms for the oxidation of alkanes,¹ arenes,¹ olefins,² alcohols³ and amines^{3–6} using various ruthenium-containing catalysts are known, but they refer to totally different substrates and/or oxidants than those used in the present study. Mechanisms for the oxidation of alkanes,^{7,8} alkenes,⁹ alcohols,¹⁰ ethers⁷ and tertiary amines^{11–15} with RuO₄ as an oxidant¹⁶ were previously proposed. For instance, it was advanced that *N*,*N*-dialkylanilines are oxidized by RuCl₃/O₂/NaCN (*i.e.*, *in situ* generated RuO₄) *via* iminium cations, formed through single electron transfer (SET) steps.¹¹ Independently, iminium ions were also proposed as key intermediates for the RuO₄-oxidation of tertiary aliphatic amines.^{13–15} In all these cases,^{11–15} the transient existence of iminium ions was proved by cyanide-trapping to give *a*-aminonitriles (Strecker reaction).

Information on the corresponding oxidation of secondary amines refers to lower-than-eight-valent ruthenium catalysts, from Ru⁰ to Ru^{VII}.^{17–23} The formation of imines seems to be favoured in all these cases. Imines are presumed to

^{*} Corresponding author. E-mail: antonetaflorea@yahoo.com

https://doi.org/10.2298/JSC160914055F

result also from secondary amines and RuO₄, a hypothesis¹⁶ advanced in 2005, but still not experimentally demonstrated. It must be added here that imines are versatile intermediates, widely used in well-known reactions, such as aza-Baylis––Hillman,²⁴ aza-Diels–Alder,²⁵ Mannich²⁶ and Strecker reactions.^{11,12}

As presented in a preceding paper,²⁷ the RuO₄-mediated oxidation of secondary aliphatic amines, such *N*-methyl- (**1a**) or *N*-ethylbenzylamine (**1b**) might start with the formation of imines **2a** and **b** plus **3a** and **b** (route a, Scheme 1) and/or *N*-hydroxylamines **4a** and **b** (route b). Imines would result *via* a formal dehydrogenation from the *N* atom and the adjacent *C* atom (benzyl for **2**, alkyl for **3**), but hydroxylamines would derive from an oxidative attack on the *N* atom. Comparison of the reaction products formed from **1** with those derived from **4** allowed the elimination route b as a main pathway.²⁷ Consequently, this paper analyzes route a as the mechanistic choice. By analogy with the previously discussed case of tertiary amines, 11-15 the intermediacy of imines will be proved by cyano-trapping reactions.

EXPERIMENTAL

Instrumentation

Melting points were taken with a Boetius hot plate and are uncorrected. FT-IR spectra were registered on a Bruker Vertex 70 instrument, equipped with a diamond crystal ATR accessory. NMR spectra were recorded with a Varian Unity INOVA 400 spectrometer, operating at 400 MHz (¹H) and 100 MHz (¹³C). Mass spectra were obtained with a GC 6890 Agilent Technologies gas chromatograph coupled with a MS 5975 B quadrupole mass spectrometer, using standard 70 eV ionization energy.

Materials

Hydrated RuO_2 (Aldrich), NaIO_4 (Merck), and the organic solvents (Chemical Co., Iaşi, Romania) were used as purchased, except for CHCl₃, which was stored over anhydrous Na_2CO_3 and filtered prior to use.

The formulae of all substrates and identified reaction products (1-28) are given in Scheme 2. Compounds 1-25 were practically identical to those with the same numbers in Part 1 of this work,²⁷ except for the newly added compounds **8f** and **14d**. The origin and spectral characteristics (¹H-NMR, ¹³C-NMR and MS) of compounds **1**, **2** and **4–25** (except those of **8f** and **14d**) were previously presented.²⁷

OXIDATION OF SECONDARY AMINES

Scheme 2. Oxidation products of 1a-b.

Derivatives 3b,²⁸ 8f,²⁹ $26^{30,31}$ and 27^{32} are all known from the literature and were prepared according to the indicated procedures. Compound 28 was purchased from Aldrich. The NMR and MS data for 3b, 8f, 14d and 26-28 are presented as Supplementary material to this paper. Compound 14d was described either as a solid (m.p., $62-64 \, ^{\circ}C)^{33}$ or as an oil,³⁴ but the reported NMR characteristics were quite similar. A new, simpler method of preparation of 14d (obtained as a solid) is proposed in the Supplementary material.

Oxidations by RuO₄/NaIO₄ (with or without NaCN)

All oxidations were performed as described in Part 1, including the identification and quantification of reaction products by NMR and GC–MS analyses of the various reaction mixtures.²⁷

RESULTS AND DISCUSSION

The oxidations were performed either in the absence of cyanide (A-conditions) or in its presence (B-conditions); the respective results are presented in

Table I. To gain in simplicity, the desired entries (x and y) of Table I are cited as T-x,y. The yield of benzaldehyde (**5c**) from Table I actually refers to that of the sum **5c**+benzoic acid, since benzoic acid is always derived from **5c**.²⁷

TABLE I. Oxidation of selected compounds

Entry	Compound	$\mathbf{p}_{\text{resting and here }} = \frac{1}{2} \frac{1}{2$
No.	(conversion, %)	a Reaction products ^o (yield ^o , %)
		A) Oxidations in the absence of cyanide ^d
1.	1a (55) ^e	2a (2.2), 2c (8.6), 4a (0.2), 5c (8.0), 6a (2.2), 6c (1.8), 7a (3.8), 8a (30.0),
		8d (7.4), 9a (2.4), 12c (2.0), 13c (0.6), 14a (1.3)
2.	1b (81) ^e	2b (2.1), 2c (4.1), 5c (34.3), 6b (3.9), 6c (3.1), 7a (1.7), 7b (4.1), 8b (3.5),
		8c (15.2), 8e (3.8), 9b (0.3), 12c (7.4), 13c (0.5)
3.	11c (100)	2c (36.1), 5c (9.8), 6c (0.2), 12c (11.7), 13c (4.7)
4.	2a (100)	5c (80.0), 6a (18.5)
5.	2b (98)	5c (88.4), 6b (9.7)
6.	26 (80)	2c (8.7), 5c (2.4), 7a (3.5), 12c (0.9), 13c (1.5), 27 (65.5)
7.	3b (100)	5c (16.6), 6c (1.2), 7a (34.1), 7b (5.9), 12c (16.1), 13c (0.3)
8.	11c+11b ^f (99)	2b (4.9), 2c (9.4), 3b (2.5), 5c (1.8), 6b (1.8), 6c (0.7), 7a (7.6), 7b (9.1),
		12c (38.0), 13c (8.0), 28 (2.1)
9.	1b+11b ^g (87)	2b (2.2), 2c (3.2), 5c (23.2), 6b (3.8), 6c (2.2), 7a (1.0), 7b (2.5), 8b (6.1),
		8c (32.5), 8e (2.6), 9b (0.2), 12c (5.4), 13c (0.3)
		B) Oxidations in the presence of cyanide ^d
10.	1a (13) ^e	2c (1.2), 5c (0.9), 6a (0.4), 7a (0.7), 8a (1.8), 8d (8.9), 11c (2.5), 12c
		(0.9), 15a (6.3), 16a (2.2), 17a (18.2), 17d (15.3), 18a (0.6), 20a (0.3),
		21a (0.4), 22a (0.8), 23a (2.9), 24a (1.0), 25a (4.5)
11.	1b (37) ^e	2b (5.2), 2c (1.8), 5c (0.5), 6b (0.5), 7b (0.6), 8b (1.0), 8c (0.6), 8e (2.7),
		9b (7.8), 12c (1.5), 15b (15.6), 16b (10.9), 17b (9.9), 17c (1.0), 17e (8.1),
		18b (0.8), 20b (0.5), 21b (0.5), 22b (0.9), 23b (4.2), 24b (0.9), 25b (8.0)
12.	11c (100)	2c (6.5), 6c (0.4), 12c (11.2), 15c (36.5)
13.	2a (97)	5c (4.3), 6a (0.5), 15a (84.9), 18a (0.4), 21a (1.5)
14.	2b (98)	5c (2.3), 6b (0.6), 15b (84.5), 18b (1.8), 21b (1.1)
15.	3b (100)	7b (0.7), 12c (1.2), 15c (5.0), 16b (75.3), 20b (0.8), 22b (1.2)
16.	15b (10)	2b (14.3), 5c (21.3), 18b (34.2), 21b (18.0)
17.	16a (23)	5c (3.6), 6c (2.2), 8f (1.5), 12c (1.5), 14d (7.6), 15c (26.2), 20a (3.9), 22a
		(9.6)
18.	16b (25)	5c (5.2), 6c (1.9), 12c (1.3), 13c (0.5), 15c (19.0), 19b (4.2), 20b (8.5),
		22b (15.3)

^aCalculated against the reacted substrate; ^bformulae in Scheme 2; ^cyields (mole ratios of product/reacted substrate) are calculated regardless of the stoichiometry (excepting those of entry 7); ^dreaction conditions (for 1 mmol of substrate): A – RuO₂:xH₂O (10–15 mg), co-oxidant NaIO₄ (4 mmol), 20 mL CHCl₃/water = 1/1 volume ratio, room temperature, 3–5 h; B – as in A, but NaCN (4 mmol) in water (10 mL) was also added; ^e data from ref. 1; ^f11c/11b = 1/1 mole ratio. Conversion and yields are referred to 11c; ^g1b/11b = 1/0.4 mole ratio. Conversion and yields are referred to 1b

Oxidation of amines 1a and b. Reaction products

The oxidation mixtures derived from 1a and b under A-conditions (T-1,2) were quite complex and contained imines (2), hydroxylamines (only 4a was det-

ected), aldehydes (5c), amides (6–8), nitrones (9), benzonitrile (12c), benzamide (13c), and diamine 14a (from 1a only). When performed under B-conditions (T-10,11), besides some of the previously cited compounds, benzylamine (11c, from 1a only), α -aminonitriles (15–17), cyanoimines (18–20), cyanonitrones (21 and 22), and derivatives 23–25 were also obtained. As already presented,³⁵ the formamidines 23 and their hydrolysis products 24 and 25 prevail in more acid conditions, but their formation does not involve the oxidation of 1. Consequently, they do not belong in the present discussion.

The steps in Scheme 3 can be invoked to show how amides I (6 and 7) and nitriles I (15 and 16) of Scheme 2 are formed. For instance, the condensation of benzaldehyde (5c) with benzylamine (11c) affords the hemi-aminal 29c. This intermediate can give benzamide 6c (by oxidation) and/or imine 2c (by dehydration). Under B-conditions, most of the benzaldehyde should exist as its cyanohydrin 30c. Condensation between 30c and 11c yields the cyanoderivative 15c. Some of 15c could give imine 2c, by dehydrocyanation.

The origins of 8a-e, 9a and b, 10a and b, as well as those of 17a-e were discussed in Part 1.²⁷ Briefly, the oxidation of hydroxylamines 4a and 4b give nitrones 9a+10a and 9b+10b, respectively. Compounds 10 are less stable than 9 and this could explain the absence of 10a and b in T-10,11. At the same time, amides 8 and nitriles 17 (amides II and nitriles II in Scheme 2, respectively) come from a two-step sequence, similar to that presented in Scheme 3: *i*) the condensation of 1a and b with aldehydes 5a-c affords hemi-aminals, which *ii*) are oxidized towards 8. Analogously, nitriles 17 result from 1a and b and cyanohydrins 30a-c. Since hemi-aminals and 17a-e do not contain a NH group, the formation of imines by dehydration/dehydrocyanation is no longer possible in these cases.

Scheme 3. Formation of amides I (6 and 7) and nitriles I (15 and 16).

Benzylamine (11c) was detected in one reaction mixture (T-10), but its transient formation should occur in all oxidations of 1a and b, in order to explain

the formation of 2c and 6c. The existence of 12c, 13c, and 5c (partially) in the oxidation mixtures derived from 1a and b can be explained by the oxidation of 11c itself, as detailed below.

Oxidation of benzylamine (11c)

It is well established^{18,36–39} that a primary amine, such as **11c**, undergoes oxidation with ruthenium catalysts towards the corresponding nitrile and amide. This was verified with RuO₄ and the respective results (T-3,12) were interpreted as shown in Scheme 4.

Scheme 4. Oxidation of primary amines 11b and c.

The first oxidation step gives the aldimine 31c, which can be dehydrogenated further to 12c, but which can also be trapped by water to yield the corresponding hemi-aminal. In turn, this last intermediate can undergo both oxidation to benzamide (13c) and splitting to a mixture of benzaldehyde (5c) and ammonia.

Formation of 2c, 6c and 15c was outlined in the preceding paragraph (Scheme 3).

Oxidation of imines 2 and 3

In the absence of cyanide, imines 2a and 2b underwent clean transformation into mixtures of 5c+6a and 5c+6b, respectively (T-4,5), where benzaldehyde (5c) represented at least 80% of the reacted substrate. Clearly, as depicted in Scheme 3, hemi-aminals 29a and b, transiently formed from water and the respective imine, are oxidized towards the corresponding benzamides 6a and b, but largely split into equimolar mixtures of 5c and 11a and b. All these reactions are nucleophilic in nature, except for the oxidation step leading to 6a and b.

In the presence of cyanide, about 85 % of reacted 2a and b were found as the corresponding nitriles 15a and b (T-13,14), formed by a non-oxidative step, the nucleophilic addition of HCN to the C=N double bond (Scheme 3); the equilibria are largely shifted towards 15, despite the presumably low amount of available HCN in the reaction at pH around 9. The oxidation of 15a and 15b can be invoked instead to explain the formation of 18a+21a and 18b+21b, respectively

(Scheme 5). This is supported by the oxidation of **15b** alone (T-16), where **18b+21b** account for about 50 % of the reacted substrate. Aminonitrile **15a** behaved similarly.

Scheme 5. Some oxidation products of α -aminonitriles 15 and 16.

Unfortunately, imine **3a** is only known as its cyclic "trimer", the *sym*-triazacyclohexane derivative **26** (Scheme 6).30,31 When submitted to A-oxidation, its major reaction product was **27** (corrected yield 65 % in T-6). Although **26** and/or **27** were not observed in the oxidation mixture of **1a** (T-1), the transient formation of **3a** could not be excluded (see below).

Scheme 6. Different behaviour of imines 3a and 3b.

Unlike 3a, the analogous imine 3b could be isolated.²⁸ Despite its poor stability, it was possible to study its oxidation reaction (T-7; Scheme 6). With one notable exception (7a), the steps of Scheme 3 (re-written in Scheme 6, for clarity) are followed. For instance, the hemi-aminal **29e**, the water adduct of **3b**,

undergoes oxidation to acetamide 7b, but also breaks into a 11c+5b mixture.^{14,15} Subsequent reactions of benzylamine (11c) are responsible for the presence of 5c, 6c, 12c and 13c, as presented before.

A possible explanation for the formation of 7a, the major oxidation product of 3b, is shown in Scheme 6. Imine 3b has β -N-H protons and, by analogy with some preceding papers,^{14–16} this enables tautomerization to enamine 33. Oxidation of the C=C bond^{14,15,34–43} in 33 should give a 7a+5a equimolar mixture. When formed, 5a could give additional 7a through the sequence 5a + 11c \rightarrow 29d \rightarrow 7a (Scheme 3).

Under B-conditions (T-15), imine **3b** (and/or its tautomer **33**) gave the expected HCN-adduct **16b** (Scheme 3; Strecker reaction), accompanied by small amounts of **20b** and **22b**. Nitrile **15c** was also present, indicating that the following consecutive steps occurred: *i*) hydrolysis of **3b** to **11c**, *ii*) formation of **5c** by oxidation of **11c**, *iii*) transformation of **5c** into cyanohydrin **30c** in the presence of cyanide and *iv*) condensation of **30c** with **11c** to yield **15c** (Scheme 3). Cyano compounds **19b**, **20b** and **22b** are all oxidation products of **16b** (T-18; Scheme 5). The lack of **19b** in entry 15 might be due to its relatively low amount.

Nitrile **16a** (T-17) behaved similarly to **16b** (T-18), but with a few exceptions. Thus, cyanoimine **19a** is absent in T-17 probably because of increased instability or of its insufficient amount, below the detectable limit, while compounds **8f** and **14d**, formed from **16a**, have no analogues in the oxidation of **16b**. Their formation is elucidated in Scheme 5: condensation of **16a** with formaldehyde (**5a**; formed from the oxidation of **16a** itself) gives a hemi-aminal, which can not only undergo oxidation to **8f**, but can also react with **16a** to give **14d**. All these steps are identical to those forming **14a** during the oxidation of **1a** (T-1).²⁷

Oxidation of 1a and b. Mechanistic considerations

It is now possible to compare the oxidative results of 1 with those of 2+3. Similarly to the comparison made above with the outputs derived from 4a+4b,²⁷ no attention will be paid this time to the presence of amides 8a-e and nitriles 17a-e. Their formation requires the presence of 1a and b, but these amines are absent when the reaction starts from imines 2 or 3.

Comparing the results of the oxidation of 1b (T-2,11) with those of 2b+3b (T-5,14 + T-7,15), it could be observed that all compounds formed in the first case exist within the reaction products of one or the other imine. Unfortunately, a similar comparison cannot be made for 1a vs. 2a+3a, because of the lack of the data for 3a. However, the transient existence of 3a could be assumed. For example, the formation of 16a under B-conditions (T-10) implies reaction $3a + HCN \rightarrow 16a$ (Scheme 3).

These considerations suggest that the main route followed during the RuO₄--mediated oxidation of amines **1a** and **1b** implies the initial formation of the cor-

responding imines 2a+3a and 2b+3b, respectively (Scheme 1, route a). The alternative route b involving the hydroxylamines 4a and 4b has only a minor contribution to the final results.²⁷

All information presented before (Schemes 1–6) is summarized in Scheme 7, but some reactions and/or compounds have been omitted, for the sake of clarity. This is the case of the transformations $1a \rightarrow 14a^{27}$ and $1+(CN)_2 \rightarrow 23 \rightarrow 24+25$,³⁵ as well as of the subsequent oxidations of 15 ($\rightarrow 18+21$; T-16) and 16 ($\rightarrow 15+19+20+22$; T-17,18). At the same time, the sequence $1\rightarrow 4\rightarrow 9+10$ is also missing, because it plays a minor role in the global picture.²⁷

Scheme 7. Mechanism of the oxidation of secondary amines 1a and b.

Oxidation of secondary amines 1a and 1b starts with the formation of imines 2a+3a and 2b+3b, respectively, by a formal dehydrogenation from the nitrogen atom and its adjacent C atom. Every imine can suffer nucleophilic addition at the C=N double bond, as detailed in Scheme 3. In the absence of cyanide, the addition of water yields the corresponding pairs of hemi-aminals 29a+29d and 29b+29e. In the presence of cyanide, both water and hydrocyanic acid act as nucleophiles. In this case, together with the cited hemi-aminals, the corresponding α -aminonitriles 15a+16a and 15b+16b are formed (Strecker reaction).

Hemi-aminals can be either oxidized to yield amides (6a+7a or 6b+7b) or split into aldehyde + primary amine mixtures. In the later case, **29a** gives benz-aldehyde + methylamine (5c+11a) and **29d** yields formaldehyde + benzylamine (5a+11c). Analogously, **5c** and ethylamine (11b) result from **29b**, while acetaldehyde (5b) and **11c** are obtained from **29e**.

Imine **3b**, through its tautomer **33**, could be the source of the benzylformamide (7a)+5a equimolar mixture (Scheme 6). Under A-conditions, this is the main reaction if the oxidation starts from **3b** (T-7). Starting from **1b**, this route to **5a** plays a minor role, as indicated by the relatively small amount of **7a** (1.7 % in T-2).

Except for amides 6 and 7 (6a+7a from 1a and 6b+7a+7b from 1b), all other compounds formed until now are involved in subsequent reactions. On one hand, the resulting aldehydes can react with the available amines (primary or secondary) and, on the other hand, the primary amines themselves can be further oxidized. For example, benzylamine (11c) is oxidized to benzonitrile (12c), benzamide (13c) and benzaldehyde (5c) (Scheme 4). It reacts easily with 5c to yield benzamide 6c and imine 2c through the intermediacy of 29c. If hydrocyanic acid is present, the nitrile 15c also results.

As aforementioned for 5c+11c, aldehydes 5a-c can react, at least in principle, with all available primary (11a-c) and secondary amines (especially 1a and b). Actually, as indicated by the presence of compounds such as 8a-e or 17a-e in Table I, the condensations with 1a and b seem to be more fruitful, probably because 1a and b are always in excess with respect to 11a-c. Consequently, the sequences 1-5 could be written (see the lower part of Scheme 7). More specifically, under A-conditions, the sequences 1 ($5c+1a\rightarrow34d\rightarrow8d$) and 2 ($5a+1a\rightarrow\rightarrow34a\rightarrow8a$) are active during the oxidation of 1a, but 3 ($5c+1b\rightarrow34e\rightarrow8e$), 4 ($5a+1b\rightarrow34c\rightarrow8c$) and 5 ($5b+1b\rightarrow34b\rightarrow8b$) in the case of 1b. Under B-conditions, all aldehydes 5a-c are present as their cyanohydrins 30a-c and the sequences 1-5 must be re-written with nitriles 17a-e (as the final products) instead of hemi-aminals 34a-e.

Some contradictions arise in the case of **1b**. According to the steps of Scheme 7 hitherto discussed, **5a** is generated from **33** and used (totally or partially) in sequence 4 to give formamide **8c**; at the same time, **5b** results from **29e**

and it is used (totally or partially) in sequence 5 to obtain acetamide **8b**. However, the relatively high amount of **8c** (15.2 % in T-2) cannot originate only from the small amount of **5a** (1.7 %, identical to **7a**) generated from **33**. Moreover, when derived from **29e**, the amount of **5b** should be the same as that of the initially formed **11c** (written as **11c**_i). Taking into account that **11c**_i = **2c**+**6c**+ +**12c**+**13c**+**5c**_{11c}, where **5c**_{11c} means that **5c** was generated from **11c** (Scheme 4) and using the values listed in T-2, it can be calculated that **5b** = **11c**_i = 15.1+ +**5c**_{11c}. Unfortunately, the amount of **5c**_{11c} cannot be known because benzaldehyde (**5c**) results not only from **11c**, but also from imine **2b**. However, even the lower limit of **5b** (15.1 %) seems to be higher than that required in sequence 5 to produce **8b** (3.5 %). These considerations suggest that the aforementioned steps of Scheme 7 are incomplete: the apparent deficit of **5a** and excess of **5b** deserve an explanation.

To solve this problem, the sequence 5 was completed with the new sequence 6 (presented as a frame in the lower part of Scheme 7). Unlike **34c** or **34e**, hemi-aminal **34b** has a (β -O-)C-H bond and this renders possible the dehydration to **35**. Oxidation of the C=C bond in **35** should give an equimolar mixture of formaldehyde (**5a**) and formamide **8c**. Since this extra amount of **5a** will generate more **8c** through sequence 4, the total amount of **8c** becomes even higher.

It is conceivable that **5a** and **5b** could also be supplied by an auxiliary source, namely the oxidation of ethylamine (**11b**, frame in Scheme 7). It is necessary to remember that, during the oxidation of **1b**, amine **11b** results from **29b** \rightarrow **5c**+**11b**. Analogously to the described behaviour of **11c**, the primary amine **11b** could be oxidized into acetonitrile (**12b**), acetamide (**13b**), and acetaldehyde (**5b**) (Scheme 4). Moreover, since the intermediate **31b** has β -*N*-protons, tautomerization to **32** is possible, just as in the aforementioned sequence **3b** \rightarrow **33**. Oxidation of **32** leaves **5a**. Therefore, both aldehydes **5a** and **5b** are generated from **11b**. Experimental proof of these suppositions came from the oxidation of an equimolar mixture of **11c** and **11b** (T-8). Unlike the oxidation of **11c** alone (T-3), compounds **2b** and **6b**, as well as **3b**, **7a**, **7b** and **28** were detected in this case. Derivatives **2b** and **6b** resulted from the sequence **5c**+**11b** \rightarrow **29b** \rightarrow **2b**+**6b** (Scheme 3), where here **5c** came from the oxidation of **11c**. At the same time, it is clear that formaldehyde (**5a**) was trapped as **7a** (**11c**+**5a** \rightarrow **7a**) and acetaldehyde (**5b**) as **3b**+**7b**+**28** (**11c**+**5b** \rightarrow **3b**+**7b**; **11b**+**5b** \rightarrow **28**).

The influence of the reaction $11b \rightarrow 5a+5b$ on the oxidation of 1b was tested by oxidizing a 1b+11b mixture (T-9). With respect to the values in T-2, all yields in T-9 were smaller by a factor of 0.6–0.8 (mean value of 0.7), except for: *i*) those of 2b and 6b, which apparently remained constant and *ii*) the yields of 8b and 8c, which were about double. In reality, the values in T-9 are the sum of those derived from the oxidation of 1b alone (the yields of T-2 multiplied by 0.7) and those attributable to the intervention of extra 11b and its oxidation products.

Accordingly, the aforementioned two exceptions are actually enhancements due to the presence and oxidation of **11b**. The first cited exception is attributable to the sequence $5c+11b\rightarrow29b\rightarrow2b+6b$, where **11b** is that initially added and **5c** is an oxidation product of **1b**. This means that **2b** and **6b** came from two sources: the oxidation of **1b** and the aforementioned sequence. The second exception is due to the extra amounts of **5a** and **5b**, generated from the added **11b**, which give additional **8c** and **8b**, respectively, through the sequences 4–6 of Scheme 7.

Some comments are required for the reaction under B-conditions (T-11). All aldehydes are present only as their cyanohydrins and this favours nitrile formation. The new sequences 4 and 5 will be largely $30a+1b\rightarrow17c$ and $30b+1b\rightarrow$ 17b, respectively, and sequence 6 will have only a minor influence. For this reason, 8c and 8b are now present in such small amounts and 8c/8b = 0.6 in T-11. When sequence 6 is active, 8c/8b = 4.3 (T-2).

In preceding papers,^{13–15} the oxidation regioselectivity (alkyl/benzyl) was calculated. Unfortunately, this was no longer possible for 1a and b, because many reaction products originated from both types of initially formed imines (2 and 3). As outlined before, this is the case of 5a-c and of all amides or nitriles resulting from them.

CONCLUSIONS

The RuO₄-mediated oxidation of secondary amines 1 generates in the first step imines as the main intermediates, by attack at both benzylic and alkylic *N*- α --sites. Reactions of imines with the available nucleophiles (water or hydrocyanic acid) explain the formation of *N*-monosubstituted amides (amides I) or *N*-monosubstituted α -aminonitriles (nitriles I), respectively. The oxidation output is complicated by subsequent reactions of these prime products giving, for example, *N*,*N*-disubstituted amides (amides II), *N*,*N*-disubstituted α -aminonitriles (nitriles II), and oxidation products of nitriles I. Since many reaction products result from two or more sources, it is impossible to calculate the reaction regioselectivity. Formation of all these compounds was rationalized and a complete reaction scheme was proposed and discussed.

SUPPLEMENTARY MATERIAL

Details on the preparation of 14d, ¹H- and ¹³C-NMR characteristics of 3b, 8f, 14d, 26– -28, as well as MS data of 3b, 8f and 28 are available electronically at the pages of journal website: http://www.shd.org.rs/JSCS/, or from the corresponding author on request.

ИЗВОД

ОКСИДАЦИЈА СЕКУНДАРНИХ АМИНА ПОМОЋУ RuO₄. ДЕО 2. ИМИНИ КАО ГЛАВНИ РЕАКЦИОНИ ИНТЕРМЕДИЈЕРИ

CRISTINA A. FLOREA, ANCA HÎRTOPEANU, CRISTINA STAVARACHE и HORIA PETRIDE

Romanian Academy, "Costin D. Nenitzescu" Center of Organic Chemistry, Spl. Independenței 202-B, RO-060023 Bucharest, Romania

Оксидацијом секундарних амина, као што су Bn–NH–CH₂R (1; R=H, Me), помоћу RuO₄ (добијеном *in situ* из RuO₂ и NaIO₄) настаје сложена смеша производа коју углавном чине амиди. У присуству цијанида, главни производи реакције су α -аминонитрили. Поређењем структура производа оксидације **1** са производима оксидације одговарајућих имина PhCH=N–CH₂R и Bn–N=CH–R утврђено је да је формирање назначених имина први корак у оксидацији **1**. Предложен је детаљан механизам реакције.

(Примљено 14. септембра 2016, ревидирано 4. априла, прихваћено 24. априла 2017)

REFERENCES

- 1. D. Chatterjee, A. Mitra, B. C. Roy, J. Mol. Catal., A: Chem. 161 (2000) 17
- C.-M. Che, J.-L. Zhang, R. Zhang, J.-S. Huang, T.-S. Lai, W.-M. Tsui, X.-G. Zhou, Z.-Y. Zhou, N. Zhu, C. K. Chang, *Chem.-Eur. J.* 11 (2005) 7040
- 3. K. Yamaguchi, N. Mizuno, Chem.-Eur. J. 9 (2003) 4353
- 4. K. Yamaguchi, N. Mizuno, J. Jpn. Pet. Inst. 57 (2014) 251
- 5. K. Yamaguchi, N. Mizuno, Angew. Chem. Int. Ed. 42 (2003) 1480
- 6. S.-I. Murahashi, T. Naota, K. Yonemura, J. Am. Chem. Soc. 110 (1988) 8256
- 7. J. M. Bakke, A. E. Frøhaug, J. Phys. Org. Chem. 9 (1996) 310
- 8. M. Drees, T. Strassner, J. Org. Chem. 71 (2006) 1755
- 9. B. Plietker, M. Niggeman, Org. Lett. (2003) 3353
- 10. J. K. Beattie, Pure Appl. Chem. 62 (1990) 1145
- 11. S.-I. Murahashi, T. Nakae, H. Terai, N. Komiya, J. Am. Chem. Soc. 130 (2008) 11005
- 12. S.-I. Murahashi, N. Komiya, H. Terai, T. Nakae, J. Am. Chem. Soc. 125 (2003) 15312
- 13. H. Petride, C. Drăghici, C. Florea, A. Petride, Cent. Eur. J. Chem. 2 (2004) 302
- 14. H. Petride, C. Drăghici, C. Florea. A. Petride, Cent. Eur. J. Chem. 4 (2006) 674
- 15. H. Petride, O. Costan, C. Drăghici, C. Florea, A. Petride, ARKIVOC (Gainesville, FL, U.S.) X (2005) 18
- 16. B. Plietker, Synthesis (2005) 2453
- 17. S.-I. Murahashi, T. Naota, H. Taki, J. Chem. Soc., Chem. Commun. (1985) 613
- 18. K.-N. T. Tsenq, N. K. Szymczek, Synlett 25 (2014) 2385
- 19. S.-I. Murahashi, Y. Okano, H. Sato, T. Nakae, N. Komiya, Synlett 11 (2007) 1675
- 20. A. J. Bailey, B. R. James, Chem. Commun. (1996) 2343
- 21. A. Goti, M. Romani, Tetrahedron Lett. 35 (1994) 6567
- 22. S.-I. Murahashi, in *Transition Metals for Organic Synthesis*, M. Beller, C. Bolm, Eds., Wiley–VCH, Weinheim, 2004, pp. 497–523
- W. P. Griffith, in *Catalysis by Metal Complexes*, C. Bianchini, D. J. Cole-Hamilton, P. W. N. M. van Leeuwen, Eds., Springer, Dordrecht, 2011, pp. 1–134 and 227–234
- 24. D. Balan, H. Adolfson, J. Org. Chem. 66 (2001) 6498
- 25. K. Hattori, Y. Yamamoto, J. Org. Chem. 57 (1992) 3264
- 26. A. Córdova, Acc. Chem. Res. 37 (2004) 102
- 27. Part 1: C. A. Florea, H. Petride, J. Serb. Chem. Soc. 81 (2016) 475
- 28. F. Texier-Boullet, Synthesis (1985) 679
- 29. A. F. Bella, L. V. Jackson, J. C. Walton, Org. Biomol. Chem. 2 (2004) 421

- 30. A. Makhloufi, W. Frank, C. Ganter, Organometallics 31 (2012) 2001
- 31. R. T. Lewis, W. B. Motherwell, Tetrahedron 48 (1992) 1465
- 32. H. Moehrle, U. Scharf, E. Ruehmann, Arch. Pharm. (Weinheim) 316 (1983) 251
- 33. A. R. Katritzky, B. Pilarski, L. Urogdi, J. Chem. Soc., Perkin Trans. 1 (1990) 541
- 34. N. Sakai, N. Takahashi, D. Inoda, R. Ikeda, T. Konahara, Molecules 18 (2013) 12488
- 35. C. Florea, C. Stavarache, H. Petride, Rev. Roum. Chim. 61 (2016) 321
- 36. R. V. Jagadeesh, H. Junge and M. Beller, ChemSusChem 8 (2015) 92
- L. Cristian, S. Nica, O. D. Pavel, C. Mihailciuc, V. Almăşan, S. M. Coman, C. Hardacre, V. I. Pârvulescu, *Catal. Sci. Technol.* 3 (2013) 2646
- S. Aiki, A. Taketoshi, J. Kuwabara, T. Koizumi, T. Kanbara, J. Organomet. Chem. 696 (2011) 1301
- Y. Zhang, K. Xu, X. Chen, T. Hu, Y. Yu, J. Zhang, J. Huang, *Catal. Commun.* 11 (2010) 951
- 40. I. W. C. E. Arends, T. Kodama, R. A. Sheldon, Top. Organomet. Chem. 11 (2004) 277
- 41. T. Naota, H. Takaya, S.-I. Murahashi, Chem. Rev. 98 (1998) 2599
- 42. S. Torii, T. Inokuchi, K. Kondo, J. Org. Chem. 50 (1985) 4980
- 43. D. Yang, C. Zhuang, J. Org. Chem. 66 (2001) 4814.