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Abstract: This work aimed to obtain a validated model for prediction of retent-
ion time of terpenoids isolated from sage herbal dust using supercritical fluid
extraction. In total 32 experimentally obtained retention time of terpenes,
which were separated and detected by GC—MS were further used to build a pre-
diction model. The quantitative structure-retention relationship was employed
to predict the retention time of essential oil compounds obtained in GC-MS
analysis, using six molecular descriptors selected by a genetic algorithm. The
selected descriptors were used as inputs of an artificial neural network, to build
a retention time predictive quantitative structure-retention relationship model.
The coefficient of determination for training cycle was 0.837, indicating that
this model could be used for prediction of retention time values for essential oil
compounds in sage herbal dust extracts obtained by supercritical fluid extract-
ion due to low prediction error and moderately high 2. Results suggested that a
2D autocorrelation descriptor AATSOv was the most influential parameter with
an approximately relative importance of 25.1 %.

Keywords: sage herbal dust; supercritical fluid extraction; terpenoids; QSRR;
artificial neural networks.

INTRODUCTION

Sage (Salvia officinalis L.) represents one of the most thoroughly inves-
tigated plants of the Lamiaceae family,! which has been known for their aromatic
and medicinal properties. Sage possesses many biological activities such as anti-
microbial, preservative, immunomodulatory, antioxidant and anticancer proper-
ties, which are attributed to the presence of terpenoids and polyphenols, i.e., two
major classes of sage bioactive compounds.? Terpenoids are the most dominant
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10 PAVLIC et al.

compounds in sage essential oil (EO) which could range from 0.7 to 5.2 %
(m/m).3 The major compounds in sage EO are oxygenated monoterpene ketones,
such as a-thujone, S-thujone and camphor?, however, various monoterpene hyd-
rocarbons, sesquiterpenes and diterpenes could be also present in significant
amount depending on the variety, genetic diversity, geographical origin, nutri-
tional status of the plants, physiological age development stage, efc. Chemical
composition of EOs is also determined by harvest timing, post-harvest drying and
storage conditions.> Furthermore, obtaining of sage EO could be performed by
different conventional (hydrodistillation and solvent extraction) and novel (super-
critical fluid extraction) extraction techniques which could also have significant
impact on its chemical profile and yield. Since sage EO could be used in various
pharmaceutical, cosmetic and food formulations, it is necessary to determine its
chemical profile in order to standardize raw material and extracts/EO obtained by
each technique.

The EOs are complex mixtures of different classes of organic compounds
which belong to the broad spectrum of chemical structures. They are isolated
mostly from various aromatic medicinal plants and exhibit antioxidant, antibac-
terial, antifungal, antimicrobial and herbicidal properties due to their specific
chemical profile.> Terpenoids are the most abundant in EOs, however, various
organic volatiles (alcohols, ketones, aldehydes, esters, etc.) could be also present
in them. EO compounds could significantly vary in structure, molecular weight,
physicochemical properties (solubility, retention index, etc.) and bioactivity.
Therefore, it is essential to provide mathematical models associated with the
aforementioned feature.

The gas chromatography (GC) is a technique widely used to separate and
analyze volatile compounds (e.g., terpenoids from EOs) or molecules with poor
volatility that can be chemically changed (e.g., derivatized) to more suitable
molecules for GC analysis. The GC is a powerful technique because it produces a
single parameter (retention index) which can be used to identify any volatile
compound under well-defined analytical conditions. Elution or retention of each
compound is a complex phenomenon determined by several intermolecular
forces such are dipole—dipole forces, dipole-induced forces, hydrogen bonds,
etc.” The retention profile of compounds can be determined by measuring vari-
ous parameters, e.g., retention time (R7), retention distance, linear-temperature
retention index and Kovats retention index.6-8

Identification of new compounds with GC technique was significantly imp-
roved with introduction of mass spectra (MS) detectors. The possibility to separ-
ate and identify molecules according to their retention profiles and molecular
mass of fragments, makes GC—MS systems more selective and sensitive, and dis-
tinguishes them from other GC configurations (e.g., GC coupled with flame ion-
ization detector). In certain cases, even the most advanced GC-MS systems are
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TERPENOIDS IN SAGE — QSRR APPROACH 1 1

not sufficient to accurately identify new compounds due to various reasons. In
particular, certain compounds may have minor differences in their molecular
structure (e.g., isomers)?, yielding similar fragments after ionization process.
Also, new compounds are not always included in MS libraries, thus their iden-
tification could be rather difficult and may lead to false positive results.” Another
issue could be related to the availability and purity of analytical standards which
are used for molecules identification. This rise an idea to use models as addit-
ional tool for identification of new compounds and predictive RT. Therefore, in
the light of the rapid hardware and software revolution it is easier to synthesize a
compound with a definite chemical structure by computer software (in silico)
than in the traditional way. Chemical software can correctly deduce established
chemical structures and predicts the properties of the specific reaction products. !0
Quantitative structure— (chromatographic) retention relationship (QSRR) strings
the chemical structure to its predicted physicochemical or biological properties.
The chemical structure is presented by molecular descriptors. They are the trans-
formation of the chemical information encoded within the symbolic represent-
ation of a molecule into a mathematical number. In order to get statistically sig-
nificant relationships and avoid overfitting, it is necessary to have large sets of
the property parameters. Chromatography is a unique method that yields a large
number of the quantitatively comparable, reproducible and precise retention data
for large sets of the analytes. In recent years the numerous publications are related
to the QSRR analysis.!!~17 In the end, the connection between the molecular des-
criptors and the retention time can be established by numerous machine learning
algorithms.!® In this study, we used the artificial neural network (ANN) that
already proved excellent predictability through the published literature.10:19,20

Furthemore, the aim of this work was to establish a new QSRR model for
predicting the RTs of some EO compounds in sage herbal dust extracts obtained
by supercritical fluid extraction by GC chromatography using the genetic algo-
rithm (GA) variable selection method and the ANN technique.

EXPERIMENTAL
Retention time data

The analysis conditions, equipment and retention time of sage volatile compounds iso-
lated with supercritical fluid extraction were reported in previous study.2! In brief, sage terpe-
noids were identified using gas chromatography system (Agilent GC890N) equipped with
mass spectrometer detector (Agilent MS 5759) and HP-5MS column (30 mx0.25 mmx0.25
pm). Mobile phase was helium with flow rate of 2 mL/min. Isolated EOs were dissolved in
methylene chloride (about 1 mg/mL) and injected volume of solution was 5 pL with split ratio
30:1. The temperature of the injector was 250 °C, detector temperature 300 °C; initial tempe-
rature was 60 °C with linear increase of 4 °C/min to 150 °C. Sage terpenoids were identified
using the NIST 05 and Wiley 7n data base.
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OSRR analysis

The procedure of the QSRR model construction using molecular descriptors is showed
below.

1. Collect molecular structures dataset as a .smi file (simplified molecular input line
entry specification) from various free chemical compound database, such as LigandBox, Zink
12 or PubChem.

2. Split the dataset into training and test datasets in order to determine the predicted
performance of the model. Data should be randomly and independently chosen.

3. Calculate specified molecular descriptors of each compound in the datasets. This can
be done by several free available molecular descriptor software.2224 In this study we used
PaDEL.?

4. Construct a reliable model of the training dataset to predict the retention time from
PaDEL calculated descriptors using one of the regression methods such as artificial neural
networks, partial least squares regression, support vector machine (SVM) and random forest.

5. Evaluate the performance of the developed model by predicting the retention time of
the compounds in the test dataset that are not used for model construction. Also, check model
overfitting.

The calculation was done by a four-core PC computer (i5-2500K CPU, 3.30GHz). The
PaDel database was used to explore the 1875 molecular descriptors (1444 1D and 2D des-
criptors and 431 3D descriptors), which included: constitutional descriptors, topological des-
criptors, connectivity indices, information indices, 2D and 3D autocorrelations descriptors,
Burden eigenvalues descriptors, eigenvalue-based indices, geometrical descriptors, WHIM
descriptors, functional group counts, atom-centred fragments and molecular properties.

Since PaDel database gives an enormous amount of data for each observed compound, it
was necessary to use a genetic algorithm (GA), using Heuristic Lab2° to select the most rele-
vant molecular descriptors for RT prediction. Genetic algorithm (GA)?7?8 is a stochastic opti-
mization method inspired by evolution theory. In this work, it was used to select the most
appropriate molecular descriptors for developing a reliable RT predictive model for essential
oil compounds in sage herbal dust extracts obtained by supercritical fluid extraction. Heuristic
Lab software was used to reduce the redundancy in the descriptor data matrix, which was
gained using PaDel database. The correlation between the descriptors was examined and col-
linear descriptors were detected using factor analysis.

Statistical investigation of the data has been performed mainly by the Statistica 10 soft-

Ware.29

Artificial neural network (ANN)

A multi-layer perceptron model (MLP) consisted of three layers (input, hidden and out-
put) was used, as proven and quite capable of approximating nonlinear functions.3? Broyden—
—Fletcher—Goldfarb—Shanno (BFGS) algorithm was used for ANN modelling. To improve the
behavior of the ANN, both input and output data were normalized. All data points were ran-
domly used to train and develop the ANN; 60 % of data points for training, 20 % of data for
validations and 20 % of data for testing the process. The training data set was used for the
learning cycle of ANN, and also for evaluation of the optimal number of neurons in the hid-
den layer, and the weight coefficient of each neuron in the network. It was assumed that the
successful training was achieved when learning and cross-validation curves approached zero.
ANN results, including the weight values depend on the initial assumptions of parameters
necessary for ANN construction and fitting.31-32 In the same way, the different number of
hidden neurons can give different ANN outcomes. In this context, a series of different topo-
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logies were used, in which the number of hidden neurons were varied from 1 to 20 and the
training process of each network was run ten times with random initial values of weights and
biases. The optimization process was performed on the basis of validation error minimization.
ANN calculations were performed with Statistica 10.
Global sensitivity analysis

Yoon’s interpretation method was used to determine the relative influence of molecular

descriptors on retention time.33 This method was applied on the basis of the weight coef-
ficients of the developed ANN.

RESULTS AND DISCUSSION

Chemical composition and relative content of the analyzed essential oils
(EO) compounds and the quantitative profile are presented in Table 1.2! Terpen-
oid compounds from sage EO obtained by supercritical fluid extraction (SFE)
belong to the group of monoterpenes, sesquiterpenes and diterpenes which are
either hydrocarbons or oxygenated. Monoterpene hydrocarbons could be acyclic
(f-myrcene), or cyclic with cyclic monoterpene (limonene) or non-aromatic (a-
and y-terpinene) rings. Oxygenated monoterpenes could be divided into same
subgroups: acyclic (cis-linalool oxide), aromatic (carvacrol) and cyclic non-aro-
matic (a-thujone). Sesquiterpenes detected in sage EO could be either hydrocar-
bons (y-caryophyllene) or oxygenated (caryophyllene oxide, Table I). Diterpenes
such as epirosmanol were the most complex compounds detected in sage EO due
to their molecular size and number of C atoms (20). Variations in molecular
structure size and physicochemical properties (Fig. S-1 of the Supplementary
material to this paper) could significantly affect separation in GC and provide
different retention time (RT).

OSRR model validation

The main step in QSRR analysis is the calculation and the identification of
the structural descriptors as the numerically encoded parameters representing the
chemical structures. The Authors used the PaDel database in this investigation,
and a great number of molecular descriptors were examined. These descriptors
could represent many aspects of the investigated compounds and have been suc-
cessfully used in QSRR investigation. Prior the GA calculation, the factor ana-
lysis was performed to eliminate the descriptors with equal or almost equal
values for the examined molecules. Only one of the inter-correlated descriptors
remained in the GA calculation. As a result of this preliminary consideration,
only 300 descriptors remained for GA calculation. GA was used to select the
most appropriate molecular descriptors for RT prediction, and the selection of the
most relevant descriptors was realized using the evolution simulation.34-37 Each
gene (element) of the population, defined by a “chromosome”, represented a sub-
set of the descriptors. The number of elements on each chromosome (i.e., obs-
erved compounds) was equal to the number of the molecular descriptors obtained in
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16 PAVLIC et al.

the PaDel base. The population of the first generation was selected randomly.
Each gene gained value of 1 if its corresponding descriptor was included in the
subset; otherwise it gained zero value. The number of the elements was kept rel-
atively low to maintain a small subset of descriptors.38 As a result, the probabil-
ity of generating zero for a gene was set at least 60 % greater than the probability
of generating the value of 1. The used operators were crossover and mutation.
The probability of application of these operators was varied linearly with gener-
ation renewal (0.5 % for mutation and 90 % for crossover). A population size of
100 individuals was chosen for GA, and evolution was allowed over 50 gene-
rations. The evolution of the generations was stopped when 90 % of the generati-
ons took the same fitness. As a results, the six most significant molecular des-
criptors selected by GA were: van der Waals volume descriptor (VABC — which
was calculated using the method proposed by Zhao, Abraham and Zissimos39),
2D autocorrelation descriptors (AATSCOc — average centered Broto—Moreau
autocorrelation — lag 0 / weighted by charges, AATSOv — average Broto-Moreau
autocorrelation — lag 0 / weighted by van der Waals volumes, MATS6m — Moran
autocorrelation — lag 6 / weighted by mass, GATS7s — Geary autocorrelation —
lag 7 / weighted by I-state)®8 and Chi path (ASP-1 — average simple path, order
1).40—42

Detailed explanations about the descriptors were found in the handbook of
molecular descriptors.38 These descriptors encode different aspects of the mole-
cular structure and were applied to develop a QSRR model. Table II represents
the correlation matrix among these descriptors.

TABLE II. The correlation coefficient matrix for the selected descriptors by GA; p-value — the
level of marginal significance within a statistical hypothesis test

AATSCOc ASP-1 AATSOv MATS6m GATSTs

VABC 0.201 ~0.197 ~0.100 ~0.240 0.085
p=0.269 p=0279 p=0587  p=0.186 p=0.646

AATSCOc ~0.114 0.029 ~0.156 ~0.223
p=0.536 p=0876  p=0393 p=0.220

ASP-1 ~0.057 0.155 0217
p=0.757  p=0397 p=0232

AATSOv -0.197 0.244
p=0281 p=0.178

MATS6m 0.048
p=0.794

The calibration and predictive capability of a QSRR model should be tested
through model validation. The most widely used squared correlation coefficient
(r2) can provide a reliable indication of the fitness of the model, thus, it was
employed to validate the calibration capability of a QSRR model.
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Artificial neural network (ANN)

In Fig. 1 the structure of three-layer ANN model is presented, showing a
model of ANN (6-11-1) structure, with 6 variables (GATS7s, VABC, AATSCOc,
MATS6m, AATSOv and ASP-1) in the input layer, 11 nodes in the hidden layer
and 1 node (RT) in the output layer.

Input Layer
(molecular descriptors)

~ Output Layer
" “{terpenoids retention time)

-
* Hidden Layer

- /
e (11 neurons) .~
- r

-

Fig. 1. The structure of a implemented three-layer ANN model with 6 nodes in input layer,
11 nodes in the hidden layer and 1 node in the output layer.

In order to explore the nonlinear relationship between RTs and the selected
descriptors, ANN technique was used to build models. The ability to generalize
the model was evaluated by an external test set. The statistical results of the
artificial neural network MLP 6-11-1 (with 6 inputs, 11 hidden neurons and 1
output neuron) are shown in Tables III and IV and the statistical tests for the
predicted RTs values for all the EO compounds were given in Table I'V.

TABLE III. ANN model summary (performance and errors), for training, testing and valid-
ation cycles; performance term represent the coefficients of determination, while error terms
indicate a lack of data for the ANN model. Net. name — network name, Train., Test., Valid. —
training, testing and validation cycle of the ANN, respectively

Performance Error Train. Error  Hidden  Output
Train. Test. Valid. Train. Test. Valid. algorithm function activation activation
MLP6-11-1 0.837 0.932 0.712 0.011 0.002 0.096 BFGS 31 SOS Exponential Logistic

Net. name
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TABLE IV. The “goodness of fit” tests for the developed ANN model

Ve RMSE MBE MPE
54.400 7.107 1.239 55.534

The quality of the model fit was tested in Table IV, with the lower 2, MBE,
RMSE and MPE values showing the better fit to the experimental results.43

The predicted RTs are presented in Table I and Fig. 2 and confirm the good
quality of the constructed ANN, by showing the relationship between the pre-
dicted and experimental retention values.

_ 307 ° °

E 25 ® ®

3 ™ °

2 201 i

o) o

=151
10 ® Train

O Test
5 ® Validation
1] T T T T T T
0 5 10 15 20 25 30 35 40

RT, min
Fig. 2. Comparison of experimentally obtained RTs with ANN predicted values.

Obtained results reveal the reliability of the ANN models for predicting the
RTs of EO compounds in sage herbal dust extracts obtained by SFE.

Molecular descriptors

Separation of compounds in GC and their retention indices are linked to
affinity towards mobile and stationary phase. Affinity and solubility of separated
molecules directly depend on their chemical structure and physicochemical
properties, which could be expressed by molecular descriptors.

Six molecular descriptors we utilized for predictions of RT in obtained ANN
model. VABC is a volume molecular descriptor which is a subgroup of geomet-
rical descriptors and represents the volume of the area within the van der Waals
molecular surface.3® According to Zhao et al.3% VABC is defined by atomic con-
tributions and the number of atoms, bonds and rings. As it is aforementioned,
heterogeneity in the molecular structure of sage terpenoids linked to the number
of atoms, bonds and cyclic rings led to variations of VABC and its rather com-
plex correlation with RT (Table I).

Moreau-Broto are spatial autocorrelation descriptors,*4 which could be
weighted with charges (AATSCOc) and van der Waals volumes (AATSOv).
These descriptors are determined by molecular structure and physico-chemical
features of atoms.4> If molecular descriptors used for QSRR analysis have high
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TERPENOIDS IN SAGE — QSRR APPROACH 1 9

correlation the result could be overestimated. This could be surpassed by center-
ing molecular descriptors which leads to un-correlation and separation of differ-
ent properties influence.4> The results suggested the lack of correlation between
2D autocorrelation descriptors and VABC (Table II).

3D autocorrelation spatial molecular descriptors are defined by interatomic
distances obtained within the geometry matrix which is, therefore, determined by
the set of atomic characteristics.33 Moran autocorrelation coefficients are general
indices of spatial autocorrelation determined by weighted atomic property, num-
ber of atoms and topological distance between them and Kronecker delta value.#¢
Moran coefficients utilized in ANN model were weighted by mass (MATS6m)
(Table I). Similarly, the Geary autocorrelation coefficient is determined by the
same factors influencing Morton coefficient.#” The Geary autocorrelation index
was weighted by I-state (GATS7s) and further used in obtained ANN model.
According to Pearson’s correlation coefficients, there was a rather poor correl-
ation between all 3D autocorrelation descriptors (Table II). Hence, utilized mole-
cular descriptors were appropriate to predict RT of sage terpenoids by multi-
variate ANN model.48

Chi path belongs to the group of connectivity indices which are numerical
possibilities of two identical molecules encountering each other and is obtained
from the bond accessibilities.#*2 Chi path index used for calculation was average
simple path order 1 (ASP-1).

Global sensitivity analysis — Yoon'’s interpretation method

In this section the influence of six most important input variables, identified
using genetic algorithm on RT was studied. According to Fig. 3, 2D autocor-
relation descriptor AATSOv was the most influential parameter with approximat-
ely relative importance of 25.1 %, while the influence of VABC and AATSCOc
were 18.4 and 14.0 %, respectively. Moreau-Broto coefficient, weighted accord-
ing to mass (MATS6m) and Geary autocorrelation (GATS7s) were influential at

(o]
h
L

b2
=
L

=)
:

Relative importance, %
rs

tn
L

11

VABC AATSCOc ASP-1 AATSOv MATS6m GATS7Ts

Descriptor
Fig. 3. The relative importance of the molecular descriptors on R7, determined using Yoon
interpretation method.
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levels 11.4 and 11.9 %, respectively, while the influence of ASP-1 reached the
level of 19.2 %.

CONCLUSION

Detected terpenoids in sage herbal dust essential oil obtained by supercritical
fluid extraction (SFE) belonging to the group of monoterpenes, sesquiterpenes
and diterpenes which were either hydrocarbons or oxygenated were used for
QSRR analysis. The following six molecular descriptors were suggested by
genetic algorithm: VABC, AATSCOc, AATSOv, MATS6m, GATS7s and ASP-1
that characterize retention times of terpenoids. Selected molecular descriptors
were not autocorrelated which was suggested by correlation coefficient matrix,
thus descriptors were suitable for QSRR analysis. These descriptors were utilized
as inputs for the artificial neural network model (ANN), for estimating the
retention time (R7) using a set of GC—MS data from a series of 32 essential oil
compounds found in sage herbal dust extracts obtained by SFE.

The results demonstrated that the ANN model was adequate in predicting the
RTs of the terpenoid compounds in sage herbal dust extracts obtained by SFE.
The coefficient of determination for training cycle was 0.837, which is a good
indication that this model could be used as a fast mathematical tool for prediction
of retention time values for essential oil compounds in sage herbal dust extracts
obtained by supercritical fluid extraction due to low prediction error and moder-
ately high r2. A suitable model with high statistical quality and low prediction
errors was derived, and it could be further used to estimate R7 of newly detected
compounds.

SUPPLEMENTARY MATERIAL

Variations in molecular structure size are available electronically at the pages of journal
website: http://www.shd-pub.org.rs/index.php/JSCS, or from the corresponding author on request.
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U3BOJ
I[MPEABUBHAILE PETEHIIMOHOT BPEMEHA HA GC-MS 3A TEPIIEHE JETEKTOBAHE Y
ETAPCKOM YJbY XAJIOUJIE (Salvia officinalis L.) KOPUITRELEM QSRR ITPUCTYIIA

BPAHUMMUP MIABJIUR', HEMAHA TECIWR?, IPEAPAT KOJUR' u JIATO E30°

"Texnomowku paxynitewi, Ynusep3uiniedi y Hosom Cagy, bynesap yapa Jlazapa 1, 21000 Hosu Cag, ZHayuHu
uHCTUTY W 3a ipexpambene wexnonoiuje y Hosom Cagy, Ynueepsuitewi y Hosom Cagy, Bynesap uapa
Jlasapa 1, 21000 Hosu Cag u SHHcmumyw 3a otlwily u Qusuuky xemujy, Ynusepsuiieii y beoipagy,

Ciuygentticku wpi 12/V, 11000 Beoipag

Llum oBor pama duo je ma ce ompenu Momen 3a mpenBuhare peTEeHLHOHOT BpeMeHa Tep-
N€Ha W30/I0BaHMX M3 OMJBHOI Npaxa kalduje KOpUIThemeM eKCTpaKLuje CyNnepKPUTHYHUM
¢nyunom. YkynHo 32 eKCIIEpUMEHTANHO [oOHjeHa peTeHIMOHa BpeMeHa TeplieHa Koja cy
oppehena u perexroaHa GC—MS texHukom kopuurheHa cy 3a uspamy Mopena npensuhama
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peTeHLMoHOT BpeMeHa. [IpucTyn KBaHTHTATUBHOI ofipehuBama OJHOCA CTPYKType U peTeH-
UMOHOT BpeMeHa kopHiulheH je 3a nmpegsuhame peTeHIIMOHOT BDEMEHA jeIUbEHha U3 €TapPCKUX
yiba, Koja cy uneHtudrkoBana GC—-MS aHanu3oM, kopuurhewmem LIECT MOJIEKYJTapHUX Jie-
CKpHUIITOpa, KOju cy ofpehenu kopuinhememM reHeTCKOr aaropurma. MsadpaHu peckpuntopu
cy KopuirheHH Kao y7asd y BEIITauKy HEypPOHCKY MPexy 3a OpMHpame Mozesa 3a IpesBy-
hame peTeHLHOHOT BpeMeHa jemumerma M3 eTapckor yika skandwuje. KoedbuuujeHt metep-
MHHanyje (%) Buo je 0,837, wro yka3syje Ha TO Aa OM ce 0OBaj MOAEN MOrao KOPUCTUTH 3a
npensubame BpeJHOCTH PETEHIIMOHOT BpeMEHa TepIieHa y eKCTpaKTUMa U eTapCKOM YIby KaJl-
duje nodujenum xopuirhewem SFE 300r BHCOKe 7 BpPEIHOCTH U MaJjle Tpellke npegBuhama.
Pesynratu cy nokasanu ga je 2D ayrokxopenaunoHu geckpuntop AATSOv 6Mo HajyTHLAjHUjU
IEeCKpPHUITOP ca pelnaTuBHOM BakHowhy on 25,1 %.

(ITpumsbeHo 22. Maja, peBupupaHo 26. jyna, npuxsaheno 10. centembpa 2019)
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