
Journal of Software Engineering Research and Development, 2021, 9:9, doi: 10.5753/jserd.2021.1802
 This work is licensed under a Creative Commons Attribution 4.0 International License..

How are test smells treated in the wild? A tale of two empirical
studies
Nildo Silva Junior [Federal University of Bahia | nildo.silva@ufba.br]
Luana Martins [Federal University of Bahia | martins.luana@ufba.br]
Larissa Rocha [Federal University of Bahia / State Univ. of Feira de Santana| lrsoares@uefs.br]
Heitor Costa [Federal University of Lavras | heitor@ufla.br]
Ivan Machado [Federal University of Bahia | ivan.machado@ufba.br]

AbstractDeveloping test codemay be a timeconsuming process that requires much effort and cost, especially when
done manually. In addition, during this process, developers and testers are likely to adopt bad design choices, which
may lead to introducing the socalled test smells in the test code. As the test code with test smells size increases, these
tests might become more complex, and as a consequence, much more challenging to understand and evolve them
correctly. Therefore, test smellsmay harm the test code quality andmaintenance and break thewhole software testing
activities. In this context, this study aims to understand whether software testing practitioners unintentionally insert
test smells when they implement test code. We first carried out an expert survey to analyze the usage frequency of a
set of test smells and then interviews to reach a deeper understanding of how practitioners deal with test smells. Sixty
professionals participated in the survey, and fifty professionals participated in the interviews. The yielded results
indicate that experienced professionals introduce test smells during their daily programming tasks, even when using
their companies’ standardized practices. Additionally, tools support test development and quality improvement, but
most interviewees are not aware of test smells’ concepts.

Keywords: Test Smells, Survey Study, Interview Study, MixedMethod Research.

1 Introduction
Software projects, both commercial and opensource ones,
commonly include a set of automated test suites as one cru
cial support to verify software quality (Garousi and Felderer,
2016). However, creating test code may require high ef
fort and cost (Wiederseiner et al., 2010; Yusifoğlu et al.,
2015; Garousi and Felderer, 2016). Automated test genera
tion tools, such as Randoop1, JWalk2, and Evosuite3, emerge
as alternatives to facilitate and streamline this activity. If
designed with high quality, automated testing offers bene
fits over manual testing, such as repeatability, predictabil
ity, and efficient test runs, requiring less effort and costs
(Yusifoğlu et al., 2015; Garousi andKüçük, 2018). Therefore,
tests should be concise, repeatable, robust, sufficient, nec
essary, clear, efficient, specific, independent, maintainable,
and traceable (Meszaros et al., 2003).
However, the development of welldesigned test code is

neither straightforward nor a simple task. Developers are usu
ally under time pressure and must deal with constrained bud
gets, which can stimulate antipatterns in test code, leading
to the occurrence of the socalled test smells. Test smells are
indicators of poor implementation solutions and problems in
test code design (Greiler et al., 2013). The presence of test
smells in test code may lead to reduced quality and, conse
quently, may not reach its expected capabilities at finding
bugs while remaining understandable, maintainable, and so
on (Yusifoğlu et al., 2015; Garousi and Küçük, 2018). The lit
erature reports 196 test smell types classified in the following

1https://randoop.github.io/randoop/
2http://staffwww.dcs.shef.ac.uk/people/A.Simons/

jwalk/
3http://www.evosuite.org/

groups (Garousi and Küçük, 2018): behavior, logic, design
related, issue in test steps, mock and stubrelated, association
in production code, coderelated, and dependencies.
The literature presents studies aimed to identify and an

alyze the effect of test smells in software projects in sev
eral aspects (Greiler et al., 2013; Garousi and Felderer, 2016;
Van Rompaey et al., 2006). The authors introduce test smells
as nonfunctional quality attributes within the Software Test
Code Engineering process in those studies. In addition, they
discussed existing test smell types and their consequences in
terms of test code maintenance (Garousi and Felderer, 2016).
Some authors attempted to correlate metrics, and the pres
ence of test smells (Greiler et al., 2013). However, few dis
cussions about daily practices and programming styles that
may contribute to insert test smells exist in the literature. Un
derstanding the relationship between development practices
and the introduction of test smell may support improving the
activity of test creation.
This study extends our previous investigation (Silva Junior

et al., 2020), which aimed to understand whether software
testing practitioners 4 unintentionally insert test smells. We
used an expert survey with sixty practitioners from Brazilian
companies to analyze which and how often they adopt prac
tices that might introduce test smells during test creation and
execution. In this extension, we sought to understand (i) how
much the practitioners know about test smells and (ii) how
the practitioners deal with the test code quality regarding test
smells. For identifying whether and to what extent the practi
tioners know about test smells and how they deal with them,
we interviewed fifty practitioners. The results from both stud

4For simplicity, we will use “practitioners” to inform “software testing
practitioners”

https://orcid.org/0000-0003-1763-3421
mailto:nildo.silva@ufba.br
https://orcid.org/0000-0001-6340-7615
mailto:martins.luana@ufba.br
https://orcid.org/0000-0002-8069-5249
mailto:lrsoares@uefs.br
https://orcid.org/0000-0002-9903-7414
mailto:heitor@ufla.br
https://orcid.org/0000-0001-9027-2293
mailto:ivan.machado@ufba.br
https://randoop.github.io/randoop/
http://staffwww. dcs.shef.ac.uk/people/A.Simons/jwalk/
http://staffwww. dcs.shef.ac.uk/people/A.Simons/jwalk/
http://www.evosuite.org/

Silva Junior et al.

ies are complementary. We found that most of the intervie
wees did not know anything about the concept of test smells.
They commonly used practices that introduced test smells,
but they hardly removed them from the test code.
We mapped which daily programming practices would be

associated with each test smell for both test creation and ex
ecution. Then, we asked the practitioners if they used those
practices without the need to name the test smells. We used
the interviews to complement the survey and analyze the
practitioners’ unit test creation, maintenance, and quality ver
ification activities. In addition, we investigated the practition
ers’ knowledge about test smells and how they treat those
smells during unit test creation and maintenance.
Our study may provide insights to understand how and

which practices may introduce test smells in test code. In ad
dition, we presented the practitioners’ point of view about
activities related to unit test code and their beliefs about test
smells’ treatment. Thus, we investigated the following re
search questions:

RQ1: Do practitioners use test case design prac
tices that might lead to the introduction of
test smells? We investigated whether bad design
choices may be related to test smells.

RQ2: Which practices are present in practitioners’
daily activities that lead to introducing test
smells? We investigated which test smells are as
sociated with the most frequent practitioners’ prac
tices.

RQ3: Does the practitioners’ experience interfere
with the introduction of test smells? We investi
gated whether, over time, practitioners improve the
activity of test creation.

RQ4: How aware of test smells are the practitioners?
We investigated the practitioners’ knowledge of
test smells.

RQ5: What practices have practitioners employed to
treat test smells? We investigated how the practi
tioners deal with test smells in their daily activities.

The remainder of this article is structured as follows: Sec
tion 2 introduces the concept of test smells; Section 3 details
the research method applied in this study; Section 4 presents
the survey’s design and results; Section 5 presents the inter
view’s design and results; Section 6 discusses the main find
ings of this investigation; Section 7 presents the threats to va
lidity; Section 8 discusses related work, and Section 9 draws
concluding remarks.

2 Test Smells
Automated tests may generate more efficient results when
compared to manually executed ones. Due to their repeata
bility and nonhuman interference, automated tests might
lead to time and execution effort reductions (Yusifoğlu et al.,
2015; Garousi and Küçük, 2018). However, developing test
code is not a trivial task, and the automated tools may not en
sure the system quality because they can generate one poor
design (Palomba et al., 2016; Virgínio et al., 2019). In real
world practice, developers are likely to use antipatterns dur

ing test creation and evolution, leading to errors in imple
menting test code (Van Deursen et al., 2001; Bavota et al.,
2012). These antipatterns may negatively impact test code
maintenance (Van Rompaey et al., 2006).
Several studies investigated different types of test smells.

Initially, Van Deursen et al. (2001) defined a catalog of 11
test smells and refactorings (to remove test smells from the
test code). After that, other authors extended this catalog
and analyzed the effects of the smells on the production
and test code (Van Deursen et al., 2001; Meszaros et al.,
2003; Van Rompaey et al., 2006; Bavota et al., 2012; Greiler
et al., 2013; Bavota et al., 2015; Garousi and Felderer, 2016;
Palomba et al., 2016; Peruma, 2018; Virgínio et al., 2019;
Virgínio et al., 2020). For example, Garousi and Küçük
(2018) identified more than 190 test smells in a literature re
view of 166 studies.

In this study, we selected 14 types of test smells frequently
studied and implemented in cuttingedge test smell detection
tools (Van Deursen et al., 2001; Meszaros et al., 2003; Pe
ruma, 2018). These are described next:

• Assertion Roulette (AR). A test method that contains
assertions without explanation. If one of those asser
tions fails, it is not possible to identify which one caused
the problem (Van Deursen et al., 2001);

• Conditional Test Logic (CTL). A test method with
conditional logic (ifelse or repeat instructions). Tests
with this structure do not guarantee that the same flow
is verified, as they might not test a specific code piece
(Meszaros et al., 2003);

• Constructor Initialization (CI). A test class that
presents a constructormethod instead of a setUpmethod
to initialize fields (Peruma, 2018);

• Eager Test (ET). A test method checks many object
methods at the same time. This test may be hard to un
derstand and execute (Van Deursen et al., 2001);

• Empty Test (EpT). A test method does not contain ex
ecutable assertions (Peruma, 2018);

• For Testers Only (FTO). A production class has meth
ods only used by test methods (Van Deursen et al.,
2001);

• General Fixture (GF). The fields instantiated in the
setUp method are not used by all test methods of a test
class. It may be hard to read and understand and may
slow down the test execution (Van Deursen et al., 2001);

• Indirect Testing (IT). A test class has methods that
perform tests in different objects because there are ref
erences to those objects at the test class (Van Deursen
et al., 2001);

• Magic Numbers (MN). A test method contains asser
tions with literal numbers as a test parameter (Meszaros
et al., 2003);

• Mystery Guest (MG). A test method uses an external
resource, such as a file with test data. If the external file
is removed, the tests may fail (Van Deursen et al., 2001);

• Redundant Print (RP). A test method contains irrele
vant print statements (Peruma, 2018);

• Resource Optimism (RO). A test method contains op
timist assumptions about the presence or absence of ex
ternal resources. The test may return a positive result

Silva Junior et al.

Figure 1. Research method overview.

once, but it may fail at other times (Van Deursen et al.,
2001);

• Test Code Duplication (TCD). A test method has un
desired duplication (Van Deursen et al., 2001);

• Test Run War (TRW). A test method fails when sev
eral tests run simultaneously and access the same fix
tures (Van Deursen et al., 2001).

3 Research Method

We carried out two empirical studies in this investigation: a
survey and an interview study (Miles et al., 2014). Figure 1
shows the methodological steps employed in this study.
Initially, we designed our study by defining the research

questions and the suitable research methods to investigate
them (Fig. 1 Design). We used the survey research method
to identify which programming practices respondents (practi
tioners who participate in the survey) adopt that might insert
test smells in the test code (Fig. 1 Survey). We next applied
the interview study method to identify how the interviewees
(practitioners who participate in the interview) deal with test
smells during the test creation and execution (Fig. 1 Inter
view). We compared results obtained from both surveys and
interviews to understand the adoption of practices that might
lead to introducing test smells with the practitioners’ knowl
edge about test smells from different perspectives (Fig. 1
Data Comparison).
For the survey, we adopted the design of observation by

casecontrol. Casecontrol is a descriptive design used to in
vestigate previous situations to support understanding a cur
rent phenomenon (Pfleeger and Kitchenham, 2001). It en
compasses activities for the design, application, and analy
sis of a survey questionnaire. We designed the questionnaire

not to require specific knowledge about test smells.We corre
lated each test smell to a set of programming practices, which
the participants should read and analyze. Section 4 details the
survey study.
To complement the findings of the survey questionnaire,

we carried out a semistructured interview (Singer et al.,
2008; Gubrium et al., 2012). The interview’s structure aims
to capture the interviewees’ perception of test smells. As we
needed the interviewees to know the definition of test smells
for elaborating on how they deal with them, we first intro
duced them to the concept of test smells. Section 5 details
the interview study. The survey and interview instruments
were written and applied in the Portuguese language with
Brazilian practitioners. Finally, the data comparison summa
rizes the survey and interview results methods to answer
the research questions (Creswell and Clark, 2018). Section
6 presents the results.

4 Survey Study
We applied the survey research method to investigate how
the respondents commonly insert test smells in the test
codewhen designing or implementing their software projects
(Melegati andWang, 2020). Throughout this section, we pro
vide readers with detailed information about the research de
sign and data analysis. All material used in the survey study,
including the dataset, is publicly available at (Junior et al.,
2021).

4.1 Design

We structured the questionnaire so that the respondents were
not required to be aware of test smells beforehand. Thus, we

Silva Junior et al.

Table 1. Examples of practices related to test smells.

Test Smell Test Creation Practices Test Execution Practices

Mystery Guest I often create test cases using some configuration file (or
supplementary) as support.

A test case fails due to the unavailability of access to
any configuration file.

Eager Test I often create tests with a high number of parameters
(number of files, database record, etc.).

I run some tests without understanding what their pur
pose is.

Assertion Roulette I pack different test cases into one (i.e., put together tests
that could be run separately).

Some tests fail, and it is not possible to identify the fail
ure cause.

For Testers Only I have already created a test to validate some feature that
will not be used in the production environment.

I run some tests to validate features that will not be used
in the production environment.

Conditional Test Logic I have already created conditional or repeating tests. I run tests with conditional or repeating structures.

Empty Test I have already created an empty test with no executable
statement.

I find empty tests, with no executable statement.

covered a larger number of potential practitioners. We cor
related the concepts of test smells to commonly applied test
creation and execution practices. Table 1 shows examples of
those practices. For instance, the practices associated with
Conditional Test Logic (CTL) use loops or conditions in the
test code. In this case, the respondents should analyze the
practices to determine whether and how often they adopt
them. In CTL, the respondents should indicate how often
they create tests with those structures or face them during
test execution.

Questionnaire Instrument
The questionnaire comprises three blocks of questions.

The first block characterizes the respondents (profile) and
has thirteen questions to identify their age, gender, education
degree, and software testing/programming skills.
The second block has fourteen statements and six comple

mentary questions (four objective and two openended ques
tions). The statements describe creation practices related to
test smells. We structured those statements in a fivepoint
Likert scale, where the respondents could choose one of the
following answers: always, frequently, rarely, never, or not
applicable. In this scale, always indicates the adoption of bad
practices for test creation. For example, the “I have already
created a test to validate a feature that would not be used
in the production environment” statement corresponds to the
For Testers Only test smell. Therefore, the answer “Always”
means that the respondent usually uses that practice in her
daily tasks. As a consequence, it is likely that she uninten
tionally inserts that test smells in the test code. We designed
the six complementary questions to understand how the prac
titioners deal with the test creation activity.
The third block has fourteen statements and one additional

question. Those statements describe execution practices re
lated to test smells. Like the former block, we structured
those statements on a fivepoint Likert scale. The respon
dents could choose one of the following answers: always, fre
quently, rarely, never, or not applicable, where always indi
cates that the respondent comes across with test smells. We
designed the complementary question to understand which
problems the respondents deal with when executing the tests.
The survey was available from April 3rd, 2019, to June 3rd,
2019. Appendix A includes all the questionnaire statements
and questions used in this study.

Pilot Application
We ran a pilot survey with four practitioners to identify

improvement opportunities. Based on the responses, we im
proved the questionnaire before running the survey. It is
worth mentioning that we did not include data gathered in
the pilot application in the research results.

Participants
We sent invitations and one questionnaire copy (C1 C8)

to practitioners from eight Brazilian companies on a conve
nience sampling basis. The questionnaire’s different versions
served to control the number of respondents from the compa
nies. Those companies have 4 to 66 practitioners who per
form manual and automated tests (Table 2). In addition, we
also sent the questionnaire through direct message (D1) and
posted it on a Facebook group dedicated to discussing soft
ware testing (G1). In total, we contacted 305 practitioners,
and 60 practitioners participated in the survey (#S1 #S60).

Analysis Procedure
To answer RQ1, we analyzed the objective questions

(statements) on test creation (second block) and execution
(third block). To answer RQ2, we grouped the practices by
frequency to identify the most commonly used ones. The
practices may be associated with test smells according to
their characteristics, such as external file usage, conditional
structure, and programming style. To answer RQ3, we com
pared the professional experience with the frequency of use
of test smells. We also used the same answer format of RQ1
but only considered test creation (second block). During the
test execution, respondents identify test smells instead of cre
ating them.
We analyzed the three openended questions through cod

ing and continuous comparison (Kitchenham et al., 2015).
The objective was to understand why the respondents use
practices that may insert test smells. In addition, we also in
tended to understand which difficulties they encounter when
creating and executing tests. Two researchers performed the
coding task and validated it by consensus.We also associated
some practices with the test code characteristics defined by
Meszaros et al. (2003).
We employed open coding on the data collected to identify

additional reasons why the respondents may use bad prac
tices in their software testing activities. The obtained codes
were peerreviewed and changed upon agreement with the

Silva Junior et al.

Table 2. Respondents

Source Professionals Answers

C1 66 14
C2 30 1
C3 10 0
C4 6 0
C5 5 0
C6 4 4
C7 4 4
C8 4 0
D1 52 35
G1 124 2

Total 305 60

paper authors. We used coding to complement our results on
openended questions because they were optional.

4.2 Results
We received 60 answers (out of 305 potential respondents)
from three Brazilian states: 40 respondents from Bahia
(66.7%), 19 respondents from São Paulo (31.7%), and one re
spondent from Paraná (1.6%). The respondents ranged from
22 to 41 years old, and their experience with quality assur
ance ranged from 0 to 13 years (5.16 on average). Experi
ence as software developers also ranged from 0 to 13 years
(average 1.67). Regarding gender, 35 respondents were male
(65%), 19 respondents were female (32%), and two respon
dents were nonbinary (3%).
Most of the respondents hold a degree in Computer

Sciencerelated courses (50 respondents 83.3%), six respon
dents (10%) hold a degree in other STEM (Science, Tech
nology, Engineering, and Mathematics) courses, and four re
spondents (6.7%) hold a degree in other areas. Most of the re
spondents (54 respondents 90%) pursued higher education
degrees, as follows: 40 respondents hold a bachelor’s degree
(66.7%), 13 respondents hold a graduate degree (21.7%), and
one respondent holds a postdoc (1.6%).
Regarding the software testing tasks they commonly per

form, (i) 26 respondents reported they create and run tests
at the same rate (43.3%); (ii) 13 respondents execute tests
with more frequency than create (21.7%); and (iii) 8 respon
dents create tests with more frequency than execute (13.3%).
Moreover, 12 respondents only execute test cases (20%); one
respondent only creates test cases (1.7%). They perform tests
over many different platforms; 35 respondents (58%) work
with two or more platforms (Web 39 respondents (65%),
Android 35 respondents (58%), Desktop 29 respondents
(48%), and Apple 17 respondents (28%)). They also cited
other platforms, such as backend, microservices, API, main
frame, and cable TV one respondent each (1.67%).
In terms of domain, 39 respondents claimed they test mo

bile applications (65%), and 36 respondents test web appli
cations (60%). We also identified the following domains: 14
respondents work with embedded systems (23.33%), 11 re
spondents work with cloud computing (18.33%), seven re
spondents test information security (11.67%), four respon
dents test Internet of Things systems (6.67%). They alsomen
tioned other domains: big data, retail, artificial intelligence,
cable TV, bioinformatics, commercial information, desktop

Figure 2. Test Smells frequency in test creation.

system, and payment solutions one respondent each (1,67%
each).

4.2.1 Test creation and execution practices

We asked whether the respondents search for test duplica
tion and whether it was either personal or company prac
tice. Twentynine respondents (48,3%) answered that it was
only an individual activity. Eleven (18,3%) responded that it
was only a company’s practice, and three respondents (5%)
claimed that it was a personal and company activity. How
ever, seventeen respondents (28,3%) do not apply this activ
ity. Checking tests with the same objective reduces the Test
Code Duplication (TCD) test smell.
In addition, we established a relationship between the test

creation and execution practices and the test smells occur
rence using the data collected. Figures 2 and 3 show the us
age frequency of test smells during the test creation and exe
cution activities, respectively.
During test creation, the Conditional Test Logic (CTL)

and General Fixture (GF) test smells were the most re
ported ones. The former obtained 28 (47%) of Always and
Frequently responses, and the latter, 27 (45%) in both re
sponses (Figure 2). The high rate of those responses may in
dicate a common everyday use of practices related to CTL
and GF. We also analyzed why developers create tests with
bad practices (one openended nonmandatory question an
swered by 27 respondents 45%). The main reasons were
related to the company or personally employed standards,
limited time, and attempt to reach better coverage and effi
ciency.
We also asked whether they modified existing test sets

when they came across tests containing any of the problem
atic test patterns illustrated in the survey.We found that seven
respondents (11,7%) always perform any test code changes,
twentythree respondents (38,3%) frequently change, six
teen respondents (26,6%) rarely change, seven respondents
(11,7%) never edit test code, and seven respondents (11,7%)
answered as not applicable. Among the reasons to modify the
test, eighteen respondents reported ambiguities reduction
(30%), sixteen respondents claimed execution speed im
provement (26,7%), fourteen respondents stated adequacy

Silva Junior et al.

to the company standards (23,3%), eight respondents did
not understand test objective (13,3%) and four respondents
stated corresponding production class evolution (6,7%).

In addition, the respondents pointed out that they used
to face test structure problems. Thirtyone respondents in
dicated that some tests depended on third party resources
(52%), 29 respondents reported that they were hard to under
stand (48%), 24 respondents claimed to contain unnecessary
information (40%), 24 respondents said ambiguous informa
tion (40%), 20 respondents reported to depend on external
files (33%), six respondents pointed to use an external config
uration file (10%). One respondent presented resources limi
tation (2%).

Regarding difficulties in creating test cases (one open
ended nonmandatory question answered by 23 respondents
(38%)), requirement issues were the most frequent ones, re
ported by twelve respondents (52%). Other problems were
related to the difficulties in the test code reuse, lack of knowl
edge, production code issues, code coverage, test environ
ment problems, and time and resource limitation.

The test execution questions also presented a sequence of
statements about ordinary situations the developers usually
face, in which respondents should answer according to the
frequency. The CTL (52%) and GF (47%) test smells were
also the most cited during test execution (Figure 3). Those
test smells obtained 31 and 28 answers of Always and Fre
quently frequencies, respectively.

Figure 3. Test Smells frequency in test execution.

Regarding difficulties in running test cases (one open
ended nonmandatory question answered by 29 respondents
 48%), ten respondents reported test environment as a prob
lem related to test execution (34%), such as test environ
ment unavailability, demand for thirdparty features, and
lowperformance environments. The second most common
problem is understanding the test purpose (28%), where eight
respondents reported that tests were poorly written and with
out a standard, allowing multiple interpretations. The lack
of test maintenance was the third problem (24%), which in
volves outdated and incomplete tests due to the system code
evolution (7 respondents).

Table 3. Answers grouped by experience range

Experience (in years) Number of respondents Total

0 2 11 143
> 2 4 12 156
> 4 6 15 195
> 6 8 5 65
> 8 10 9 117
> 10 12 4 52
> 12 14 4 52

4.2.2 Professional Experience

Although most respondents from the survey reported they
create and execute tests simultaneously, our investigation
presented a different scenario as the tester gets more expe
rienced. Figure 4 shows the daily activities according to the
professional experience, with the following highlights: 10 re
spondents (16.7%) with experience ranging from 4 to 6, and
5 respondents (8.3%) with 8 to 10 years of experience create
and execute tests at the same proportion. Eight respondents
(13.4%) with less than two years of experience, six respon
dents (10%) ranging from 2 to 4 years of experience, and
four respondents (6.7%) ranging from 6 to 8 years of expe
rience only run tests or run tests with more frequency than
create. Three respondents (5%) with more than 12 years of
experiencemostly create rather than run tests. Therefore, less
experienced respondents run more than creating tests, and re
spondents with more experience create more than run tests.

Figure 4. Testing tasks according to professional experience.

We also analyzed whether the use of good practices to
create tests increases as respondents become more experi
enced. We provided the respondents with thirteen statements,
with illustrative scenarios of problems with test cases. Each
scenario relates to a given test smell. The respondents had
to answer how often they experienced each scenario. Table
3 shows the number of respondents grouped by experience
time (in years) and the number of valid responses.
Figure 5 presents the frequency of test smells grouped by

professional experience. When we analyzed the first expe
rience range (02), 71 answers (50%) from the respondents
could not identify the adoption of practices related to test
smells (Not applicable). 9 (6%) answers pointed that respon

Silva Junior et al.

Figure 5. Test Smells frequency in test creation according to professional experience.

Table 4. Interview questions

Question

1 How did you start working with software test?
2 What were your learning sources about test code?
3 Which programming languages do you create tests for?
4 Which programming languages do you use in your current software project?
5 How is your test creation process?
6 Is there any flowchart or template document that standardizes this process?
7 Which support tools are used for test creation and execution?
8 How do you verify the quality of unit tests?
9 Moving to the test code maintenance process, tell me how is this process inside the company?
10 What do you know about the test smell?
11 How did you learn about that?
12 Do you have any doubt about test smell?
13 How are the test smells handled in the unit testing creation process?
14 How are the test smells handled in the unit testing maintenance process?
15 How would it be possible to avoid the introduction of test smells during test creation?
16 Do you have any question, additional information or suggestion to improve this interview?

dents Always adopted some practice related to test smells, 16
(11%) answers related to Frequently, 29 (20%) answers to
Rarely, and 18 (13%) answers to Never adopted practices re
lated to test smells. When we extended that analysis through
the next experience ranges, we could not observe any in
crease in responses Never and Rarely with the professional
experience, indicating that the experience might not influ
ence the adoption of practices that lead to the introduction
of test smells.

5 Interview Study
After carrying out the survey study, we interviewed Software
Engineers to gather further evidence on how the practitioners
deal with test smells, develop unit test code, and deal with
test smells in test creation and maintenance. The interview
dataset, including the interview transcriptions, interviewees
profile, and coding summary, is publicly available at (Junior
et al., 2021).

5.1 Design
We employed a semistructured interview approach, guided
by a set of sixteen questions, as Table 4 shows.

Interview Organization
We organized the interview into three blocks:

• Warmup block (#13).Questions about the professional
background, such as the learning resources on software
test code the interviewees commonly use, as well as the
programming language they often use to implement test
code, if any;

• Technical block (#49). Questions about how they cre
ate, maintain, and assess the quality of developed unit
tests;

• Test Smell block (#1015). Questions about the intervie
wees’ awareness of test smell and how they handle these
in test case creation and maintenance.

The interviewees could also ask for more information or
give additional information and suggestions to increase the
interview quality (question #16). Unlike the survey, in the in
terview, we employed the actual test smell term in the ques
tions related to such the concept instead of considering a
transitive approach through statements containing practices
embedded with test smells. When the participants were not
aware of the term or asked for more information on test
smells, we presented the concept and two test smells samples,
e.g., CTL and EpT (Virgínio et al., 2020). Those test smells
were related to the most and the least frequently program
ming practice used on survey results, respectively. There
were no questions about challenges or problems involved
in creating and maintaining test code. The interviewees an
swered the questions in Table 4 according to their experi
ences, concepts, and shared information during the meeting.

Silva Junior et al.

The interviewer and interviewees did not access any test code
from interviewees to analyze the presence of test smells.
At the beginning of the interview, the practitioners an

swered a professional profile’ form with academic back
ground and professional experience. They also provided an
email to solve eventual doubts or collect more data during
data analysis.We interviewed on June 3rd and June 30th. Due
to the pandemic period, online meeting tools, such as Skype
and Google Meet, were used upon the participants’ request.
We recorded the interviews with either the Skype conversa
tion recording tool or the GoogleMeet screen capture feature.
Additionally, we used an external voice recorder for every in
terview.

Participants
Initially, we contacted practitioners from the survey who

agreed to keep contributing to research. Unlike the survey,
we opted only for test code developers whose focus was
creating and maintaining unit testing, including the treat
ment of test smells. Some interviewees participated in the
survey study because we applied the snowballing technique
(Kitchenham et al., 2015). Next, we used LinkedIn to invite
other potential participants, using the “unit testing” expres
sion in the profile ability search Linkedin provides users. A
total of 50 practitioners accepted the invitation (#I1 #I50).

Pilot Study
We performed two pilot interviews with practitioners to

measure the interview length and analyze whether it would
be necessary to modify any part of the predefined instrument.
As a result, there was no need to perform any changes in
the instrument. The average interview length was around 30
minutes.

Analysis Procedure
The first author was the one responsible for transcrib

ing the interviews. From them, we performed open coding
(Corbin and Strauss, 2014) to answer the research questions.
The remaining coauthors analyzed the transcriptions to un
derstand how the practitioners develop tests and deal with
test smells. First, we analyzed and validated the coding until
we reach a consensus. In the following, two authors individ
ually reviewed the proposed coding. In the end, one expert
researcher reviewed the final coding.

5.2 Results
The interviewees could answer openended questions in dif
ferent ways, according to their reality. Therefore, when pre
senting the results, some responses got more than 100% dur
ing the quantitative analysis.
The respondents’ age ranged from 20 to 48 years old, most

of them ranging from 25 to 34 years old (60%). Regarding
their education, six respondents have completed high school
(12%), 31 respondents completed an undergraduate school
(62%), and 13 respondents hold a graduate degree (26%).
Additionally, 48 respondents either have a degree or were
studying any Computer Sciencerelated course (96%), one
respondent holds a degree in Applied Business (2%), and one
respondent holds a degree in Psychology (2%).
The respondents worked in companies of different sizes,

Table 5. Respondents’ roles

Role Respondents %

Developer 22 44%
Software Engineer 7 14%
Systems Analyst 7 14%
Software Architect 5 10%
Team Leader 3 6%
Automation Engineer 2 4%
Consultant 2 4%
Project Manager 2 4%
Quality Specialist 2 4%
Quality Engineer 1 2%
Test Developer 1 2%
Test Analyst 1 2%

Table 6. Programming languages

Language Respondents %

Java 25 30%
JavaScript 14 17%
C# 11 13%
TypeScript 8 10%
Python 7 9%
Kotlin 5 6%
PHP 4 5%
Swift 3 4%
Ruby 2 2%
C 1 1%
C++ 1 1%
Elixir 1 1%
Go 1 1%

as follows: (i) 10 respondents worked in small companies
(less than 50 employees 20%); (ii) 5 respondents worked in
mediumsized companies (number of employees in the range
from 50 to 99 employees 10%); and (iii) 35 respondents
worked in largesized companies (more than 99 employees
 70%). Additionally, the interviewees were responsible for
different tasks within companies related to their current roles
(Table 5). They created unit tests for mobile, desktop, and
web platforms using different programming languages (Ta
ble 6). Their experience in software development tasks var
ied from 1 to 20 years, of which more than 50%were in the 1
6 years of experience range. Two out of them were not work
ing with unit test creation whenwe interviewed them. In such
cases, they should consider their previous experience.
We compared and analyzed the information for the open

coding analysis and grouped them into codes using sentences,
paragraphs, or the entire document. For example, when we
asked them about their unit test creation process, the intervie
wee #I47 answered: “When I worked only with Java [...] if I
know the context well if I have deep knowledge of the context
that I will develop, I like to do a little TDD [...], but unfortu
nately this is not something that can be 100% reality in the
business, because you have N situations, N circumstances. So
I cannot do TDD; at least I develop the specific feature, [...]
the features, methods, etc., and then I will test it, for example,
for each method that I know has a logic within that method,
I do the test cases for N possibilities”. From this answer, we
identified the following codes: CodeA TDD; CodeB TLD;

Silva Junior et al.

CodeC depends on personal skill. We found 159 codes.
We did not consider the warmup block answers (#1

3) as we used them to stimulate the interviewees to pro
vide as much information as possible. We used the technical
block answers (#49) to analyze how the interviewees cre
ated, maintained, and verified the test quality to complement
and compare the survey’s supplementary questions. We used
the answers for question #10 to analyze which information
the interviewees presented about test smells. Therefore, we
could answer RQ4. Questions #11 and #12 complemented
question #10. We used answers for questions #13 and #14 to
analyze the strategies for dealing with test smells and answer
the RQ5. Then, we analyzed the answers given to question
#16 to understand how the interviewees believe it was pos
sible to avoid introducing test smells. Those questions let us
understand better how they create, maintain, and verify unit
test codes and how they deal with and possibly avoid test
smells.

5.2.1 Unit test code creation and maintenance

We found that the developers usually create unit test code
using TestDriven Development (TDD) (48%), Test Last De
velopment (TLD) (42%), or Behavior Driven Development
(BDD) (16%). Those strategies’ usage was motivated accord
ing to the project task or developer’s knowledge about the
project’s programming language or architecture. For exam
ple, the interviewee #I16 stated that he used TDD when he
dominated the programming language; otherwise, the func
tional software code was created first and then tested (TLD).
The interviewee #I25 claimed that she created unit tests ac
cording to the stories from the BDD scenario. When there
was no scenario, she used TDD. The method adoption could
also depend on if the software was new or legacy. The in
terviewee #I32 pointed that TDD was used on new projects
when possible, and he used a BDD variation before the soft
ware code creation.

During the test code creation description, four intervie
wees (8%) mentioned using Mocks to simulate components,
and two interviewees (4%) used to adopt clean code prac
tices. For instance, the interviewee #I22 claimed he creates
easytoread and understand, fast, and independent test codes.
The interviewee #I36 uses code patterns and creates less ver
bose tests. Additionally, the focus of four interviewees (8%)
is on test coverage. The interviewee #I12 claimed that he
identifies “interesting features” to test. According to the inter
viewee #I43, the test code should cover 80% of the software
code. Moreover, the interviewee #I10 mentioned the SOLID
principles, and the interviewee #I15 adopts theModelView
ViewModel (MVVM) project pattern (#I15) as practices dur
ing the test creation.
When we asked whether there was any document that stan

dardized unit test creation, nine interviewees (18%) indicated
the use of templates or some other documentation. The in
terviewees #I5 and #I9 mentioned a test template in their
projects that the teammembers could adopt. The interviewee
#I29 claimed his team followed theMicrosoft’s official doc
umentation, but there was not any internal document. The
interviewee #I39 mentioned using a Domain Specific Lan
guage (DSL) to share project information, as follows: “On

project day 0, we create and standardize an official DSL for
the code. You have prerogatives, you have the test, and you
have the result”. In addition, some interviewees answered
that there was no documented standard, but they adopted
the GivenWhenThen (GWT) pattern and the ArrangeAct
Assert (AAA) programming practices.

Furthermore, the interviewees mentioned 90 different
tools to create and run tests. Those tools are related to (i)
code development (JUnit 42%, Jest 14%, and Visual Stu
dio 20%); (ii) metrics analysis (Sonar tools 18%), and (iii)
Continuous integration (Jenkins 10%, Azure 2%, and Cir
cle CI 2%).
After creating unit test code, the test quality assessment

was performed through code review (78%) by one or more
developers inside the project team. This activity usually was
supported by tools, such as Pull Panda. For example, the in
terviewee #I2 claimed: “Pull Panda5 is a tool used to ran
domly assign one or more developers to perform the code
review. [...]”. Furthermore, two other interviewees (inter
viewee #I4) and (interviewee #I16) reported that they per
formed peer review (4%), and four interviewees claimed they
commonly verify test code quality through pair program
ming (8%). Other practices identified were: test coverage
(30%), metric analysis tool (24%) (e.g., SonarQube tool), re
viewing by continuous integration tool (16%), test execution
(10%), application of programming practices (10%) (reuse,
clean code, and libraries), running mutant test tool (6%),
test validation by external Quality Assurance team (2%), and
static validation (2%). Three interviewees reported that there
were “no test quality assurance” activities because there
were not enough tests to perform this activity or because the
company does not support it.
The interviewees adopted various test maintenance types

distributed by corrective (62%), adaptive (36%), preventive
(4%), and perfective (4%) maintenance. Four interviewees
claimed there was no test code maintenance due to: (i) there
was no defined maintenance process (interviewee #I22); (ii)
the participation in one new project and no maintenance task
was required (interviewee #I24); absence of maintenance ac
tivity because of shortage of time (interviewees #I24 and
#I36); and (iv) project environment (interviewee #I45).

5.2.2 Test smells treatment

We asked the interviewees about their knowledge of test
smells to understand whether they comprehended the study
subject. Figure 6 summarizes the results. Seven interviewees
(14%) demonstrated some knowledge of test smells. For ex
ample, the interviewee #I2 answered: “I know a few things.
I consider these as bad practices, bad choices that you make
in your test code that difficult its maintenance and evolu
tion.”. Twentythree interviewees (46%) related test smells
with code smells but claimed they have never heard of the
test smells. The interviewee #I16 mentioned: “Test smell, I
do not know the concept. The code smell is a problem that
the static test analysis tool found in the program. Would test
smell be that same analysis on top of the test code?”. Finally,
twenty interviewees (40%) did not know test smells and did
not relate to any smells type.

5https://pullpanda.com/

https://pullpanda.com/

Silva Junior et al.

We presented the definition and examples of two test
smells (CTL and EpT) for the interviewees who did not know
about test smells or asked for more information. Table 7
shows how they prevent test smells during test code cre
ation and how they treat test smells during the test code cre
ation and maintenance. For example, during the test code cre
ation, the Code review practice was the most recommended
(38%), followed by Tool usage (26%) and Programming
practices (24%). When developing the test code, the devel
oper should follow the programming practices to prevent test
smells. Tools and code reviews help to check the test smells
insertion in an early stage of development. Two interviewees
believed there were not test smells in their repository. For
example, the interviewee #I39 said: “I think we do not have
this problem (test smells) in the recent project because of its
difficulty level, we follow a coding standard. We educate peo
ple on how we code it [...]”. The interviewee #I11 also said:
“As I am the only one working on the project, I coded, under
stood, and never had this vision of test smells. I do not think
I have any problem with that.”.

Regarding maintenance, we asked how the interviewees
treated test smells during the test code maintenance. The an
swers were similar to the previous question (Table 7). For the
test codemaintenance, theCode reviewwas also themost rec
ommended practice (28%), followed by Refactoring (20%)
and Tool usage (18%). As the test code was already devel
oped and might have test smells, they suggested using tools
to help detect test smells and refactoring techniques to re
move them from the test code. The code review practice can
doublecheck the test code to treat the test smells during the
maintenance.

We also asked the interviewees how to prevent test smells
during test code creation (Table 7). For the test smells pre
vention, the Tool usage was the most recommended practice
(44%), followed by Developers’ skills (28%) and Code re
view (20%). The developers’ skills are related to develop
ing tests’ knowhow by following good practices, guidelines,
and coding patterns. It should help the developers identify
and prevent flaws in designing and implementing a test code.
The tool usage can support the developers when developing
a test code by identifying possible test smells. The code re
view is a manual analysis of the test code to doublecheck
the test code for test smells prevention.

At the end of the interviews, they could either provide or
ask for further information about test smells and test code
quality assurance. Therefore, the interviewee #I29 claimed:
“For me, it is a quality guarantee in terms of dependence ex
emption, in terms of development, cohesion, coupling, and
fundamental architecture. From the moment you have unit
testing or even TDD, it helps you improve the code and ar
chitecture.”. The interviewee #I35 demonstrated interest in
our study: “I would like to know more about the study, we
can talk about it later if you want, [...] I thought the term
‘test smell’ is complicated, at least it does not seem to be a
common industry expression.”.

Figure 6. Prior knowledge about test smell.

Table 7. Practices to prevent test smells or to treat them during the
test code creation and maintenance

Practice Creation Maintenance Prevention

1 Code analysis – – 2 (4%)
2 Code removal – 1 (2%) –
3 Code reuse – – 1 (2%)
4 Code review 19 (38%) 14 (28%) 10 (20%)
5 Coding patterns 4 (8%) 5 (10%) 8 (16%)
6 Company support – – 1 (2%)
7 Culture’s development – – 3 (6%)
8 Developer skills 2 (4%) 2 (4%) 14 (28%)
9 Documentation – – 1 (2%)
10 Guidelines – – 3 (6%)
11 Individual analysis 2 (4%) 6 (12%) –
12 Mutant testing 1 (2%) 1 (2%) –
13 No treatment 13 (26%) 13 (26%) –
14 Pair programming 2 (4%) 1 (2%) 4 (8%)
15 Peer review 1 (2%) 1 (2%) 1 (2%)
16 Professional experience – – 6 (12%)
17 Programming practices 12 (24%) 8 (16%) 11 (22%)
18 Refactoring 5 (10%) 10 (20%) –
19 TDD – – 3 (6%)
20 Technical debt 1 (2%) 5 (10%) –
21 Technical meeting 1 (2%) – –
22 Tool usage 13 (26%) 9 (18%) 21 (44%)
23 Traceability 1 (2%) 1 (2%) 1 (2%)
24 Training – – 8 (16%)
25 Take breaks – – 1 (2%)
26 Software code improvement – 1 (2%)
27 Test Smell Catalog – – 1 (2%)

6 Discussion
This section discusses the results obtained after conducting
the survey and interview to answer the research questions.
RQ1, RQ2, and RQ3 are related to the survey, and RQ4 and
RQ5 are related to the interview.

6.1 RQ1: Do practitioners use test case design
practices that might lead to the introduc
tion of test smells?

We observed that at least one respondent pointed to 1 out of
14 practices related to test smells from the results. We ana
lyzed those practices when creating and maintaining tests to
identify which types of test smells the participants frequently
insert in the test code.
Regarding test creation, we observed that every test smell

presented at least three out of four possible answers (Always,
Frequently, Rarely, and Never). We classified the data into
two groups: the Commonlyused practices group (CPG) and

Silva Junior et al.

the Unused practices group (UPG). CPG contains test smells
that mostly present Always and Frequently as answers, and
UPG that mostly present Rarely and Never as answers. We
considered a test smell belonging to one group when the
difference between the Always and Frequently rates and the
Rarely and Never rates is greater than 10%. For example,
the Empty Test, For testers only, Test Run War,
Constructor Initialization, Resource Optimism,
Redundant Print, Magic Number, Indirect Test test
smells belong to UPG, which means practitioners rarely
insert those smells on the testing activities.
On the other hand, the respondents frequently adopt prac

tices related to the General Fixture test smell, the only
member of CPG, indicating that they usually create tests with
that smell. Still, four test smells presented a similar perti
nence frequency to both groups (less than 10% of difference).
For them, there was not a pattern among respondents. For in
stance, the Eager Test test smell obtained 38% to CPG and
40% to UPG.

In the test execution, UPG contains the Empty Test,
Eager Test, Assertion Roulette, Redundant Print,
Duplicated Test, Test Run War, For testers Only,
Mystery Guest, Constructor Initialization, and
Resource Optimism test smells, which means that the re
spondents rarely face those smells during the test execution.
Otherwise, the respondents frequently find practices related
to two test smells, General Fixture and Conditional
Test Logic, which compose the CPG group. In addition,
we did not perceive a significant difference among respon
dents for two other test smells, Indirect Test and Magic
Number, which presented similar pertinence frequency to
both groups.
We also investigated the reasons that lead the respondents

to adopt the practices presented in the survey. Thus, we an
alyzed the openended questions and identified 16 different
tags. The most common ones were company standard, per
sonal standard, project politics, professional experience, sav
ing time, and improving coverage. For example, the respon
dent #S26 of the survey reported applying company stan
dards when creating tests that may insert smells and com
monly use bad practices “to match company development
standards.” In another situation, respondent #S54 reported
using personal standards when said: “I group tests by mod
ules to execute them sequentially without compromising ef
fectiveness.” This behavior suggests that participants may
have misunderstood the test smells definition. When group
ing tests, it is possible to insert the Assertion Roulette
test smell and compromise test independence. A similar situ
ation occurred with the respondents #S14, #S16, #S27, #S50,
and #S59.
In general, our study identified that all test smells appeared

in testing activities. They all were cited by respondents, even
if rarely.

Practitioners adopt practices for test case design,
which introduce test smells. Usually, those practices
come from improper personal and company stan
dards.

6.2 RQ2:Which practices are present in prac
titioners’ daily activities that lead to intro
ducing test smells?

Although there are specific tools to support test automation
(Fraser and Arcuri, 2011; Smeets and Simons, 2011), 62%
of respondents perform more manual than automated tests.
Besides, 55% have no experiencewith software development
(less than two years of experience), the lack of knowledge
does not influence the adoption of bad practices in the test
code.
According to the practices explored in the survey, we iden

tified that the respondents usually come across: (i) the use
of generic configuration data, which produces the General
Fixture test smell (most frequent on the activities of test
creation and execution CPG); and (ii) the use of condi
tional or repetition structure, directly associated with the
Conditional Test logic test smell (second most de
tected on the activity of test execution CPG).
The respondents indicated they usually face several prob

lems with tests, such as poorly written tests and outdated
and incomplete test procedures. According to them, when the
tests are associatedwith generic configuration data, test cases
are hard to understand andmay cause incorrect results. More
over, the test coverage on the production code is unclear due
to the conditional logic presence on the tests. Understand
ing which practices are most prevalent in the professionals’
activities supports improving test quality. Other identified
problems are related to incompleteness, outdatedness, or lack
of documentation. These may hinder traceability, evolution,
and maintenance of the testing tasks.

The practices most present in the practitioner’s daily
life that lead to test smells insertion were conditional
structure or repetition and generic configuration data.

6.3 RQ3: Does the practitioners’ experience
interfere with the introduction of test
smells?

In the survey study, we analyzed the respondents’ experi
ence and its influence in adopting practices that might lead
to insert test smells in their projects. As a result, we did not
identify any clear causeeffect correlation. For example, the
Always option indicates they always use harmful practices.
When we analyzed the answers’ frequencies for this option,
the usage rate did not reduce over time. Instead of that, we
may observe from Figure 5 that respondents with 8 to 10
years of experience achieved a higher usage rate of this fre
quency. We also identified that behavior when we analyzed
the other usage frequencies. However, we could not infer that
inexperienced practitioners introduce more test smells than
experienced ones regarding the activity of test creation.
On the one hand, when testers are inexperienced program

mers, they may write lowerquality tests. On the other hand,
they can carry programming biases that may contain bad
practices when they are more experienced. Thus, the absence
of a tendency indicates a nonbehavioral change between less
and more experienced practitioners.

Silva Junior et al.

Experienced practitioners may not produce fewer
test smells than inexperienced ones.

6.4 RQ4: How aware of test smells are the
practitioners?

The survey results indicate that the lack of information on test
smells is one reason that leads practitioners to adopt program
ming practices that may introduce test smells. Although the
test smell concept had appeared in 2001 (Van Deursen et al.,
2001), when we asked in the interviewwhat they know about
them, 14% of the interviewees demonstrated having some
knowledge. For example, two interviewees mentioned: “I
know a little bit about test smells. If I am not mistaken, there
are smells like Test Assertion and Duplicated [...]” (#I5) and
“Test smell? From smells? I know the basics” (#I19). We be
lieve that the industry should explore this topic more through
the initiatives proposed in academia (Santana et al., 2020).
Some interviewees (46%) associated the test smells’ term

with the code smells and related test smells detection with
tool’s usage or personal practices. For example, interviewee
#I04 mentioned: “Although I had never heard the term, it
makes sense, because I saw everything as a code smell, but
there are some strategies, some guidelines that I follow for
unit tests.”. This behavior may generate disagreement on the
tool functioning, such as the interviewee #I10 said: “One of
the outputs of those software that I mentioned, SonarQube
and Code Climate, are these test smells. They can find some
of them, [...] because we can not publish a project with these
types of test structures, tests with commented content, such
as empty test, the test with a complexity greater than 1”. Con
versely, In the SonarQube documentation, there is no infor
mation about test smells analysis. Thus, we considered that
those analyses are related to code smells in test code, which
is different from test smells detection.

Test practitioners do not know what test smell is.
They can associate the test smell concept with code
smells, but they have no information about test smell
types and refactoring.

6.5 RQ5: What practices have practitioners
employed to treat test smells?

Commonly, the interviewees did not know what test smells
are. After explaining the concepts to them in the interview,
they could understand and explain how they deal with test
smells in their daily activities. They reported adopting a set
of project’s activities (e.g., code review, pair programming,
and technical debt) and programming practices during the
test creation and maintenance processes (e.g., the clean code
approach and Given, When, Then (GWT), and Arrange, Act,
Assert (AAA) patterns) to either prevent or treat test smells.

The interviewees tended to develop unit tests according
to their skills. The professional abilities also determine the
result of code review. The interviewees who did not learn
about test smells or programming practices can approve a

submitted package with these issues. The code review was
the most reported activity to treat test smell in test creation
(38%) and the most common activity performed by the inter
viewees (78%) during test quality verification. In this activ
ity, one or more practitioners analyze the submitted code. In
this context, the reviewer’s knowledge determines whether
the code is good enough to merge it on the repository.
Each team adopts different strategies to perform code re

views based on the number of reviewers, number of ap
provals, and professional experience. Although some inter
viewees reported that only the experienced members review
software and test code, the review may not avoid test smells
in the project repository, mainly because both experienced
and inexperienced practitioners adopt practices that intro
duce test smells.
When we asked about the test smell treatment during test

maintenance, some interviewees reported creating a techni
cal debt to refactor test smell in another moment (intervie
wees #I08, #I09, #I22, #I25, and #I50). This behaviormay
indicate that the test smell correction is not a priority. The
technical debt creationmay also be the reasonwhy test smells
remain in the repository. For example, interviewee #I09 said:
“There is nearly no treatment for test smells. [...] when remov
ing a feature from the software or its business rule is changed,
the test code is commented and left there. [...] Hardly the de
velopers handle with commented test codes. [...]”.

The interviewees hardly addressed the technical debt and
failing tests because they needed to prioritize other tasks as
software code development. With less time for testing, test
smells would be introduced in the test code during test cre
ation and maintenance and keep in the repository through
postponing maintenance activities.
We did not know whether practitioners have learned about

test smells. Thus, we adopted the concepts of test smells in
literature. The validation of those concepts was out of scope.
Although we did not ask specifically whether the intervie
wees considered test smell as a problem or agreed with the
given test smells examples as a smell, during their answers
about test smell treatment, part of them told about how they
treat at least one of the given examples. For example, the
interviewee #I07 said: “Despite not having worked exactly
with this type of concept, Sonar itself warned us about these
two problems, both when the logic was very complex, with a
lot of ”if,” it warned us to break it in different methods, things
like type. Moreover, I remember that it identified comments,
commented code, and sends a warning”.
Regarding the Conditional Test Logic smell example, #I37

said: “This specific code enters into a specific clean code
case. This test may be doing more than it should”. Accord
ing to these comments, the interviewees consider test smells,
including the given examples, as structures to fix.

Practitioners adopt a set of project activities and pro
gramming practices to treat test smells. As they do
not know well the test smells concepts, it is impossi
ble to guarantee that those strategies treat test smells
appropriately.

Silva Junior et al.

7 Threats to validity
Internal validity. Although there are more than 100 test
smells, this study only considered 14 test smells. However,
we selected the most frequent test smells discussed in the lit
erature. In addition, the test smells were presented in the sur
vey as practices. To mitigate ambiguities and text compre
hension, we applied a pilot with four testers from different
companies. We used professional social networking to reach
as many respondents as possible from Brazilian companies
demographically distributed for the survey and interview ex
ecution.
External validity. Our survey and interview respondents

may not adequately represent the practices adopted by the
practitioners in the wider software engineering industry. Al
though our results may not generalize, they provide a prac
tice adopted initial view by the testers. There is an agreement
among the practitioners’ responses, indicating that additional
data might not reveal new insights.
Construct validity. The survey did not inform that the

questions referred to test smells to investigate whether the
practitioners nonintentionally insert test smells. We pre
vented the respondents’ partiality when identifying the prac
tices adopted. Complementary, to investigate how the prac
titioners deal with test smells. We presented the concept to
the interviewees who did not know this subject. After learn
ing test smells, the respondents were interested in finding so
lutions for this ”problem” (test smells). We collected open
ended questions answers and performed one peerreviewed
coding process to avoid biases. The survey and interview in
struments were written in Portuguese and translated to En
glish by one author but reviewed by others.
Conclusion validity. The data analysis was an exhaustive

process, which depends on the researchers’ interpretation of
the openended questions answers. To prevent biases, we per
formed the data analysis in three steps: i) two researchers ana
lyzed the data on pair to discuss the identification of the code,
ii) two researchers analyzed the data individually, checking
if new codes could emerge, and iii) all researchers discussed
and compiled the results from steps i and ii. Additionally, to
increase transparency, the crude survey and interview data
are available online for other researchers to validate and repli
cate our study.

8 Related work
Bavota et al. (2015) presented a case study to investigate the
test smells impact on maintenance activities. In that study,
developers and students analyzed testing code to compare
whether their experience would make a difference in test
smell identification. As a result, they found that the inten
sity of the test smells’ impact is different for different levels
of experience; the number of impacting test smells is higher
for students than industry professionals. Additionally, they
found that test smells have a significantly negative impact
on maintenance activities. Conversely, our survey found that
the practitioners’ experience does not interfere in the test
smell introduction during test creation and execution activ
ities. Moreover, the interview revealed that the practitioners

are not aware of test smells, reinforcing that the experience
is not influencing the test smells insertion in the test code.
Tufano et al. (2016) proposed an interview study with

19 participants to investigate developers’ perception of test
smells. They performed an empirical investigation to ana
lyze where test smells occur at the source code. The re
sults showed that developers generally do not recognize test
smells, and there are test smells since the first code commit
in the repository. Similarly, our interview indicated a lack of
awareness of the developers about the underlying concept of
test smells. Additionally, we did not find any study investi
gating how professional practices affect the test smells intro
duction, and therefore we investigated it through a survey.
Spadini et al. (2020) surveyed developers to evaluate the

severity thresholds for detecting test smells and investigate
test smells’ perceived impact on test suite maintainability.
The developers had to classifywhether a test smell instance is
valid and rate the test smell instance regarding its importance
to its maintainability. The evaluation of test smells instances
requires knowledge about the topic. Therefore, our survey
presented practices that might lead to test smells insertion,
and our interview provided information about test smells to
level the respondents about the topic.
In our previous work (Silva Junior et al., 2020), we con

ducted an expert survey to understand whether practitioners
unintentionally insert test smells. We surveyed sixty Brazil
ian practitioners regarding fourteen bad practices that might
lead to the test smell insertion during the test code creation
and execution. The results indicated that the practitioners’
experience might not influence the test smells insertion. Usu
ally, practices that lead to test smells insertion came from im
proper personal and company standards. This current study
complements the previous one by investigating the practition
ers’ knowledge about test smells and how they deal with the
test code quality regarding the presence of test smells. We
conducted interviews with fifty Brazilian practitioners to ask
them about the test code creation and maintenance processes.
As a result, the interviewees indicated a set of practices that
might be useful to treat test smells. However, as they do not
know about test smells concepts, those practices need further
investigation for test smell treatment.

9 Conclusion
Test smells may decrease the test code quality and main
tenance. Our study aimed to identify whether practitioners
unintentionally insert test smells in the test code and how
they treat them. Therefore, we applied two complementary
research methods: a survey and an interview study.
We surveyed sixty respondents to investigate the uninten

tional test smells insertion in the test code. They evaluated a
set of practices related to the test smells insertion in the test
code. The results indicated that the respondents adopt bad
practices that might lead to insert the test smells. The bad
practices adoption is more related to the improper company
standards than the respondent’s experience with test code de
velopment.

To investigate how the practitioners treat test smells, we
interviewed fifty respondents. They answered questions on

Silva Junior et al.

how they prevent and treat test smells during the test code de
velopment. The results indicated an overall knowledge lack
on the test smells. For most of the interviewees, it was their
first contact with this subject. However, after explaining one
test smell to the respondents, they recognized it in their test
code and identified practices that they adopted to deal with
it. Among the recommended practices, we highlight the adop
tion of tools, coding patterns, programming practices, code
review, and training to improve the developers’ skills and
expertise.
After analyzing the answers to the survey and the inter

view, we could identify that practitioners did not know test
smells. Thus, they insert different test smells types, even the
experienced ones. They have tried to treat test smells through
some strategies, but as they have not learned about this sub
ject, they have inserted test smells in their test code, and the
strategies may not be enough to avoid that. Those studies
are starting points to researches that consider practitioners as
agents in the test smell treatment.
As future work, we aim to follow the Grounded Theory

methodology (Corbin and Strauss, 1990) to leverage a com
mon understanding of how the software industry is receptive
to improving the test code quality by taking test smells into
consideration. We would validate the respondents’ practices
to prevent and treat test smells and elaborate a checklist for
test code quality development and assurancewith an indepth
study.

Acknowledgements
We would like to thank the participants in our survey and pilot
study. This research was partially funded by INES 2.0; CNPq
grants 465614/20140 and 408356/20189 and FAPESB grants
JCB0060/2016 and BOL0188/2020.

References
Bavota, G., Qusef, A., Oliveto, R., Lucia, A., and Binkley,
D. (2012). An empirical analysis of the distribution of
unit test smells and their impact on software maintenance.
In 28th IEEE International Conference on Software Main
tenance (ICSM).

Bavota, G., Qusef, A., Oliveto, R., Lucia, A., and Binkley,
D. (2015). Are test smells really harmful? An empirical
study. Empirical Software Engineering, 20(4).

Corbin, J. and Strauss, A. (2014). Basics of qualita
tive research: Techniques and procedures for developing
grounded theory. Sage publications.

Corbin, J. M. and Strauss, A. (1990). Grounded theory re
search: Procedures, canons, and evaluative criteria. Qual
itative sociology, 13(1):3–21.

Creswell, J. W. and Clark, V. L. P. (2018). Designing and
Conducting Mixed Methods Research. SAGE Publica
tions, third edition.

Fraser, G. and Arcuri, A. (2011). Evosuite: Automatic test
suite generation for objectoriented software. In 13th Eu
ropean Conference on Foundations of Software Engineer
ing, ESEC/FSE, New York, NY, USA. ACM.

Garousi, V. and Felderer, M. (2016). Developing, verifying,
and maintaining highquality automated test scripts. IEEE
Software, 33(3).

Garousi, V. and Küçük, B. (2018). Smells in software test
code: A survey of knowledge in industry and academia.
Journal of systems and software, 138.

Greiler, M., van Deursen, A., and Storey, M. (2013). Auto
mated detection of test fixture strategies and smells. In
2013 IEEE Sixth International Conference on Software
Testing, Verification and Validation.

Gubrium, J. F., Holstein, J. A., Marvasti, A. B., and McKin
ney, K. D. (2012). The SAGE Handbook of Interview Re
search: The Complexity of the Craft. SAGE Publications,
2nd edition.

Junior, N. S., Martins, L., Rocha, L., Costa, H., andMachado,
I. (2021). How are test smells treated in the wild? A tale
of two empirical studies [Dataset]. Available at: https:
//doi.org/10.5281/zenodo.4548406.

Kitchenham, B. A., Budgen, D., and Brereton, P. (2015).
Evidencebased software engineering and systematic re
views, volume 4. CRC press.

Melegati, J. and Wang, X. (2020). Case survey studies in
software engineering research. In Proceedings of the 14th
ACM / IEEE International Symposium on Empirical Soft
ware Engineering and Measurement (ESEM), ESEM ’20,
New York, NY, USA. ACM.

Meszaros, G., Smith, S. M., and Andrea, J. (2003). The test
automation manifesto. InMaurer, F. andWells, D., editors,
Extreme Programming and Agile Methods XP/Agile Uni
verse 2003. Springer Berlin Heidelberg.

Miles,M. B., Huberman, A.M., and Saldaña, J. (2014).Qual
itative Data Analysis. SAGE Publications, fourth edition.

Palomba, F., Di Nucci, D., Panichella, A., Oliveto, R., and
De Lucia, A. (2016). On the diffusion of test smells in au
tomatically generated test code: An empirical study. In 9th
InternationalWorkshop on Searchbased Software Testing.
ACM.

Peruma, A. S. A. (2018). What the Smell? An Empiri
cal Investigation on the Distribution and Severity of Test
Smells in Open Source Android Applications. PhD Thesis,
Rochester Institute of Technology.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles
of survey research: part 1: turning lemons into lemonade.
ACM SIGSOFT Software Engineering Notes, 26(6):16–
18.

Santana, R., Martins, L., Rocha, L., Virgínio, T., Cruz, A.,
Costa, H., and Machado, I. (2020). Raide: A tool for asser
tion roulette and duplicate assert identification and refac
toring. In Proceedings of the 34th Brazilian Symposium
on Software Engineering, SBES ’20, page 374–379, New
York, NY, USA. Association for Computing Machinery.

Silva Junior, N., Rocha, L., Martins, L. A., and Machado, I.
(2020). A survey on test practitioners’ awareness of test
smells. In Proceedings of the XXIII Iberoamerican Con
ference on Software Engineering, CIbSE 2020, pages 462–
475. Curran Associates.

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Soft
ware engineering data collection for field studies. In Shull,
F., Singer, J., and Sjøberg, D. I. K., editors, Guide to Ad

https://doi.org/10.5281/zenodo.4548406
https://doi.org/10.5281/zenodo.4548406

Silva Junior et al.

vanced Empirical Software Engineering, pages 9–34, Lon
don. Springer London.

Smeets, N. and Simons, A. J. (2011). Automated unit testing
with Randoop, JWalk and µJava versus manual JUnit test
ing. Research report, Department of Computer Science,
University of Sheffield/University of Antwerp, Sheffield,
Antwerp.

Spadini, D., Schvarcbacher, M., Oprescu, A.M., Bruntink,
M., and Bacchelli, A. (2020). Investigating severity thresh
olds for test smells. In Proceedings of the 17th Interna
tional Conference on Mining Software Repositories, MSR.

Tufano, M., Palomba, F., Bavota, G., Di Penta, M., Oliveto,
R., De Lucia, A., and Poshyvanyk, D. (2016). An empiri
cal investigation into the nature of test smells. In 31st Inter
national Conference on Automated Software Engineering.
IEEE.

Van Deursen, A., Moonen, L., Van Den Bergh, A., and Kok,
G. (2001). Refactoring test code. In Proceedings of
the 2nd international conference on extreme programming
and flexible processes in software engineering (XP).

Van Rompaey, B., Du Bois, B., and Demeyer, S. (2006).
Characterizing the relative significance of a test smell. In
22nd International Conference on Software Maintenance,
ICSM’06. IEEE Computer Society.

Virgínio, T., Martins, L., Rocha, L., Santana, R., Cruz, A.,
Costa, H., and Machado, I. (2020). Jnose: Java test smell
detector. In Proceedings of the 34th Brazilian Symposium
on Software Engineering, SBES ’20, page 564–569, New
York, NY, USA. Association for Computing Machinery.

Virgínio, T., Martins, L. A., Soares, L. R., Santana, R.,
Costa, H., and Machado, I. (2020). An empirical study
of automaticallygenerated tests from the perspective of
test smells. In SBES ’20: 34th Brazilian Symposium on
Software Engineering, pages 92–96. ACM.

Virgínio, T., Santana, R., Martins, L. A., Soares, L. R., Costa,
H., andMachado, I. (2019). On the influence of test smells
on test coverage. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering. ACM.

Wiederseiner, C., Jolly, S. A., Garousi, V., and Eskandar,
M. M. (2010). An opensource tool for automated gen
eration of blackbox xunit test code and its industrial eval
uation. In Bottaci, L. and Fraser, G., editors, Testing –
Practice and Research Techniques. Springer Berlin Hei
delberg.

Yusifoğlu, V. G., Amannejad, Y., and Can, A. B. (2015).
Software testcode engineering: A systematicmapping. In
formation and Software Technology, 58.

A Appendix A
Block 1: Respondents’ Profile

Q1. What is your gender?
Q2. What is your age?
Q3. Which course do you have an academic background

in?
Q4. What is the highest degree or level of education you

have completed?

Q5. Which Brazilian state do you currently work?
Q6. How long have you been working with software test

ing?
Q7. How long have you been working with software de

velopment?
Q8. Which activity do you perform daily?
Q9. What is the platforms of the projects that you have

worked on?
Q10. What is the application domain of the last project that

you worked on?
Q11. Which test technique do you execute?
Q12. Are the tests executed more often manually or auto

mated?
Q13. How do you describe your expertise with coding?

Block 2: Test Creation

Q14. What is the source for creating the test cases for the
projects in which you work?

Q15. Is there verification to detect duplicate tests (with the
same writing or with different writing and the same
objective)?More than one option could be selected.

Evaluate the following statements according to your daily
activities:

Q16. “I usually create test cases using some configuration
file (or complementary file) as a backup”

Q17. “When creating a test, I analyze whether it can be ex
ecuted at the same time with others or if it should be
executed in isolation, due to the availability of exter
nal resources .“

Q18. “I analyze the possibility of a test failing because it
uses a resource that is being used at the same time by
another test.”

Q19. “I have a habit of creating tests with a high number of
parameters (number of files, database record, etc.).”

Q20. “I group different test cases into one (that is, combine
tests that could be run separately).”

Q21. “I create tests that depend on resources that may not
have their own tests for validation (eg a test that in
volves retrieving information from the database, but
there is no test to validate database research). “

Q22. “I have already created a test to validate some feature
that will not be used in the production environment”

Q23. “I have already created a test with a high value for
a specific parameter (eg number of records in the
database, number of files in folder) even that makes
it difficult to repeat. “

Q24. “I have already created a test with a conditional or
repetitive structure.”

Q25. “I have already created an empty test, with no exe
cutable instructions.”

Q26. “I usually create tests using some data from a config
uration file.”

Q27. “I usually create tests with printing or displaying re
sults in a redundant way, or without need.”

Q28. “I have already created a test considering the exis
tence of a resource, without checking its existence or
availability.”

Silva Junior et al.

Q29. “I already changed a test by identifying one of the pre
vious points.”

Q30. If you answered “always”, “frequently” or “rarely”
in the previous questions, why were the tests created
with these standards?

Q31. If you changed any tests according to the design stan
dards above, why were they edited?

Q32. What problems in the test structure have you encoun
tered?

Q33. What difficulties do you often encounter when creat
ing test cases?

Block 3: Test Execution
Evaluate the following statements according to the fre
quency found in daily activities:

Q34. “A test case fails due to unavailability of access to a
configuration file.”

Q35. “Repeat a test case because it previously failed due
to competition with some other test case that was run
ning at the same time.”

Q36. “Execute tests that could be executed performedmore
quickly, when modifying the contents of the configu
ration file.”

Q37. “Run a test without understanding its purpose.”
Q38. “Some test fails and it is not possible to identify the

cause of the failure.”
Q39. “Run a test that depends on an external resource that

does not have a test for direct validation.”
Q40. “A test case fails due to unavailability of access to any

external resource.”
Q41. “Run test with a high value for a specific parameter

(eg: number of records in the database, number of files
in folder) even if it makes it difficult to repeat.”

Q42. “Run a test to validate a feature that will not be used
in the production environment.”

Q43. “Find duplicate test (with the same or different writ
ing).”

Q44. “Run test with conditional or repetitive structure.”
Q45. “Find empty test, with no executable instruction.”
Q46. “Run test with printing or display of results in a re

dundant way, or unnecessary.”
Q47. “Run a test considering the existence of a resource,

without checking the existence or availability of it.”
What difficulties do you usually encounter when run
ning test cases?

	Introduction
	Test Smells
	Research Method
	Survey Study
	 Design
	Results
	Test creation and execution practices
	Professional Experience

	Interview Study
	Design
	Results
	Unit test code creation and maintenance
	Test smells treatment

	Discussion
	RQ1: Do practitioners use test case design practices that might lead to the introduction of test smells?
	RQ2: Which practices are present in practitioners' daily activities that lead to introducing test smells?
	RQ3: Does the practitioners’ experience interfere with the introduction of test smells?
	RQ4: How aware of test smells are the practitioners?
	RQ5: What practices have practitioners employed to treat test smells?

	Threats to validity
	Related work
	Conclusion
	Appendix A

