
Journal of Software Engineering Research and Development, 2019, 6:1,doi: 10.5753/jserd.2019.17
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Improving Energy Efficiency Through Automatic Refactoring
Luis Cruz [INESC-ID, University of Porto | luiscruz@fe.up.pt]
Rui Abreu [INESC-ID, IST, University of Lisbon | rui@computer.org]

Abstract
The ever-growing popularity of mobile phones has brought additional challenges to the software development

lifecycle. Mobile applications ought to provide the same set of features as conventional software, with limited
resources: such as limited processing capabilities, storage, screen and, not less important, power source. Although
energy efficiency is a valuable requirement, developers often lack knowledge of best practices. In this paper, we
propose a tool to improve the energy efficiency of Android applications using automatic refactoring — Leafactor.
The tool features five energy code smells that tend to go unnoticed. In addition, to evaluate the effectiveness of our
approach, we run an experiment over a dataset of 140 free and open source apps. As a result, we detected and fixed
code smells in 45 Android apps, from which 40% have successfully merged our changes into the official repository.

Keywords: Automatic Refactoring, Mobile Computing, Energy Efficiency, Software Engineering

1 Introduction
In the past decade, the advent of mobile devices has brought
new challenges and paradigms to the existing computing
models. One of the major challenges is the fact that mobile
phones have limited battery life. As a consequence, users
need to frequently charge their devices to prevent their in-
operability. Hence, energy efficiency is an important non-
functional requirement in mobile software, with a valuable
impact on usability.
A study in 2013 reported that 18% of apps have feedback

from users that is related to energy consumption (Wilke et al.,
2013). Other studies have nonetheless found that most de-
velopers lack the knowledge about best practices for energy
efficiency in mobile applications (apps) (Pang et al., 2015;
Sahin et al., 2014). Hence, it is important to provide devel-
opers with actionable documentation and toolsets that aim to
help deliver energy efficient apps.
Previously, we have identified five code smells with

significant impact on the energy consumption of Android
apps (Cruz and Abreu, 2017) — we refer to them as energy-
related smells. We used a hardware-based approach to as-
sess the energy efficiency improvement of fixing eight
performance-based code smells described in the official An-
droid documentation. The impact on energy efficiency was
evaluated by manually refactoring the codebases of five
open-source Android applications. The energy consumption
was measured for every pair of versions: before and after
the refactoring. The measurements were performed by mim-
icking real use-case scenarios while collecting power data
with the single-board computer ODROID1, which features
power sensors for energy measurements. From those eight
refactorings, five were found to yield a significant improve-
ment in the energy consumption of mobile apps. However,
certify that code is complying with these optimizations is
time-consuming and prone to errors. Thus, in this paper we
study how automatic refactor can help develop code that fol-
lows energy best practices.

1ODROID is a single-board computer that runs Android and is used for
mobile application development and IoT applications.

There are state-of-the-art tools that provide automatic
refactoring for Android and Java apps (for instance, Au-
toRefactor2, Walkmod3, Facebook pfff 4, Kadabra5). Al-
though these tools help developers creating better code, they
do not feature energy-related refactorings for Android. Thus,
we leverage five energy optimizations in an automatic refac-
toring tool, Leafactor, which is publicly available with an
open source license. In addition, the toolset has the potential
to serve as an educative tool to aid developers in understand-
ing which practices can be used to improve energy efficiency.
On top of that, we analyze howAndroid developers are ad-

dressing energy-related smells and how an automatic refac-
toring tool would help ship more energy efficient mobile soft-
ware.We have used the results of our tool to contribute to real
Android app projects, validating the value of adopting an au-
tomatic refactoring tool in the development stack of mobile
apps.
In a dataset of 140 free and open source software (FOSS)

Android apps, we have found that a considerable part (32%)
is released with energy inefficiencies. We have fixed 222
energy-related smells in 45 apps, from which 18 have suc-
cessfully merged our changes into the official branch. Re-
sults show that automatic refactoring tools can be very help-
ful to improve the energy footprint of apps.
This paper is an extension of our previous work, in which

we introduced the automatic refactoring tool Leafactor (Cruz
et al., 2017; Cruz and Abreu, 2018) for the first time. We
provide a self-contained report of our work on improving en-
ergy efficiency of mobile apps via automatic refactorings, by
adding details of the architecture of the toolset and the avail-
able set of refactorings. Moreover, we make a more compre-
hensive description of the dataset used in the empirical study,
including complexity metrics. Combined, our work makes
the following contributions:

2AutoRefactor: http://autorefactor.org (August 17, 2019).
3Walkmod: http://walkmod.com (August 17, 2019).
4Facebook pfff : https://github.com/facebookarchive/pfff

(August 17, 2019).
5Kadabra: http://specs.fe.up.pt/tools/kadabra/ (August

17, 2019).

https://orcid.org/0000-0002-1615-355X
mailto:luiscruz@fe.up.pt
https://orcid.org/0000-0003-3734-3157
mailto:rui@computer.org
http://autorefactor.org
http://walkmod.com
https://github.com/facebookarchive/pfff
http://specs.fe.up.pt/tools/kadabra/

Cruz et al. 2019

• An automated refactoring tool, Leafactor, to improve
energy efficiency of Android applications.

• An empirical study of the prevalence of five energy-
related code smells in FOSS Android applications.

• The submission of 59 pull requests to the official code
bases of 45 FOSS Android applications, comprehend-
ing 222 energy efficiency refactorings.

The remainder of this paper is organized as follows: Sec-
tion 2 details energy refactorings and corresponding impact
on energy consumption; in Section 3, we present the auto-
matic refactor toolset that was implemented; Section 4 de-
scribes the experimental methodology used to validate our
tool, followed by Sections 5 and 6 with results and discus-
sion; in Section 7 we present the related work in this field;
and finally Section 8 summarizes our findings and discusses
future work.

2 Energy Refactorings
We use static code analysis and automatic refactoring to ap-
ply Android-specific optimizations of energy efficiency. In
this section, we describe refactorings which are known to im-
prove the energy consumption of Android apps. Each of them
has an indication of the energy efficiency improvement (),
as assessed in previous work (Cruz and Abreu, 2017), and
the fix priority provided by the official lint documentation6.
The priority reflects the impact of the refactoring in terms of
performance and is given on a scale of 1 to 10, with 10 being
the most effective. The severity is not necessarily correlated
with energy performance. In addition, we also provide exam-
ples where the refactorings are applied. All refactorings are
in Java with the exceptionObsoleteLayoutParamwhich is in
XML— the markup language used in Android to define the
user interface (UI).

2.1 ViewHolder: AddViewHolder to scrolling
lists

Energy efficiency improvement (): 4.5%. Lint priority:
■■■■■□□□□□ 5/10.
This refactoring is used to make a smoother scroll in

List Views, with no lags. When in a List View, the system
has to draw each item separately. To make this process
more efficient, data from the previous drawn item should be
reused. This technique decreases the number of calls to the
method findViewById(), which is known for being a very
inefficient method (Linares-Vásquez et al., 2014). The fol-
lowing code snippet provides an example of how to apply
ViewHolder.
// ...
@Override
public View getView(final int position, View convertView,

ViewGroup parent) {
convertView = LayoutInflater.from(getContext()).inflate

(¶
R.layout.subforsublist, parent, false

);

6Lint is a tool provided with the Android SDK which detects prob-
lems related with the structural quality of the code. Website: https://
developer.android.com/studio/write/lint (August 17, 2019).

final TextView t = ((TextView) convertView.findViewById
(R.id.name)); ·

// ...

Optimized version:
// ...
private static class ViewHolderItem { ¸

private TextView t;
}

@Override
public View getView(final int position, View convertView,

ViewGroup parent) {
ViewHolderItem viewHolderItem;
if (convertView == null) { ¹

convertView = LayoutInflater.from(getContext()).
inflate(

R.layout.subforsublist, parent, false
);
viewHolderItem = new ViewHolderItem();
viewHolderItem.t = ((TextView) convertView.

findViewById(R.id.name));
convertView.setTag(viewHolderItem);

} else {
viewHolderItem = (ViewHolderItem) convertView.getTag

();
}
final TextView t = viewHolderItem.t; º

// ...

¶ In every iteration of the method getView, a new
LayoutInflater object is instantiated, overwriting the
method’s parameter convertView.

· Each item in the list has a view to display text — a
TextView object. This view is being fetched in every iter-
ation, using the method findViewById().

¸ A new class is created to cache common data between
list items. It will be used to store the TextView object and
prevent it from being fetched in every iteration.

¹ This block will run only in the first item of the list. Sub-
sequent iterationswill receive the convertView from param-
eters.

º It is no longer needed to call findViewById() to re-
trieve the TextView object.
One might argue that the version of the code after refactor-

ing is considerably less intuitive. This is, in fact true, which
might be a reason for developers to ignore optimizations.
However, regardless of whether this optimization should be
addressed by the system, it is the recommended approach, as
stated in the Android official documentation7. See more on
this discussion in Section 6.

2.2 DrawAllocation: Remove allocations
within drawing code

 1.5%. Lint priority: ■■■■■■■■■□ 9/10.
Draw operations are very sensitive to performance. It is a

bad practice allocating objects during such operations since
it can create noticeable lags. The recommended fix is allocat-
ing objects upfront and reusing them for each drawing oper-
ation, as shown in the following example:
public class DrawAllocationSampleTwo extends Button {

public DrawAllocationSampleTwo(Context context) {
super(context);

}
@Override
protected void onDraw(android.graphics.Canvas canvas) {

7ViewHolder explanation in the official documentation:
https://developer.android.com/guide/topics/ui/layout/
recyclerview visited in August 17, 2019.

https://developer.android.com/studio/write/lint
https://developer.android.com/studio/write/lint
https://developer.android.com/guide/topics/ui/layout/recyclerview
https://developer.android.com/guide/topics/ui/layout/recyclerview

Cruz et al. 2019

super.onDraw(canvas);
Integer i = new Integer(5);¶
// ...
return;

}
}

Optimized version:
public class DrawAllocationSampleTwo extends Button {

public DrawAllocationSampleTwo(Context context) {
super(context);

}
Integer i = new Integer(5);·
@Override
protected void onDraw(android.graphics.Canvas canvas) {

super.onDraw(canvas);
// ...
return;

}
}

¶ A new instance of Integer is created in every execu-
tion of onDraw.

· The allocation of the instance of Integer is removed
from the drawing operation and is now executed only once
during the app execution.

2.3 WakeLock: Fix incorrect wakelock usage
 1.5%. Lint priority: ■■■■■■■■■□ 9/10.
Wakelocks are mechanisms to control the power state of

a mobile device. This can be used to prevent the screen or
the CPU from entering a sleep state. If an application fails to
release a wakelock or uses it without being strictly necessary,
it can drain the battery of the device.
The following example shows an Activity that uses a wake

lock:
extends Activity { private WakeLock wl;

@Override
protected void onCreate(Bundle savedInstanceState) {

super.onCreate(savedInstanceState);

PowerManager pm = (PowerManager) this.
getSystemService(

Context.POWER_SERVICE
);
wl = pm.newWakeLock(

PowerManager.SCREEN_DIM_WAKE_LOCK | PowerManager.
ON_AFTER_RELEASE,

"WakeLockSample"
);
wl.acquire();¶

}
}

¶Using the method acquire() the app asks the device to
stay on. Until further instruction, the device will be deprived
of sleep.
Since no instruction is stopping this behavior, the device

will not be able to enter a sleep mode. Although in excep-
tional cases this might be intentional, it should be fixed to
prevent battery drain.
The recommended fix is to override the method

onPause() in the activity:
//...
@Override protected void onPause(){

super.onPause();
if (wl != null && !wl.isHeld()) {

wl.release();
}

}
//...

With this solution, the lock is released before the app
switches to background.

2.4 Recycle: Fix missing recycle() calls
 0.7%. Lint priority: ■■■■■■■□□□ 7/10.
There are collections such as TypedArray that are imple-

mented using singleton resources. Hence, they should be re-
leased so that calls to different TypedArray objects can effi-
ciently use these same resources. The same applies to other
classes (e.g., database cursors, motion events, etc.).
The following snippet shows an object of TypedArray

that is not being recycled after use:
public void wrong1(AttributeSet attrs, int defStyle) {

final TypedArray a = getContext().
obtainStyledAttributes(

attrs, new int[] { 0 }, defStyle, 0
);
String example = a.getString(0);

}

Solution:
public void wrong1(AttributeSet attrs, int defStyle) {

final TypedArray a = getContext().
obtainStyledAttributes(

attrs, new int[] { 0 }, defStyle, 0
);
String example = a.getString(0);
if (a != null) {

a.recycle();¶
}

}

¶ Calling the method recycle() when the object is no
longer needed, fixes the issue. The call is encapsulated in a
conditional block for safety reasons.
Besides TypedArray instances, this refactoring is

also applied to instances of following classes: Cursor,
VelocityTracker, MotionEvent, Parcel, and
ContentProviderClient.

2.5 ObsoleteLayoutParam (OLP): Remove
obsolete layout parameters

 0.7%. Lint priority: ■■■■■■□□□□ 6/10.
During development, UI views might be refactored sev-

eral times. In this process, some parameters might be left un-
changed even when they have no effect in the view. This is
a code smell that needs to be fixed since it causes useless at-
tribute processing at runtime. The refactoring is applied by
removing the obsolete parameters from the UI specification.
As an example, consider the following code snippet (XML):
<LinearLayout>

<TextView android:id="@+id/name"
android:layout_width="wrap_content"
android:layout_height="wrap_content"
android:layout_alignParentBottom="true"> /* DeleteMe

*/ ¶
</TextView>

</LinearLayout>

¶The property android:layout_alignParentBottom
is used for views inside a RelativeLayout to align the
bottom edge of a view (i.e., the TextView, in this example)
with the bottom edge of the RelativeLayout. On contrary,
LinearLayout is not compatible with this property, having
no effect in this example. It is safe to remove the property

Cruz et al. 2019

Table 1. Layout-related parameters that only have a visual effect
when defined inside specific layouts.

Layout Parameter Allowed Parent Layout
layout_x AbsoluteLayout
layout_y AbsoluteLayout
layout_weight LinearLayout,

ActionMenuView,
ListRowHoverCardView,
ListRowView,
NumberPicker,
RadioGroup, SearchView,
TabWidget, TableLayout,
TableRow,
TextInputLayout,
ZoomControls

layout_column GridLayout, TableLayout,
TableRow

layout_columnSpan GridLayout
layout_row GridLayout
layout_rowSpan GridLayout
layout_alignLeft RelativeLayout
layout_alignStart RelativeLayout
layout_alignRight RelativeLayout
layout_alignEnd RelativeLayout
layout_alignTop RelativeLayout
layout_alignBottom RelativeLayout
layout_alignParentTop RelativeLayout
layout_alignParentBottom RelativeLayout
layout_alignParentLeft RelativeLayout
layout_alignParentStart RelativeLayout
layout_alignParentRight RelativeLayout
layout_alignParentEnd RelativeLayout
layout_alignWithParentMissing RelativeLayout
layout_alignBaseline RelativeLayout
layout_centerInParent RelativeLayout
layout_centerVertical RelativeLayout
layout_centerHorizontal RelativeLayout
layout_toRightOf RelativeLayout
layout_toEndOf RelativeLayout
layout_toLeftOf RelativeLayout
layout_toStartOf RelativeLayout
layout_below RelativeLayout
layout_above RelativeLayout

AutoRefactor

Java
files

XML
files

Java Refactor
Engine

XML Refactor
Engine

Android Project

>_ CLIPlugin UI

Figure 1. Architecture diagram of the automatic refactoring toolset.

from the specification. In Table 1, we detail all the cases
featured in Leafactor.

3 Automatic Refactoring Tool
In the scope of our study, we developed a tool to statically
analyze and transform code, implementing Android-specific
energy efficiency refactorings — Leafactor. The toolset re-
ceives a single file, a package, or a whole Android project as
input and looks for eligible files, i.e., Java or XML source
files. It automatically analyzes those files and generates a
new compilable and optimized version.
The architecture of Leafactor is depicted in Figure 1.

There are two separate engines: one to handle Java files and
another to handle XML files. The refactoring engine for Java
is implemented as part of the open-source project AutoRefac-
tor — an Eclipse plugin to automatically refactor Java code

Figure 2. Developers can apply refactorings by selecting the “Automatic
refactoring” option or by using the key combination Y .

bases.

3.1 AutoRefactor
AutoRefactor is an Eclipse plugin that delivers automatic
refactoring in Java codebases. It is created as a comple-
ment to existing static analyzers such as SonarQube, Find-
Bugs, CheckStyle and PMD. Although they provide insight-
ful warnings to developers, they do little in helping develop-
ers fixing all the issues lying in legacy codebases.
It provides a comprehensive set of 103 common code

cleanups to help deliver “smaller, more maintainable and
more expressive code bases”8. The list goes from simple
rules, such as enforcing the use of the method isEmpty() to
check whether a collection is empty, instead of checking its
size (rule IsEmptyRatherThanSize), to more complex ones,
such as SetRatherThenList choosing a more adequate collec-
tion type for specific use cases. In addition, AutoRefactor
also supports cleanups for code comments, such as removing
auto-generated or empty Javadocs from the codebase (named
by AutoRefactor as rule Comments).
Eclipse Marketplace9 reported 4459 successful installs of

AutoRefactor.
A common use case is presented in the screenshot of Fig-

ure 2. Developers can apply refactorings in single files, pack-
ages, or entire projects.
Under the hood, AutoRefactor integrates a handy and con-

cise API to manipulate Java Abstract Syntax Trees (ASTs).
We contributed to the project by implementing the Java refac-
torings mentioned in Section 2.

3.2 XML refactorings
Since XML refactorings are not supported by AutoRefactor,
a separate refactoring engine was developed and integrated

8As described in the official website, visited in August 17, 2019: http:
//autorefactor.org

9EclipseMarketplace is an interface for browsing and installing plugins
for the Java IDE Eclipse: https://marketplace.eclipse.org visited
in August 17, 2019.

http://autorefactor.org
http://autorefactor.org
https://marketplace.eclipse.org

Cruz et al. 2019

7. Commit &
push changes

1. Collect metadata
from F-droid

2. Fork
repository

3. Select
optimization

4. Create
branch

5. Apply
Leafactor

6. Validate
changes

8. Submit
PR

Figure 3. Experiment’s procedure for a single app.

into Leafactor. The engine features a command line interface,
that can be integrated with continuous integration environ-
ments. Optionally, the tool can be set to simply flag warn-
ings, without performing any refactoring transformation. As
detailed in the previous section, only a single XML refactor-
ing is offered — ObsoleteLayoutParam.

4 Empirical evaluation
We designed an experiment with the following goals:

• Study the benefits of using an automatic refactoring tool
within the Android development community.

• Study how FOSS Android apps are adopting energy ef-
ficiency optimizations.

• Improve energy efficiency of FOSS Android apps.

We adopted the procedure explained in Figure 3. Starting
with step 1, we collected data from the F-droid app store10
— a catalog for free and open-source software (FOSS) appli-
cations for the Android platform. For each mobile applica-
tion, we collected the git repository location which was used
in step 2 to fork the repository and prepare it for a poten-
tial contribution to the project’s official code repository. Fol-
lowing, in step 3 we selected one refactoring to be applied
and consequently initiate a process that was repeated for all
refactorings (steps 4–8): the project was analyzed and, if any
transformation was applied, a new Pull Request (PR) was
submitted to be considered by the project’s integrator. Since
we wanted to engage the community and get feedback about
the refactorings, we manually created each PR with a person-
alized message, including a brief explanation of committed
code changes.
We analyzed 140 free and open-source Android apps col-

lected from F-droid11. Apps were selected by publish date
(i.e., it was given priority to newly released apps), consider-
ing exclusively Java projects (e.g.,Kotlin projects are filtered
out) with a Github repository. We selected only one git ser-
vice for the sake of simplicity. Apps in the dataset are spread
in 17 different categories, as depicted in Figure 4.
Table 2 presents descriptive statistics for the source code

and repository of the mobile applications in the dataset: num-
ber of lines of code (LOC), McCabe’s Cyclomatic Com-
plexity (CC), mean Weighted Methods per Class12 (WMC),
Lack of Cohesion of Methods13 (LCOM) (Etzkorn et al.,

10F-droid repository is available at https://f-droid.org visited in
August 17, 2019.

11Data was collected on Nov 27, 2016, and it is available here: https:
//doi.org/10.6084/m9.figshare.7637402

12Weighted Methods per Class (WMC) is the sum of the complexity of
methods in a class.

13Lack of Cohesion of Methods (LCOM) is a software code metric that
measures the correlation between class members and methods. Values fall
between 0, indicating perfect cohesion, and 1, indicating a complete lack of
cohesion.

M
ul
tim

ed
ia

Se
cu
rit
y

Ph
on
e&

SM
S

Th
em

in
g

M
on
ey

D
ev
el
op
m
en
t

In
te
rn
et

Sy
st
em

G
am

es

R
ea
di
ng

C
on
ne
ct
iv
ity

Sp
or
ts
&
H
ea
lth

W
rit
in
g

Sc
ie
nc
e&

Ed
u.

Ti
m
e

N
av
ig
at
io
n

0
2
4
6
8

10 8

21 233

9

5
3 4

1
3 22 11

Categories

N
um

be
ro

fa
pp
s

Figure 4. Number of apps per category in the dataset.

1998), number of Java files, number of XML files, number
of Github Forks, Github Stars, and contributors. These met-
rics were collected using the static analysis tool Designite14
and the GitHub API v315.
The dataset comprehends very diverse mobile applica-

tions. It goes from very simples apps, such as Storage-USB16,
with 13 LOC and complexity CC of 2, to large apps, such as
Slide17 with almost 400k LOC and complexity CC of 14631,
or Osmand18, with over 300k LOC and complexity CC of
77889. The largest project in terms of Java files is TinyTrav-
elTracker (1878), while NewsBlue is the largest in terms of
XML files (2109). Most apps in the dataset have reason-
able cohesion, with LCOM below 0.34 for 75% of the apps;
apps with low/moderate cohesion were also analyzed, having
LCOM values up to 0.67.
In total, we analyzed 2.8M lines of Java code (LOC) in

6.79GB of Android projects in 4.5 hours — 15103 XML
files, and 15308 Java files.

5 Results
Our experiment yielded a total of 222 refactorings, which
were submitted to the original repositories as PRs. Multiple
refactorings of the same type were grouped in a single PR to
avoid creating too many PRs for a single app. It resulted in
59 PRs spread across 45 apps. This is a demanding process
since each project has different contributing guidelines. Nev-
ertheless, by the time of writing, 18 apps had successfully
merged our contributions for deployment.
An example of the PRs submitted to the projects is il-

lustrated in Figure 5. Leafactorperformed the refactoring
ViewHolder in the app Slide19, and developers successfully
merged our PR. The full thread can be found in the Github
project ccrama/Slide with reference #234620.

14Designite’s website: http://www.designite-tools.com visited
in August 17, 2019.

15GitHub API v3’s website:https://developer.github.com/v3/
visited in August 17, 2019.

16Storage-USB basically launches Storage Settings directly from the
apps drawer. Github repository: https://github.com/enricocid/
Storage-USB visited in August 17, 2019.

17Slide is a browser for the social news forumReddit. Github Repository:
https://github.com/ccrama/Slide visited in August 17, 2019.

18Osmand is a navigation app. Github repository: https://github.
com/osmandapp/Osmand visited in August 17, 2019.

19Slide’s website: http://trikita.co/slide/ visited in August 17,
2019.

20PR of the ViewHolder of app Slide: https://github.com/ccrama/

https://f-droid.org
https://doi.org/10.6084/m9.figshare.7637402
https://doi.org/10.6084/m9.figshare.7637402
http://www.designite-tools.com
https://developer.github.com/v3/
https://github.com/enricocid/Storage-USB
https://github.com/enricocid/Storage-USB
https://github.com/ccrama/Slide
https://github.com/osmandapp/Osmand
https://github.com/osmandapp/Osmand
http://trikita.co/slide/
https://github.com/ccrama/Slide/pull/2346

Cruz et al. 2019

Table 2. Descriptive statistics of projects in the dataset.
LOC CC WMC LCOM Java Files XML Files Github Forks Github Stars Contributors

Mean 20350 3532 17.41 0.29 103 102 65 179 15
Min 13 2 1.00 0.00 0 4 0 0 1
25% 1444 271 11.14 0.23 13 23 3.75 7.75 2
Median 4641 946 15.20 0.27 38 48 9 24 3
75% 14795 3007 21.50 0.34 106 97 39 111 10
Max 388853 77889 82.82 0.67 1678 2109 1483 4488 323
Total 2869394 – – – 15308 15103 9547 26484 2162

Table 3. Summary of refactoring results
Refactoring ViewHolder DrawAllocation Wakelock Recycle OLP∗ Total
Total Refactorings 7 0 1 58 156 222
Total Projects 5 0 1 23 30 45
Percentage of Projects 4% 0% 1% 16% 21% 32%
Incidence per Project 1.4× - 1.0× 2.5× 5.2× 4.8×
∗OLP — ObsoleteLayoutParam

Figure 5.An example of pull request submitted to the Android project Slide.

Table 3 presents the results for each refactoring. It shows
the total number of applied refactorings, the total number
of projects that were affected, the percentage of affected
projects, and the average number of refactorings per affected
project. In addition, the table presents the combined results
for the occurrence of any type of refactoring (Total).
ObsoleteLayoutParam was the most frequent refactoring.

It was applied 156 times in a total of 30 projects out of the
140 in our dataset (21%). In average, each affected project
had 5 occurrences of this refactoring. Recycle comes next,
occurring in 23 projects (16%) with 58 refactorings.DrawAl-
location andWakelock only showed marginal impact.
In addition, Figure 6 presents a plot bar summarizing the

number of projects affected amongst all the studied refactor-
ings.
The mobile application with a bigger incidence of refac-

torings was the Android application for the cloud platform
NextCloud21. Leafactor has refactored two occurrences of
Recycle, two of ViewHolder, and 6 ofObsoleteLayoutParam.
In terms of the total number of refactorings, QR Scanner22
was the app with a higher number of occurrences, with 35
occurrences of ObsoleteLayoutParam.

Slide/pull/2346 visited in August 17, 2019.
21NextCloud’s website: https://nextcloud.com visited in August

17, 2019.
22QR Scanner’s entry on Google Play:

https://play.google.com/store/apps/details?id=com.secuso.
privacyFriendlyCodeScanner visited in August 17, 2019.

Wa
ke
loc
k

Re
cy
cle

Dr
aw
Al
loc
ati
on

Vi
ew
Ho
lde
r

OL
P
To
tal

0

20

40

1

23

05

30
45

N
um

be
ro

fa
pp
sa

ffe
ct
ed

Figure 6. Number of apps affected per refactoring.

For reproducibility and clarity of results, all the data col-
lected in this study is publicly available23. In addition, all
the PRs are public and can be accessed through the official
repositories of the apps.

6 Discussion
Results show that an automatic refactoring tool can help de-
velopers ship more energy efficient apps. A considerable part
of the apps in this study (32%) had at least one energy in-
efficiency. Since these inefficiencies are only visible after
long periods of app activity, they can easily go unnoticed.
From the feedback developers provided in the PRs, we have
noticed that developers are open to recommendations from
an automated tool. Only in a few exceptions, developers ex-
pressed being unhappy with our contributions. Reasons var-
ied between seeing our PR as a critique of the programming
skills of developers or simply because developers did not
want to make changes in components of the app that were
affected by the refactoring. Nevertheless, most developers
were curious about the refactorings, and they recognized be-
ing unaware of their impact on energy efficiency. This is con-
sistent with previous work (Pang et al., 2015; Sahin et al.,
2014).

23Spreadsheet with all experimental results: https://doi.org/10.
6084/m9.figshare.7637402.

https://github.com/ccrama/Slide/pull/2346
https://github.com/ccrama/Slide/pull/2346
https://github.com/ccrama/Slide/pull/2346
https://github.com/ccrama/Slide/pull/2346
https://github.com/ccrama/Slide/pull/2346
https://github.com/ccrama/Slide/pull/2346
https://nextcloud.com
https://play.google.com/store/apps/details?id=com.secuso.privacyFriendlyCodeScanner
https://play.google.com/store/apps/details?id=com.secuso.privacyFriendlyCodeScanner
https://doi.org/10.6084/m9.figshare.7637402
https://doi.org/10.6084/m9.figshare.7637402

Cruz et al. 2019

A positive outcome of our experimentation was that we
were able to improve energy efficiency in the official
release of 18 Android apps.

In a few cases, code smells were found in code that does
not affect the energy consumption of the app itself (e.g., test
code). In those cases, our PRs were not merged24. Neverthe-
less, we recommend consistently complying with these opti-
mizations in all types of code since new developers often use
tests to help understand how to contribute to a project.
Leafactor, akin to AutoRefactor, applies the refactorings

without prompting developers for confirmation. This is a
common approach for simple refactorings. Nevertheless, in
the case of energy code smells, a single refactoring entails
changing several lines of code which the developer may not
be able to interpret. During our experiments, this issue is mit-
igated since we submit a PR with a brief explanation of the
code smell and the applied refactoring. It would be interest-
ing to consider alternative approaches in which developers
are informed or prompted while having their code refactored.
The code smell related to ObsoleteLayoutParam was

found in a considerable fraction of projects (21%). This re-
lates to the fact that app views are often created in an iterative
process with several rounds of trial and error. Since some pa-
rameters have no effect under specific contexts, useless UI
specification statements can go unnoticed by developers.
Recycle is frequent, too, being observed in 16% of projects.

This smell is found in Android API objects that can be found
in most projects (e.g., database cursors). Although a clean fix
is to use the Java try-with-resources statement25, it requires
version 19 or earlier of Android SDK (introduced with An-
droid 4.4 Kitkat). However, developers resort to a more ver-
bose approach for backward compatibility, which requires
explicitly closing resources, hence prone to mistakes.
Our DrawAllocation checker did not yield any result. It

was expected that developers were already aware ofDrawAl-
location. Still, we were able to manually spot allocations that
were happening inside a drawing routine. Nevertheless, those
allocations are using dynamic values to initialize the object.
In our implementation, we scope only allocations that will
not change between iterations. Covering those missed cases
would require updating the allocated object in every itera-
tion. While spotting these cases is relatively easy, refactor-
ing would require better knowledge of the class that is being
instantiated. Similarly, WakeLocks are very complex mecha-
nisms, and fixing all misuses still needs further work.
In the case of ViewHolder, although it only impacted 4%

of the projects, we believe it has to do with the fact that 1)
some developers already know this refactoring due to its per-
formance impact, and 2) many projects do not implement dy-
namic list views. ViewHolder is the most complex refactor-
ing we have in terms of lines of code (LOC)— a simple case
can require changes in roughly 35 LOC. Although changes

24Example of a PR of refactorings on test code: https://github.com/
hidroh/materialistic/pull/828 visited in August 17, 2019.

25Documentation about the Java try-with-resources statement:
https://docs.oracle.com/javase/tutorial/essential/
exceptions/tryResourceClose.html visited in August 17, 2019.

are easily understandable by developers, writing code that
complies with ViewHolder is not intuitive.
Gainings on energy efficiency may vary depending on the

application and the use cases in which they occur. Measur-
ing the effective impact on energy consumption is not trivial
as it requires a complicated setup. Previous work has found
these refactorings to improve energy efficiency by up to 5%
in real use case scenarios (Cruz and Abreu, 2017). Nonethe-
less, these refactorings are recommended by the official An-
droid documentation26 as best practices for performance.
A visible side effect of the refactorings featured by Leafac-

tor is the questionable maintainability of the code introduced.
Although the refactorings are implemented based on the
official Android documentation, the resulting code is con-
siderably longer and less intuitive for refactorings such as
ViewHolder and Recycle. This is a threat to the adoption of
energy-efficient practices in Android applications. Mobile
frameworks should feature coding mechanisms aiming to im-
prove energy efficiency without hindering codemaintainabil-
ity.

7 Related Work
The energy efficiency of mobile apps is being addressed with
many different approaches. Some works opt by simplifying
the process of measuring the energy consumption of mobile
apps (Zhang et al., 2010; Pathak et al., 2012, 2011; Hao et al.,
2013; Di Nucci et al., 2017; Couto et al., 2014). Alternatively,
other works study the energy footprint of software design
choices and code patterns that will prevent developers from
creating code with poor energy efficiency (Li et al., 2014;
Li and Halfond, 2014, 2015; Linares-Vásquez et al., 2017;
Malavolta et al., 2017; Pereira et al., 2017).
Automatic detection of code smells for Android has been

studied before. Fixing code smells in Android has shown
gains up to 5% in energy efficiency (Cruz and Abreu, 2017).
The code was manually refactored in six real apps and energy
consumption was measured using a hardware-based power
monitor. Our work extends this research by providing auto-
matic refactoring to the resulting energy code smells.
The frequency of code smells in Android apps was studied

in previous work (Hecht et al., 2015). Code smells were au-
tomatically detected in 15 apps using the tool Paprikawhich
was developed to perform static analysis in the bytecode of
apps. Although Paprika provides valuable feedback on how
to fix their code, developers need tomanually apply the refac-
torings. Our study differs by focusing on energy-related code
smells and by applying automatic refactoring to resolve po-
tential issues.
Previous work has also studied the importance of provid-

ing a catalog of bad smells that negatively influence the qual-
ity of Android applications (Reimann et al., 2014; Reimann
and Aβmann, 2013). Although the authors motivate the im-
portance of using automatic refactoring, their approach lacks
an extensive implementation of their catalog. Related work
has implemented 15 code-smells from this catalog proposed

26ViewHolder is documented here: https://developer.android.
com/training/improving-layouts/smooth-scrolling visited in
August 17, 2019.

https://github.com/hidroh/materialistic/pull/828
https://github.com/hidroh/materialistic/pull/828
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://docs.oracle.com/javase/tutorial/essential/exceptions/tryResourceClose.html
https://developer.android.com/training/improving-layouts/smooth-scrolling
https://developer.android.com/training/improving-layouts/smooth-scrolling

Cruz et al. 2019

by Reimann and Aβmann (2013) in an automatic refactoring
tool, aDoctor (Palomba et al., 2017). In our work, we use
this approach to improve the energy efficiency of Android
applications.
Another work has focused exclusively on design patterns

to improve the energy efficiency of iOS and Android mobile
applications (Cruz and Abreu, 2019). However, no efforts
were made regarding the automatic refactoring of the cata-
loged energy patterns. In our work, we implement automatic
refactoring for five energy patterns. In addition, we validate
our refactorings by applying Leafactor in a large dataset of
real Android apps. Moreover, we assess how automatic refac-
toring tools for energy can positively impact the Android
FOSS community.
Other works have detected energy-related code smells by

analyzing source code as TGraphs (Gottschalk et al., 2012;
Ebert et al., 2008). Eight different code smell detectors were
implemented and validated with a navigation app. Fixing the
code with automatic refactoring was discussed but not im-
plemented. Besides, although studied code smells are likely
to have an impact on energy consumption, no evidence was
presented.
Previous work has used the event flow graph of the app

to optimize resource usage (e.g., GPS, Bluetooth) (Banerjee
and Roychoudhury, 2016). Results show significant gains in
energy efficiency. Nevertheless, although this process pro-
vides details on how to fix the code, it is not fully automated
yet.
Other works have studied and applied automatic refactor-

ings in Android applications (Sahin et al., 2014, 2016). How-
ever, these refactorings were not mobile-specific.
Besides refactoring source code, other works have focused

on studying the impact of UI design decisions on energy con-
sumption (Linares-Vásquez et al., 2017). Agolli, T., et al.
have proposed a methodology that suggests changes in the
UI colors of apps. The new UI colors, despite being differ-
ent, are almost imperceptible by users and lead to savings in
the energy consumption of mobile phones’ displays (Agolli
et al., 2017). In our work, we strictly focus on changes that
do not change the appearance of the app.

8 Conclusion
Our work presents the automatic refactoring tool Leafac-
tor to improve the energy efficiency of Android application
codebases. In an empirical study with 140 FOSS Android
apps, we show the potential of using automatic refactoring
tools to improve the energy efficiency of mobile applications.
We have fixed 222 energy-related energy-related smells, im-
proving the energy footprint of 45 Android applications. Re-
sults show that automatic refactoring can benefit developers
to improve the energy efficiency for a considerable number
of FOSS Android applications.
As future work, we plan to study and support more en-

ergy efficiency refactorings. In particular, some of the en-
ergy patterns studied in previous work (Cruz and Abreu,
2019; Reimann et al., 2014; Reimann and Aβmann, 2013)
could help increase the usefulness of Leafactor. Besides,
it would be interesting to explore the detection of energy-

related smells using dynamic analysis. Moreover, it would
be interesting to integrate automatic refactoring in a contin-
uous integration context. The integration would require two
distinct steps: one for the detection and another for the code
refactoring which would only be applied upon a granting ac-
tion by a developer. One could also use this idea with an edu-
cational purpose. A detailed explanation of the code transfor-
mation along with its impact on energy efficiency could be
provided whenever a developer pushes new changes to the
repository.

Acknowledgements

This work is financed by the ERDF – European Regional Develop-
ment Fund through the Operational Program for Competitiveness
and Internationalization - COMPETE 2020 Program and by Na-
tional Funds through the Portuguese funding agency, FCT - Fun-
dação para a Ciência e a Tecnologia within project POCI-01-0145-
FEDER-016718. Luis Cruz is sponsored by an FCT scholarship
grant number PD/BD/52237/2013.

References
Agolli, T., Pollock, L., and Clause, J. (2017). Investigating
decreasing energy usage in mobile apps via indistinguish-
able color changes. InProceedings of the 4th International
Conference on Mobile Software Engineering and Systems,
pages 30–34. IEEE Press.

Banerjee, A. and Roychoudhury, A. (2016). Automated re-
factoring of Android apps to enhance energy-efficiency. In
Proceedings of the InternationalWorkshop onMobile Soft-
ware Engineering and Systems, pages 139–150. ACM.

Couto, M., Carção, T., Cunha, J., Fernandes, J. P., and
Saraiva, J. (2014). Detecting anomalous energy consump-
tion in Android applications. In Brazilian Symposium on
Programming Languages, pages 77–91. Springer.

Cruz, L. and Abreu, R. (2017). Performance-based guide-
lines for energy efficient mobile applications. In Proceed-
ings of the 4th International Conference on Mobile Soft-
ware Engineering and Systems, pages 46–57. IEEE Press.

Cruz, L. and Abreu, R. (2018). Using automatic refactoring
to improve energy efficiency of android apps. In CIbSE
XXI Ibero-American Conference on Software Engineering.

Cruz, L. and Abreu, R. (2019). Catalog of energy patterns
for mobile applications. Empirical Software Engineering.

Cruz, L., Abreu, R., and Rouvignac, J.-N. (2017). Leafac-
tor: Improving energy efficiency of Android apps via auto-
matic refactoring. In Proceedings of the 4th International
Conference on Mobile Software Engineering and Systems,
MOBILESoft ’17, pages 205–206. IEEE Press.

DiNucci, D., Palomba, F., Prota, A., Panichella, A., Zaidman,
A., and De Lucia, A. (2017). Petra: a software-based tool
for estimating the energy profile of Android applications.
In Proceedings of the 39th International Conference on
Software Engineering Companion, pages 3–6. IEEE Press.

Ebert, J., Riediger, V., and Winter, A. (2008). Graph technol-
ogy in reverse engineering–the tgraph approach. In Proc.

Cruz et al. 2019

10th Workshop Software Reengineering. GI Lecture Notes
in Informatics. Citeseer.

Etzkorn, L., Davis, C., and Li, W. (1998). A practical look
at the lack of cohesion in methods metric. In Journal of
Object-Oriented Programming. Citeseer.

Gottschalk, M., Josefiok, M., Jelschen, J., and Winter, A.
(2012). Removing energy code smells with reengineering
services. GI-Jahrestagung, 208:441–455.

Hao, S., Li, D., Halfond, W. G., and Govindan, R. (2013).
Estimating mobile application energy consumption using
program analysis. In Software Engineering (ICSE), 2013
35th International Conference on, pages 92–101. IEEE.

Hecht, G., Rouvoy, R., Moha, N., and Duchien, L. (2015).
Detecting antipatterns in Android apps. In Proceedings
of the Second ACM International Conference on Mobile
Software Engineering and Systems, pages 148–149. IEEE
Press.

Li, D. and Halfond, W. G. (2014). An investigation into
energy-saving programming practices for Android smart-
phone app development. In Proceedings of the 3rd In-
ternational Workshop on Green and Sustainable Software,
pages 46–53. ACM.

Li, D. and Halfond, W. G. (2015). Optimizing energy of
http requests in Android applications. In Proceedings of
the 3rd International Workshop on Software Development
Lifecycle for Mobile, pages 25–28. ACM.

Li, D., Hao, S., Gui, J., and Halfond, W. G. (2014). An em-
pirical study of the energy consumption of Android appli-
cations. In Software Maintenance and Evolution (ICSME),
2014 IEEE International Conference on, pages 121–130.
IEEE.

Linares-Vásquez, M., Bavota, G., Bernal-Cárdenas, C.,
Oliveto, R., Di Penta, M., and Poshyvanyk, D. (2014).
Mining energy-greedy api usage patterns in Android apps:
an empirical study. In Proceedings of the 11th Working
Conference on Mining Software Repositories, pages 2–11.
ACM.

Linares-Vásquez, M., Bernal-Cárdenas, C., Bavota, G.,
Oliveto, R., Di Penta, M., and Poshyvanyk, D. (2017).
Gemma: multi-objective optimization of energy consump-
tion of guis in Android apps. In Proceedings of the 39th
International Conference on Software Engineering Com-
panion, pages 11–14. IEEE Press.

Malavolta, I., Procaccianti, G., Noorland, P., and Vuk-
mirović, P. (2017). Assessing the impact of service work-
ers on the energy efficiency of progressive web apps.
In Proceedings of the 4th International Conference on
Mobile Software Engineering and Systems, pages 35–45.
IEEE Press.

Palomba, F., Di Nucci, D., Panichella, A., Zaidman, A.,
and De Lucia, A. (2017). Lightweight detection of
android-specific code smells: The adoctor project. In 2017
IEEE 24th International Conference on Software Analysis,
Evolution and Reengineering (SANER), pages 487–491.
IEEE.

Pang, C., Hindle, A., Adams, B., and Hassan, A. E. (2015).
What do programmers know about the energy consump-
tion of software? PeerJ PrePrints, 3:e886v1.

Pathak, A., Hu, Y. C., and Zhang, M. (2012). Where is the

energy spent inside my app?: fine grained energy account-
ing on smartphones with eprof. In Proceedings of the 7th
ACM european conference on Computer Systems, pages
29–42. ACM.

Pathak, A., Hu, Y. C., Zhang, M., Bahl, P., and Wang, Y.-
M. (2011). Fine-grained power modeling for smartphones
using system call tracing. In Proceedings of the sixth con-
ference on Computer systems, pages 153–168. ACM.

Pereira, R., Carção, T., Couto, M., Cunha, J., Fernandes, J. P.,
and Saraiva, J. (2017). Helping programmers improve the
energy efficiency of source code. In Proceedings of the
39th International Conference on Software Engineering
Companion, pages 238–240. IEEE Press.

Reimann, J. and Aβmann, U. (2013). Quality-aware refactor-
ing for early detection and resolution of energy deficien-
cies. In Proceedings of the 2013 IEEE/ACM 6th Interna-
tional Conference on Utility and Cloud Computing, pages
321–326. IEEE Computer Society.

Reimann, J., Brylski, M., and Aßmann, U. (2014). A
tool-supported quality smell catalogue for Android devel-
opers. In Proc. of the conference Modellierung 2014
in the Workshop Modellbasierte und modellgetriebene
Softwaremodernisierung–MMSM, volume 2014.

Sahin, C., Pollock, L., and Clause, J. (2014). How do code
refactorings affect energy usage? InProceedings of the 8th
ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement, page 36. ACM.

Sahin, C., Pollock, L., and Clause, J. (2016). From bench-
marks to real apps: Exploring the energy impacts of
performance-directed changes. Journal of Systems and
Software, 117:307–316.

Wilke, C., Richly, S., Gotz, S., Piechnick, C., and Aßmann,
U. (2013). Energy consumption and efficiency in mobile
applications: A user feedback study. In Green Computing
and Communications (GreenCom), 2013 IEEE and Inter-
net of Things (iThings/CPSCom), IEEE International Con-
ference on and IEEE Cyber, Physical and Social Comput-
ing, pages 134–141. IEEE.

Zhang, L., Tiwana, B., Qian, Z., Wang, Z., Dick, R. P., Mao,
Z. M., and Yang, L. (2010). Accurate online power esti-
mation and automatic battery behavior based power model
generation for smartphones. In Proceedings of the eighth
IEEE/ACM/IFIP international conference on Hardware/-
software codesign and system synthesis, pages 105–114.
ACM.

	Introduction
	Energy Refactorings
	ViewHolder: Add View Holder to scrolling lists
	DrawAllocation: Remove allocations within drawing code
	WakeLock: Fix incorrect wakelock usage
	Recycle: Fix missing recycle() calls
	ObsoleteLayoutParam (OLP): Remove obsolete layout parameters

	Automatic Refactoring Tool
	AutoRefactor
	XML refactorings

	Empirical evaluation
	Results
	Discussion
	Related Work
	Conclusion

