
Journal of Software Engineering Research and Development, 2021, 9:8, doi: 10.5753/jserd.2021.1893
 This work is licensed under a Creative Commons Attribution 4.0 International License..

On the test smells detection: an empirical study on the JNose
Test accuracy
Tássio Virgínio [Federal Institute of Tocantins | tassio.virginio@ifto.edu.br]
Luana Martins [Federal University of Bahia | martins.luana@ufba.br]
Railana Santana [Federal University of Bahia | railana.santana@ufba.br]
Adriana Cruz [Federal University of Lavras | adriana.cruz@estudante.ufla.br]
LarissaRocha [Federal University of Bahia / State Univ. of Feira de Santana | larissa@ecomp.uefs.br]
Heitor Costa [Federal University of Lavras | heitor@ufla.br]
Ivan Machado [Federal University of Bahia | ivan.machado@ufba.br]

Abstract
Several strategies have supported test quality measurement and analysis. For example, code coverage, a widely

used one, enables verification of the test case to cover as many source code branches as possible. Another set of
affordable strategies to evaluate the test code quality exists, such as test smells analysis. Test smells are poor design
choices in test code implementation, and their occurrence might reduce the test suite quality. A practical and large-
scale test smells identification depends on automated tool support. Otherwise, test smells analysis could become
a cost-ineffective strategy. In an earlier study, we proposed the JNose Test, automated tool support to detect test
smells and analyze test suite quality from the test smells perspective. This study extends the previous one in two
directions: i) we implemented the JNose-Core, an API encompassing the test smells detection rules. Through an
extensible architecture, the tool is now capable of accomodating new detection rules or programming languages; and
ii) we performed an empirical study to evaluate the JNose Test effectiveness and compare it against the state-of-
the-art tool, the tsDetect. Results showed that the JNose-Core precision score ranges from 91% to 100%, and the
recall score from 89% to 100%. It also presented a slight improvement in the test smells detection rules compared
to the tsDetect for the test smells detection at the class level.

Keywords: Tests Quality, Test Evolution, Test Smells, Evidence-based Software Engineering

1 Introduction
Ensuring end-user satisfaction, detecting software defects be-
fore go-live, and increasing software or product quality is
among the most commonly reported software testing objec-
tives, as written by the annual report of a global consulting
firm (Capgemini, 2018). Recently published reports estimate
over $ 2 trillion to quantify the impact of poor software qual-
ity on the United States economy, referencing publicly avail-
able source material for the year 2020 (CISQ, 2021).
Such data illustrates the need for employing software test-

ing techniques in software development processes, as they
could anticipate bug identification and fixing, thus reducing
its likely effects still during implementation (or even when
existing functionalities are under evolution) (Palomba et al.,
2018; Spadini et al., 2018; Grano et al., 2019).
In a well-defined Software Engineering process, test code

should co-evolve together with production code, as high-
quality test code is essential to ease the maintenance and
evolution of production and test code (Yusifoğlu et al.,
2015; Guerra Calle et al., 2019). However, it might be
time-consuming and cost-ineffective (Yusifoğlu et al., 2015;
Guerra Calle et al., 2019).
Several approaches have been proposed in the literature to

assess the quality of test suites. For example, code coverage
measurement has been widely used to check the quality of au-
tomated tests. It measures the test suite quality based on how
much a test covers structural elements, such as functions, in-
structions, branches, and lines of code (Gopinath et al., 2014).

Nonetheless, even with high code coverage, the test code
might encompass poor design choices in their implementa-
tion, the so-called test smells.
The presence of smells in test code may reduce the quality

of test suites and, consequently, the production code qual-
ity (Deursen et al., 2001). Additionally, poorly-written tests
can be challenging to comprehend and onerous for testers
to maintain the code and detect faults (Bavota et al., 2015;
Grano et al., 2019).
The software testing literature has introduced a set of

tools focused on validating the quality of test suites, mainly
through metrics analysis. For example, CodeCover1 is an
open-source Java tool for code coverage executed via a
graphical user interface (with Eclipse IDE) and command-
line; tsDetect2 is a command-line tool for test smells detec-
tion. Other tools use code coverage results to predict test
smells, such as TeReDetect (Negar and Garousi, 2010) and
TeCReVis (Koochakzadeh and Garousi, 2010). Generally,
these tools have many different data outputs, which might be
hard for testers to establish a relationship between code cov-
erage and internal test code quality. Moreover, several types
of test smells have not been investigated in conjunction with
code coverage yet, but could also provide opportunities to
improve test code quality.
In previous studies (Virginio et al., 2019, 2020), we

introduced the JNose Test, a tool to analyze the quality

1Available at: https://codecover.org
2Available at: https://testsmells.github.io

https://orcid.org/0000-0001-6259-4957
mailto:tassio.virginio@ifto.edu.br
https://orcid.org/0000-0001-6340-7615
mailto:martins.luana@ufba.br
https://orcid.org/0000-0002-1153-8960
mailto:railana.santana@ufba.br
https://orcid.org/0000-0001-5196-6356
adriana.cruz@estudante.ufla.br
https://orcid.org/0000-0002-8069-5249
mailto:larissa@ecomp.uefs.br
https://orcid.org/0000-0002-9903-7414
mailto:heitor@ufla.br
https://orcid.org/0000-0001-9027-2293
mailto:ivan.machado@ufba.br
https://codecover.org
https://testsmells.github.io

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

of test suites from the test smells perspective. The JNose
Test provides an automated test strategy focused on (i) iden-
tifying possible test design flaws, (ii) analyzing the software
project quality evolution, and (iii) reducing the effort for
performing quality assurance of a test suite. The JNose
Test integrates a conceptual framework which encompasses
strategies for test smells prevention, identification, refac-
toring, and visualization to improve the test code quality.
RAIDE3 (Santana et al., 2020) and TSVizzEvolution4 tools
are part of this framework.
In this study, we proposed the JNose-Core, an API (Ap-

plication Programming Interface) to detect test smells in the
test code. It provides a flexible architecture to support the in-
sertion of new test smells detection rules. The JNose Test
implements the interface methods the JNose-Core provides
and organizes the data flow in a web-based user interface. In
this new version, our tool: i) detects test smells in different
code granularities (line, method, block, and class); ii) detects
test smells more accurately according to the literature defi-
nition; and iii) presents the outputs in a more user-friendly
interface.
Additionally, we also extended our previous work by val-

idating the test smells detection rules implemented in the
JNose Test tool. We conducted an empirical evaluation to
investigate two objectives: (i) verify the JNose Test accu-
racy compared with the tsDetect in terms of precision and
recall at a class level, and (ii) verify the JNose Test accu-
racy compared with the manual analysis in terms of precision
and recall at a fine-grained level. The results show that in a
test class level, the JNose Test obtained slightly better re-
sults than the tsDetect for specific types of test smells, such
as Assertion Roulette, Lazy Test, and Eager Test. When ana-
lyzing the test smells at a fine-grained level, our tool shows
higher accuracy when detecting the test smells location.
The remainder of this paper is structured as follows. Sec-

tion 2 introduces the test smells concept and types. Section
3 presents an overview of the JNose-Core API. Section 4
presents the JNose Test, a web application for test smells
detection. Section 5 describes the empirical study to eval-
uate the JNose Test accuracy. Section 6 presents the re-
sults. Section 7 discusses related work. Section 8 presents the
threats to the validity of our study. Finally, Section 9 draws
concluding remarks.

2 Background
Test code development is not a trivial task (Palomba et al.,
2018; Virginio et al., 2019). In real-world practice, devel-
opers are likely to use anti-patterns during test development
(Bavota et al., 2012; Junior et al., 2020). Those anti-patterns
may negatively impact the test code quality and maintenance
and reduce its capability for detecting software faults (Bell
et al., 2018; Spadini et al., 2020).
Several studies have investigated different types of test

smells. Initially, Deursen et al. (2001) defined a catalog of
11 test smells and refactorings to remove them from the test

3Available at https://raideplugin.github.io
4Available at https://github.com/arieslab/TSVizzEvolution

code. Next, several authors extended this catalog and ana-
lyzed the test smells effects on the production and test code
(Meszaros et al., 2003; Bavota et al., 2012; Greiler et al.,
2013; Bavota et al., 2015; Bell et al., 2018; Virginio et al.,
2019; Spadini et al., 2020). As a result of the researchers’
efforts to identify anti-patterns, Garousi and Küçük (2018)
listed more than 190 test smells in a literature review.
In this study, we selected twenty-one types of test smells

currently discussed in the literature (Peruma et al., 2019):

• Assertion Roulette (AR). It occurs when a test method
contains non-documented assertions. If an assertion
fails, it can be difficult to identify which one failed;

• Conditional Test Logic (CTL). It occurs when a test
method contains conditional expression or loop struc-
tures. Conditions within the test method may alter its
behavior which leads the test to fail;

• Constructor Initialization (CI). It occurs when a test
method contains a constructor;

• Default Test (DT). It occurs when a test class is created
by default;

• Dependent Test (DepT). It occurs when the test being
executed depends on other tests’ success;

• Duplicate Assert (DA). It occurs when a test method
tests for the same condition multiple times within the
same test method;

• Eager Test (ET). It occurs when a test method checks
more than one method of the production class;

• Empty Test (EpT). It occurs when a test method does
not contain executable statements;

• Exception Catching Throwing (ECT). It occurs when
a test method is explicitly dependent on the production
method throwing an exception;

• General Fixture (GF). It occurs when the test methods
only access part of the test case fixture (setup method);

• Ignored Test (IgT). It occurs when a test method is sup-
pressed from running;

• Lazy Test (LT). It occurs when several test methods
check the same production method;

• Magic Number Test (MNT). It occurs when assert
statements contain numeric literals;

• Mystery Guest (MG). It occurs when a test method uti-
lizes external resources (e.g., a file containing test data),
and thus it is not self-contained;

• Print Statement (PS). It occurs when unit tests con-
tains print statements;

• Redundant Assertion (RA). It occurs when the test
method contains an assertion statement that always is
true or false;

• Resource Optimism (RO). It occurs when a test
method makes optimistic assumptions about the exis-
tence and state of external resources;

• Sensitive Equality (SE). It occurs in test methods that
contains an equality check using a toString()method.
The test may fail when the toString() method is
changed;

• Sleepy Test (ST). It occurs when the execution of a test

https://raideplugin.github.io
https://github.com/arieslab/TSVizzEvolution

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

method is paused for a certain period (e.g., simulate an
external event) and then continues its execution;

• Unknown Test (UT). It occurs when a test method does
not encompass an assertion statement.

• Verbose Test (VT). It occurs when the tests use too
much code to do what they are supposed to do. In other
words, the test code is not clean and simple.

3 JNose Core
In our previous work (Virginio et al., 2020), we introduced
the first version of the JNose Test, a web application for the
detection and coverage calculation of test smells. We reused
and also expanded the test smells detection rules from the
tsDetect (Peruma et al., 2020). Therefore, the JNose Test
provides: (i) a graphical interface to facilitate the interaction
between user and tool, (ii) the amount and location of the de-
tected test smells, and (iii) support for the test smells analysis
through several project versions.
When improving the detection rules from tsDetect, we

faced some challenges regarding the coupling and depen-
dency between the test framework and test code. The test
frameworks, specifically the JUnit framework5, require dif-
ferent implementations depending on the version used. For
example, JUnit 4 uses a tag @Ignore to disable a test class
or test method, while JUnit 5 uses the tag @Disabled. Re-
garding the assertions, JUnit 4 accepts an optional parameter
for error message as the first argument, and JUnit 5 uses the
last argument in the method signature.
Therefore, to facilitate the detection rules expansion and

reuse of other tools, we implemented the JNose-Core API.6
It is beneficial for the conceptual framework we are working
on to evaluate the test code quality. The detection module
is the framework base; the test smells detected are the same
that should be removed by the refactoring module (RAIDE
tool) and presented to the user by the visualization module
(TSVizzEvolution).

3.1 Architecture
We designed the JNose-Core as a Maven7 project to sim-
plify and standardized the build process. Additionally, we
provided a JNose-Core compiled version that can be im-
ported by other projects built with Maven. The requirement
to use the compiled version is to import the library in the
pom.xml of the project, as Listing 1 shows. As a result,
the JNose-Core provides methods to instantiate for the test
smells detection. The JNose-Core is licensed under the
GNU general public license, and its architecture comprises
four packages, as follows (Figure 1):

• core. It implements the JNoseCore, a facade class that
receives a instance of the Config interface. The Con-

5JUnit is a Java library for testing source code, which has advanced to
the de-facto standard in unit testing. Available at https://junit.org/.

6Available at https://github.com/arieslab/jnose-core
7Maven is a software project management and comprehension tool.

Maven can manage a project’s build, reporting and documentation from a
central piece of information. Available at https://maven.apache.org/

Figure 1. JNose-Core API internal architecture

fig interface contains the methods signature for the test
smells detection;

• detector. It implements a structure to detect the smelly
elements and contains classes to support a test code
static analysis through an AST (Abstract Syntax Tree)
generated by JavaParser8.

• smell. It implements the detection rules for JUnit 4 and
improves the detection rules from tsDetect (Section
2) to identify test smells at different granularity levels.
Several classes are implemented (for each type of test
smell) and use JavaParser to collect additional informa-
tion on the location and number of test smells.

• dto (data transfer object). It implements the classes
responsible for transferring data among the packages.

1 <dependency >
2 <groupId >br.ufba.jnose </groupId >
3 <artifactId >jnose-core</artifactId >
4 <version >0.7-SNAPSHOT </version >
5 </dependency >

Listing 1: pom.xml configuration to use JNose-Core

3.2 Detection Rules
We revisited the test smells definitions in the literature to
identify how we should improve the detection rules from
tsDetect. Table 1 shows the granularity levels that we de-
fined to detect the exact test smells location in the test code,
as follows: (i) line, test smells that occur in a specific line;
(ii) block, test smells that occur in a statement block level,
e.g., try/catch and conditional statements; (iii) method, test
smells that occur in the method level; and (iv) class, test
smells that occur in a test class level. Additionally, we made
improvements in the test smells detection rules. We next de-
tail the main modificationsw we performed:

• Nested Structures.We improved the rules for detecting
the CTL, ECT, and MNT test smell to consider nested

8Available at: https://javaparser.org/

https://junit.org/
https://github.com/arieslab/jnose-core
https://maven.apache.org/
https://javaparser.org/

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Table 1. Test Smells detection rules.

Name Detection Rule Granularity

Assertion Roulette A line with assertion statements without the explanation/message parameter Line
Constructor Initialization A method that is a constructor declaration Method
Conditional Test Logic A code block with conditional statements Block
Duplicate Assert A line with assertion whose parameters equal the other assertion inside of same test method Line
Default Test A method called ExampleUnitTest() or ExampleInstrumentedTest() Method
Dependent Test A method that depends on the previous execution of another test method Method
Empty Test A method that does not contain a single executable statement Method
Eager Test A line that contains a call to another production method Line
Exception Catching Throwing A block that contains either a throw statement or a catch clause Block
General Fixture A line with a field instantiated within the setUp() method that is not utilized by all test methods Line
Ignored Test A method that contains the @Ignore annotation Method
Lazy Test A line of method that calls the same production method that other test method Line
Mystery Guest A method that accessing object instances of files and databases classes method
Magic Number Test A line with assertion method that contains a numeric literal as an argument Line
Print Statement A line that invokes either the print() or println() or printf() or writes method of the System

class
Line

Redundant Assertion A line containing an assertion statement in which the expected and actual parameters are the same Line
Resource Optimism A method that uses an external resource without checking the state of the object Method
Sensitive Equality A method that contains an assertion that invokes the toString() method of an object Method
Sleepy Test A line that invokes the Threadsleep() method Line
Unknown Test A method that uses the @Test annotation but does not contain assertions statement Method
Verbose Test A method with more than 30 lines Counting non executable statements and annotations Method

structures. When the tool reports a nested conditional
structure as one test smell, it might be hard to identify
which part of the test code needs refactoring at first
glance. If the nested conditional is too long, the user
may refactor parts of it. When rerunning the tool, the
user will see that the problem is still there, making the
refactoring process longer. Therefore, the tool presents
one test smell for each structure;

• Empty or Non-assertive. The UT and EpT test smells
present similar definitions. The UT test smell identi-
fies methods without assertions, and the EpT test smell
identifies methods with non-executable statements. Test
methods without a body neither contain executable
statements nor assertions. Therefore, we added another
rule to separate both definitions; the UT test smell iden-
tifies methods that contain a body and does not identify
asserts;

• General Fixture. The GF test smell occurs when test
methods use only a setup method part, representing the
cohesion among the test class’s methods. Therefore, we
improved the detection rules to show that all the test
class methods are used with setup fixtures. It allows the
user to identify the test method to which a fixture should
be moved;

• Missing Structures.Each version of the test framework
requires the static analysis of different code structures.
The assert structures used in JUnit 3 is different from
JUnit 4, which is also different from JUnit 5. Therefore,
to improve the detection rules to JUnit 4, we added the
code structures that were missing to detect the CTL, AR,
DA, and ECT test smells;

• Methods Overload. Similar to the preceding item,

there are differences among the JUnit versions regard-
ing the overloaded methods. When analyzing test cases
written with JUnit 3, we were not concerned about over-
loaded methods. However, to focus on the current detec-
tion rules for JUnit 4, we needed to improve the AR, and
DA test smells to support the overloaded methods.

4 JNose Test
The JNose Test9 enables test code quality analysis through
test smells detection and code coverage over several soft-
ware project versions. Therefore, it is possible to compare
whether a project test quality has either improved or de-
clined throughout its life cycle. The JNose Test operation
involves three key processes (Figure 2): (i) Data Input, re-
ceives the settings for the tool execution, i.e., the list of types
of test smells, analysis mode (By TestClass, By TestSmell,
By TestFile, and Evolution), and the project to be analyzed;
(ii) Project Analysis, calls the JNose-Core, an API to per-
form the project analysis according to the analysis mode se-
lected; and (iii)DataOutput, shows the execution status and
the analysis results.

4.1 Processes Description
Java Development Kit (JDK) 11 and Maven 3 (or superior)
are necessary to install the JNose Test. Upon installation,
the user would be able to use Jetty (embedded onMaven) and
build and run the JNose Test.

9Available at https://jnosetest.github.io

https://jnosetest.github.io

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Figure 2. Schematic overview of the JNose Test tool and its main features

After starting the tool, the user must configure the Data
Input (Figure 2). First, the user should import the projects
to be analyzed (Figure 3a - Step 1). The JNose Test clones
the repository directly from GitHub, and allows the user to
manage it (Figure 3a - Step 2). Second, the user selects the
analysis mode, i.e., By TestClass, By TestSmells, By TestFile,
and Evolution (Figure 3a - Step 3). Each analysis mode pro-
vides a menu where the user chooses the repositories to be
analyzed. By default, the tool detects twenty-one types of
test smells, but the user could configure this feature as well
(Figure 3a - Step 4).

After completing the project import and defining the set-
tings detection, the tool starts the Project Analysis (Figure
2). For each analysis mode, the JNose Test Tool presents
an interface with (i) a list of cloned projects (Figure 3b - Step
1), (ii) amenuwith specific analysis mode settings (Figure 3b
- Step 2), and (iii) a menu with the data output options (Fig-
ure 3b - Step 3). The Project Analysis considers the analysis
mode selected by the user, described below.

(1) By TestClass. In the Data Input process, the user
could enable the coverage metrics calculation and select the
projects to be analyzed. Then, to analyze the project by test
class, the Project Analysis calls the JNose-Core and option-
ally executes the Code Coverage module. Finally, the Data
Output process generates a view that contains a table with
the number of test smells by test class. That table presents
a row for each test class, and each column represents the
type of parameter collected: project name, test class, and
production class location, twenty-one columns for the types
of test smells, the number of test class lines, the number of
test methods, and five columns with coverage data. That
table could be downloaded as a .csv file. Additionally, the
user could view a chart or download it as a .png file with
the amount of each test smell in the project.

(2) By TestSmells. The Project Analysis process only
calls the JNose-Core to analyze the project by test smell.

During the Data Input process, the user needs to select
the projects to explore. Unlike the previous analysis, By
TestSmells provides the exact location of a test smell. The
last, the Data Output, offers a view with the data analysis
results, which could also be downloaded as a .csv file.
Each row of the table represents a test smell, and it has five
columns to show the type of parameter collected: the project
name, the test class location, the production class location,
the test smell name, the test smell location.

(3) By TestFile. The Project Analysis process only calls
the JNose-Core to analyze the project by test file. During the
Data Input process, the user should select a test class and
optionally its respective production class. Besides the pro-
duction class selection is an optional feature, the Eager Test
and Lazy Test test smells are not detected without it. Then,
the Data Output provides a view containing a row for each
detected test smell and its location.

(4) Evolution. The Project Analysis process executes the
GitMiningmodule and the JNose-Core to analyze the project
by version. During the Data Input, the user should select
projects to explore and search to be applied (by commits or
by tags). This analysis provides the test smell detection for
each project version, in addition to data about the author who
committed the test smell. TheData Output process provides
a view containing the data analysis results by test smells,
downloadable as a .csv file. The table rows represent the test
classes by commit. The columns encompass the following
parameters: project name, test class and production class lo-
cation, number of test smells, commit identification, author-
ship, date, and message. Additionally, the user could view a
chart and download it as a .png file with the amount of test
smells in each project version or the number of test smells
committed by an author. The tool also automatically calcu-
lates the authorship of a test smell by guilt, i.e., the tester
who last modified the method and did not fix it.

Different analysis mode allows other data visualization.

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

(a) Data Input: cloning projects from GitHub

(b) Project Analysis: configuring By TestClass analysis mode

(c) Data Output: an excerpt of the table with the By TestClass results
Figure 3. JNose Test - process execution

Therefore, the Data Output generates tables or charts de-
pending on the analysis mode. Tables are generated for all
analysis modes (Figure 3c). Charts are generated for By Test-
Class and Evolution. By TestClass charts present the total
amount of test smells inserted in a project, and Evolution
charts present the amount of test smells by project version
or by author.

4.2 Tool Architecture
The JNose Test is implemented as a Java project and com-
prises five packages, as Figure 4 shows: (i) base, responsi-
ble for instantiating the JNose-Core interface implementa-
tion and calculating the coverage metrics; (ii) page, responsi-
ble for presenting the web pages and their content; (iii) dtolo-
cal, responsible for encompassing the classes used in dto; (iv)
entity, responsible for the domain objects persistence from
the database; and (v) business, responsible for applying the
business rules to present the results.
The base package implements the Project Analysis (Fig-

ure 3a), which was split into three other packages, as follows:

• Coverage. It applies the rules necessary to calculate

Figure 4. Packages of the JNose Test

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

coverage. It runs the JaCoCo library10 to calculate code
coverage in the Java language. It performs dynamic
analysis of the production code branches (BC), instruc-
tions (IC), lines (LC), complexity (CC), and methods
(MC) to determine which one is either missed or cov-
ered by the test (Virginio et al., 2019);

• GitMining. It applies business rules for GitHubmining.
It uses the GitHub API for Java library11 to clone the
projects from GitHub and extract information about the
project’s tags, commits, and authors;

• JNose-Core. It performs test code static analysis
through an AST generated by JavaParser.12 Then, it ex-
tracts information about the code structure to apply the
rules for the test smells detection, and it collects ad-
ditional information about the location and number of
test smells. The detection rules were improved from the
tsDetect tool (Section 2) to identify test smells at dif-
ferent granularity levels (Table 1).

The JNose Test interface was implemented in the page
package based on the ApacheWicket13, a framework for web
application development in Java. We also used HTML5 and
CSS3 to develop the web pages. This package implements
the Data Input (Figure 2). The business implements utility
classes responsible for generating the results. It is possible
to generate a different type of report For each analysis mode.
This package implements theData Output (Figure 2). In the
dto package, we have the classes used to transfer data among
the project layers. That package implements the communica-
tion among Data Input, Project Analysis, and Data Out-
put (Figure 2). Additionally, a local database stores the data
generated by those processes, comprising persistence rules
implemented in the entity package.
The JNose Test execution uses parallel processes, i.e.,

the tool creates threads for each uploaded project, for each
test class, and so on. With parallel processing, the JNose
Test could be used to analyze a massive set of projects in
a short time (Virginio et al., 2019).

4.3 Running Example
We carried out an experimental study to verify the correla-
tion between the coverage metrics and test smells in previous
work. We selected eleven software projects to perform that
study, in which we collected twenty-one test smells and five
coverage metrics using the JNose Test.
This section presents an example considering the different

types of analysis modes supported by the JNose Test. We
used the commons-io project14 (release 2.7-RC1), a library
of utilities, to assist I/O development. We next discuss each
supported method.

4.3.1 By TestClass Analysis

We ran the JNose Test by TestClass to analyze which type
of test smells would achieve the highest diffusion over the

10Available at https://www.eclemma.org/jacoco/
11Available at https://github-api.kohsuke.org/
12Available at https://javaparser.org/
13Available at https://wicket.apache.org/
14Available at https://github.com/apache/commons-io

commons-io project. Therefore, we took the following steps:
(i) select all types of test smells; (ii) select the project path;
and (iii) enable code coverage. The tool returned 58 test
classes. We checked the number of classes where each test
smell was present to understand the test smell type diffusion.
For example, the ECT test smell was present in 23 classes,
followed byAR test smell in 17 test classes, and ET test smell
in 16 test classes. Each type of test smell could occur many
times in a test class. Those three types of test smell presented
the highest occurrence in the project, counting 316, 175, and
157 times, respectively.

Table 2 shows five test classes with the highest num-
ber of ECT, AR, and ET test smells. For example, the test
class ProxyCollectionWriterTest contains the highest
number of those test smells. Additionally, most test classes
achieved good code coverage when considering the IC, LC,
andMC coverage metrics (>70%). Therefore, even with high
coverage, the test code might present low-quality.

4.3.2 By TestSmell

Once we found that the ECT, AR, and ET test smells had
the highest diffusion numbers in the commons-io project test
classes, we may improve the test code quality by fixing the
problems. Then, we executed the JNose Test by TestSmell
by taking the following steps: (i) select the ECT, AR, and ET
test smells; and (ii) select the project. Table 3 shows a results
excerpt filtered by the ProxyCollectionWriterTest test
class.

4.3.3 By TestFile

In the previous example (By TestSmells), we filtered
the results to present only the ones related to the
ProxyCollectionWriterTest test class. In the By Test-
File analysis, that class could be analyzed individually.
Therefore, we executed the JNose Test by taking the
following steps: (i) select the ECT, AR, and ET test
smells; and (ii) select the ProxyCollectionWriterTest
and ProxyCollectionWriter files. The results are the
same as the filter presented in Table 3.
Listing 2 shows the ProxyCollectionWriterTest test

class with the testArrayIOExceptionOnAppendChar1()
test method (lines 39-53). We observed that the
assertEquals() method is called twice within the
test method (lines 50-51). Each one checks a different
condition, but there is no explanation message for them.
Thus, if the test method fails, there is no clue to identify
which assertion caused the failure. That issue refers to the
AR test smell. Moreover, those assertions are also related to
the ECT test smell because they may fail when a specific
exception occurs. Furthermore, a test method is supposed
to check just one production class method; otherwise, the
code has one ET test smell (ProxyCollectionWriter()
on line 43 and append() on line 46).

4.3.4 Evolution Analysis

The evolution analysis might help us identify whether the
commons-io has improved over time.We should take the fol-
lowing steps to perform this analysis: (i) select all test smells,

https://www.eclemma.org/jacoco/
https://github-api.kohsuke.org/
https://javaparser.org/
https://wicket.apache.org/
https://github.com/apache/commons-io

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Table 2. Classes with high diffusion of test smell - by TestClass

TesFileName ... LOC Met UT IgT RO ... ST LT DA ET AR CTL CI DT EpT ECT GF MG PS DpT IC BC LC CC MC

ProxyCollectionTest ... 448 23 1 0 0 ... 0 61 1 23 21 1 0 0 0 23 0 0 0 0 72 0 76 100 100
TreWriterTest ... 448 23 1 0 0 ... 0 30 1 2 21 1 0 0 0 23 0 0 0 0 100 0 100 100 100
ProxyWriteTest ... 275 21 3 0 0 ... 0 23 0 4 0 0 0 0 0 21 0 0 0 0 83 0 87 93 93
BoundedReaderTest ... 246 22 1 1 1 ... 0 48 1 8 3 2 0 0 0 16 0 1 0 0 100 100 100 100 100
EndianUtilsTest ... 316 22 1 0 0 ... 0 46 8 20 15 1 0 0 0 14 0 0 0 0 100 100 100 100 100

Table 3. Test Smells location in ProxyCollectionWriterTest

TesFileName ... TestSmell MethodLocationName Lines

ProxyCollectionTest ... AR testArrayIOExceptionOnAppendChar1 50,51
ProxyCollectionTest ... AR testArrayIOExceptionOnAppendChar2 66,67
ProxyCollectionTest ... AR testArrayIOExceptionOnAppendCharSe 82,83

ProxyCollectionTest ... ET testArrayIOExceptionOnAppendChar1 50,51
ProxyCollectionTest ... ET testArrayIOExceptionOnAppendChar2 66,67
ProxyCollectionTest ... ET testArrayIOExceptionOnAppendCharSe 82,83

ProxyCollectionTest ... ECT testArrayIOExceptionOnAppendChar1 45-52
ProxyCollectionTest ... ECT testArrayIOExceptionOnAppendChar2 61-69
ProxyCollectionTest ... ECT testArrayIOExceptionOnAppendCharSe 77-84

37 public class ProxyCollectionWriterTest{
38

39 @Test
40 public void testArrayIOExceptionOnAppendChar1()

throws IOException {
41 final Writer badW = new BrokenWriter();
42 final StringWriter goodW = mock(StringWriter.

class);
43 final ProxyCollectionWriter tw = new

ProxyCollectionWriter(badW, goodW, null);
44 final char data = 'A';
45 try {
46 tw.append(data);
47 fail("Expected "+IOException.class.getName

());
48 } catch (final IOExceptionList e) {
49 verify(goodW).append(data);
50 assertEquals(1,e.getCauseList().size());
51 assertEquals(0,e.getCause(0,

IOIndexedException.class).getIndex());
52 }
53 }

Listing 2: ProxyCollectionWriterTest test class

(ii) select the analysis by commit, and (ii) select the project
path. The project has 2,337 commits, 52 releases, and 56 con-
tributors from the beginning until the release 2.7RC1. We fil-
tered the five test class results with more ECT, ET, and AR
test smells (Table 4).

Figure 5 shows the evolution of those classes and
the project. The ProxyCollectionWriterTest,
TreWriterTest, and ProxyWriterTest test classes
are stable, as no test smell was either inserted or fixed.
However, the BoundedReaderTest test class presented
novel test smells during 2014-2016 and fixed them during
2016-2020. We could observe that the number of test smells
increased over time, which might indicate that people
involved in the project test suite development have not
worked to get rid of test smells yet. In addition, authorship is
calculated by fault, so the authors from that example might
not have inserted all detected test smells.

Table 4. Classes with high diffusion of test smell - Evolution

TesFileName ... TestSmell CommitID CommitName CommitDate

ProxyCollectionWrite ... 153 b739ce7c Adam Retter 03:39:47 2020
ProxyCollectionWrite ... 153 bcb36041 David Georg 00:09:03 2018
TreWriterTest ... 101 b739ce7c Adam Retter 03:39:47 2020
TreWriterTest ... 101 bcb36041 David Georg 00:09:03 2018
ProxyWriteTest ... 59 b739cc7c Adam Retter 03:39:47 2020
ProxyWriteTest ... 59 bcb36041 David Georg 00:09:03 2018
BoundedReaderTest ... 92 b739ce7c Adam Retter 03:39:47 2020
BoundedReaderTest ... 96 51f13c84 Kristian Rose 15:36:15 2016
BoundedReaderTest ... 83 9a9b8385 Gary D. Greg 01:17:05 2014
EndianUtilsTest ... 118 b739ce7c Adam Retter 03:39:47 2020
EndianUtilsTest ... 117 8940848G Gary D. Greg 18:47:06 2018

5 Empirical Evaluation

This empirical evaluation aims to investigate the JNose
Test accuracy in detecting test smells. We designed the em-
pirical study in four steps, as Figure 6 shows: (i) Dataset
Selection, in which we defined the test classes to analyze;
(ii) Oracle Definition, in which we manually detected the
test smells instances; (iii)DataCollection, where we applied
the JNose Test and tsDetect to collect the test smells in-
stances; and (iv) Data Analysis, in which we analyzed the
data collected to investigate our objectives.

5.1 Dataset Selection

For this analysis, we used the dataset made available by Pe-
ruma et al. (2020), which contains 65 test classes extracted
from GitHub projects. As we initially reused the JNose
Test detection rules from the tsDetect, we decided to use
the same dataset they used to perform a fair comparison be-
tween both tools and assess the JNose test effectiveness.
To build the dataset, Peruma et al. (2020) selected Android

apps neither duplicated nor forked. Upon the smells identifi-
cation in a test file, they randomly selected 65 test classes
from the selected projects and followed the definitions to de-
tect the test smells. Although the tsDetect implements de-
tection rules for twenty-one types of test smells, only nine-
teen were validated. It did not detect the DT and DpT test
smells. The same limitation applies to our study.
Since the authors did not have access to the test results

from manual detection performed by Peruma et al. (2020),
we created a new oracle using the same test and produc-
tion classes for this study. Even if we had access to the Pe-
ruma et al. (2020) manual detection results, we would have
to detect the test smells at a fine-grained level to validate
the JNose Test. The reason for such assumption is that the
JNose Test detects the test smells exact location, rather
than just their presence (like the tsDetect).

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Figure 5. Evolution of the commons-io project and classes with high diffusion of test smells

5.2 Oracle Definition

To manually detect the test smells instances, we followed a
design not fully crossed to assign coders to the subjects, i.e.,
different subjects are analyzed by different subsets of coders
(Hallgren, 2012). The subjects are the 65 test classes, and
four authors of this study served as coders. The coders are ex-
perts in test smells with at least three years of experience. Ad-
ditionally, their Java programming development experience
ranged from 4 to 15 years, including unit test development.
We organized the codes into two groups of two coders

each, where one group analyzed 32 test classes and the other
group 33 test classes. Two coders individually analyzed each
test class. They collected data regarding the test smells type
and location, following definitions from Table 1. As a re-
sult, each coder generated a document with all the test smells
detected. Subsequently, the coders compiled the individual
records into one document after discussing the divergences.
The review process of the test smells manually detected

was time and effort-consuming (~60 minutes). The final or-
acle version supports the detection of eighteen types of test
smells. In addition to the non-existence of the DpT and DT
test smells in the dataset, previously reported by Peruma et al.
(2020), we did not detect any IgT test instances smell. The
analysis process of the test classes and the discussion about
the classification divergences took about 60 hours.

5.3 Data Collection

Data collection consisted of detecting 65 test classes in two
different analyses: detection with tsDetect and detection
with JNose Test tool.
Detection with tsDetect. We downloaded the tsDetect

version 2.0 to collect the data. It executes three modules: i)
the Test File Detector to detect the test classes, ii) Test
File Mapping to link the test classes to production classes,
and iii) tsDetect to detect the test smells. All modules were
executed by command line in the terminal sequentially. As a
result, the tsDetect generates a file that contains a boolean
value for each type of test smell detected in the test class.

Therefore, the result provided by the tsDetect has a class-
level granularity. The detection process took about 7 minutes,
considering the tool execution time and the participants’ ex-
pertise with the operating system terminal to exercise the nec-
essary commands for its execution.
Detection with JNose Test.We use the JNose Test ver-

sion 2.1 to detect the test smells. After running the tool, the
output file with the result encompassed each test smell for
each test class detected. The test smells detection granular-
ity followed Table 1. The automated detection with JNose
Test took about 1 minute due to the unified process to de-
tect the test classes, production classes, and test smells. A
friendly graphical interface makes this process easier.

5.4 Data Analysis
We used the oracle to calculate the JNose test and
tsDetect accuracy against the manual analysis. Both tools
present distinct granularity levels to detect test smells.
tsDetect indicates whether a test class contains a test smell
instance, i.e., returns a boolean value for each test smell in a
class. JNose Test detects all instances of a test smell with
its exact location (line, block, method, or class). Therefore,
we carried out what follows:

1. We compared the JNose Test and tsDetect accuracy
considering the class-level. We treated the JNose Test
output to show boolean values at the class-level to com-
pare with the tsDetect. As the JNose Test detection
rules were reused from the tsDetect, our goal is to
determine the extension we improved those detection
rules. In this comparison, the accuracy is given at the
class-level considering its precision and recall.

2. We compared the JNose Test and manual analysis ac-
curacy considering a fine-grained level. For example,
by evaluating the line-level of granularity, we can de-
tect the AR test smell; therefore, we collected data at
the line level to see it manually and automatically. Our
goal is to show the JNose Test accuracy to indicate
the test smells location. Therefore, we provide the accu-

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Figure 6. Steps to conduct the experiment

racy value at a fine-grained level in terms of precision
and recall.

6 Results
This section reports the results of our empirical study. The
data for replication purposes are available online (Virgínio
et al., 2021).

6.1 Comparison between JNose and tsDetect
Table 5 reports precision and recall accuracy when detecting
test smells with JNose Test and tsDetect. This compari-
son was made at the test class-level.

Table 5. JNose Test and tsDetect Comparison - Class-level

Accuracy (%) Precision (%) Recall (%) F1-Score (%)

Test Smell JNose tsDetect JNose tsDetect JNose tsDetect JNose tsDetect

AR 100 75.38 100 90 100 75 100 78
CI 100 100 100 100 100 100 100 100
CTL 100 100 100 100 100 100 100 100
DA 98.46 96.92 99 98 98 97 99 97
ECT 100 46.15 100 92 100 46 100 55
ET 95.38 86.15 95 87 95 86 95 86
EpT 100 100 100 100 100 100 100 100
GF 98.46 98.46 99 99 98 98 99 99
LT 100 93.85 100 94 100 94 100 94
MG 90.77 90.77 92 92 91 91 89 89
MNT 95.38 90.77 96 92 95 91 95 90
PS 100 100 100 100 100 100 100 100
RA 100 100 100 100 100 100 100 100
RO 89.23 89.23 91 91 89 89 88 88
SE 100 100 100 100 100 100 100 100
ST 100 100 100 100 100 100 100 100
UT 100 93.85 100 94 100 94 100 94

The results obtained with the tsDetect diverges from

those reported by Peruma et al. (2020). Such study yielded
precision values from 85.71% to 100% and recall values
from 95% to 100%. They could detect nineteen types of test
smells. The tsDetect achieved a precision from 87.71% to
100% and recall from 46% to 100% for eighteen types of test
smells when using our oracle. As we mentioned earlier, we
did not detect any IgT test smell instances in none of the tools.
Those divergences highlight the challenges of building an or-
acle due to different interpretations that a coder may have
about the test smells definitions.
Regarding the results obtained with the JNose Test, the

precision ranged from 91% to 100%, and the recall from 89%
to 100% to detect eighteen types of test smells. As we reused
the tsDetect detection rules, we showed the improvements
we achieved. Considering the F1-Score metric, the JNose
Test presented accuracy improvement of 45% for the ECT
test smell, followed by 22% for the AR test smell, 11% for
the VT test smell, 9% for the ET test smell, 6% for the LT,
and UT test smells, 5% for the MNT test smell, and 2% for
the DA test smell. Other test smells detection rules did not
present any relevant improvement at the test class level.
Next, we showed the reason for the divergence between

the results obtained by the tools for the ECT test smell de-
tection. The JNose Test considers three compliant solu-
tions to handle exceptions (Listing 3): i) the use of the tag
Test with the expected parameter (lines 1-4), ii) the use
of assertThrows statement (lines 6-9), or iii) throw the
exception in the method signature (lines 11-14). As a non-
compliant solution, it considers the try/catch structure
within the method body (lines 16-23). The tsDetect con-
siders the try/catch structure and the throw-in method sig-
nature as a non-compliant solution (lines 11-23).
We identified that the tsDetect does not consider the JU-

nit overloaded methods when using an assert statement re-
garding the AR test smell. For example, the assertEquals

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

asserts that (Listing 4) (i) two objects are equal (lines 1-9)
or (ii) two objects are equal within a positive delta (lines 11-
19). The optional value is a string that describes the assertion.
The tool simplifies the number of parameters expected by the
assert statement. It detects as a test smell only methods with
two parameters (lines 14). The problem occurs because the
tool always classifies the assertEquals as a non-test smell
when the assert has three parameters. However, it is neces-
sary to verify the fourth parameter to decide whether it is
either a test smell or not. We improved the JNose Test in
this direction.
Additionally, there was a conflict in the EpT, and UT test

smells definition. The EpT test smell is a test method without
executable statements (empty method). The UT test smell is
a test method with executable statements but no assertions.
The tsDetect considers methods without a body as both
EpT and UT. Therefore, we implemented the rules necessary
to differentiate those test smells. We performed some minor
fixes to detect other types of test smells. For example, for the
VT test smells, the tsDetect considers a class with more
than 123 lines as one verbose test. As the JNose Test de-
tects the test smells at a fine-grained level, we defined that
a test method with more than 30 lines is verbose. Therefore,
we found more instances because of our definition.

1 @Test(expected= Exception.class)
2 public void tag_usage(){
3 // Some code
4 }
5

6 @Test
7 void trows_statement_usage() {
8 assertThrows("Exception Message", Exception.

class , parameter);
9 }
10

11 @Test
12 public void trows_signature_usage() throws

Exception.class {
13 // Some code
14 }
15

16 @Test
17 public void try_catch_usage() {
18 try {
19 // Some code
20 } catch (MyException e) {
21 Assert.fail(e.getMessage());
22 }
23 }

Listing 3: (Non)Compliant Solutions for ECT considered by
JNose Test

6.2 JNose and Manual Analysis Comparison

Table 6 reports accuracy through precision and recall values
when detecting test smells with JNose Test and manual
analysis. This comparison considered the granularity level
for the test smells detection.
In a fine-grained level, the JNose Test precision score

ranges from 84% to 100%, and the recall ranges from 47%
to 100%. At the class level, the detection difficulties related

1 @Test
2 public void two_parameters(){
3 assertEquals(float expected , float actual)
4 }
5

6 @Test
7 public void three_parameters_with_message(){
8 assertEquals(String message , float expected ,

float actual)
9 }
10

11 @Test
12 public void four_parameters(){
13 assertEquals(String message , float expected ,

float actual, float delta)
14 }
15

16 @Test
17 public void three_parameters_no_message(){
18 assertEquals(float expected , float actual,

float delta)
19 }

Listing 4: Solutions for AR considered by JNose Test

Table 6. JNose Test and Manual Analysis Comparison - Fine
granularity level

Test Smell Accuracy (%) Precision (%) Recall (%) F1-Score (%)

AR 100 100 100 100
CI 100 100 100 100
CTL 100 100 100 100
DA 94.12 100 94 97
ECT 100 100 100 100
ET 89.13 100 89 94
EpT 100 100 100 100
GF 90 100 90 95
LT 96.55 100 97 98
MG 50 100 50 67
MNT 94.74 100 95 97
PS 100 100 100 100
RA 100 100 100 100
RO 47.06 84 47 60
SE 100 100 100 100
ST 100 100 100 100
UT 100 100 100 100
VT 100 100 100 100

to specific cases are not evident because it returns a Boolean
value for test smells in the whole test class. However, when
we performed a more detailed test smell detection, we no-
ticed some test code-specific characteristics that the tool does
not detect.
The most divergent results between the class- and fine

granularity-level are the MG and RO test smells. At the class
level, those test smells have the accuracy of 90.77% and
89.23%, respectively. However, those test smells present ac-
curacy of 50% and 47.06%, respectively. Both the test smells
to deal with external resources. A test method that makes op-
timistic assumptions about external resources’ existence has
the RO test smell (Listing 5, lines 10-21). The test method
that uses external resources has the MG test smell (Listing
5, lines 2-5). As the JNose Test performs test code static
analysis, we only considered the direct calls for external
resources (Listing 5, lines 1-15). However, whether a test
method calls a production class from any part of the project
and that class calls for external resources, the test class uses

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

external resources indirectly (Listing 5, lines 17-21). In this
scenario, the MG and RO test smells need additional work to
determine the indirect calls.
We identified a specific characteristic that can detect

other false positives instances using the DA test smell. That
false positive occurs when one test method uses an asser-
tion structure implemented by a JSON library similar to
the assertion structure implemented by the JUnit. This is
because the JUnit has the assertThat(String reason,
T actual, M matcher) the other JSONAssert library im-
plements the assertThat(String).contains(String).
When performing the static analysis, all the statements that
start with assert were considered a JUnit assertion. There-
fore, we may improve it by detecting the libraries imported
in the test class. However, the tool might miss test smells
instances if using a test class with another assert library.
Other types of test smell required minor fixes. The LT and

ET test smell miss some instances due to default construc-
tors. We considered that the same way a different test method
should not call the same production class method, a class is
instantiated several times in different test methods. If many
test methods need to instantiate the same object, it should be
moved to a setup method. Therefore, we need to improve the
JNose Test to detect calls for the default constructors.

1 @Test
2 public void external_File(){
3 File file = openFile("config.xml");
4 if(file.exists()){
5 XmlPullParser config = XmlParserFactory.

fromFile(file);
6 // Some code
7 }
8 }
9

10 @Test
11 public void external_File_Without_Checking(){
12 File file = openFile("config.xml");
13 XmlPullParser config = XmlParserFactory.

fromFile(file);
14 // Some code
15 }
16

17 @Test
18 public void external_Resource_Indirectly(){
19 XmlReader reader = new XmlReader("xml/config.

xml");
20 // Some code
21 }

Listing 5: Mystery Guest and Resource Optimus

7 Related Work
In large-sized test suites, software engineers barely perform
manual detection of test smells. This practice is rather time-
consuming and infeasible in many scenarios. Therefore, the
research community has proposed automated tool support for
detecting test smells.
The Test Smell Detector (TSD) detects nine types of

test smells (Bavota et al., 2015). The TSD detection rules over-
estimate the presence of test smells in the code to ensure high
recall (87%). It returns a list of candidate-affected classes.

Similarly, tsDetect, the state-of-the-art tool to detect test
smells, identifies twenty-one types of test smell (Section 2).
It indicates whether a particular test smell appears in the test
class with the precision score ranging from 85% to 100%,
and recall score from 90% to 100% (Peruma et al., 2020).
Other tools correlate test smells with structural and cover-

age metrics. The IntelliJ plug-in coined VITRuM (VIzualiza-
tion of Test-RelatedMetrics) is an extension of tsDetect. It
collects a set of seven types of test smells and structural met-
rics (Pecorelli et al., 2020). TeReDetect (Negar and Garousi,
2010) and TeCReVis (Koochakzadeh and Garousi, 2010) use
code coverage analysis, held by CodeCover, to detect test
smells related to code duplication.
Our tool uses a test smells rule-based detection instead

of a metric- or coverage-based detection. It extends the
tsDetect tool in several respects. For example, our tool
provides the number of test smells identified in a test class
and the method line and name with each test smell’s location.
Moreover, it supports the test suite analysis through several
project versions, by mining Git for providing information
about when and by who introduced the test smells.
Additionally, our tool supports other tools for test smells

refactoring (RAIDE) (Santana et al., 2020) and visualiza-
tion (TSVizzEvolution). The RAIDE is an Eclipse IDE plu-
gin to detect and refactor the AR and DA test smells. The
TSVizzEvolution is a test smells visualization tool that
aims to help the user understand problems in the test code by
using three visualization techniques (Graph View, Treemap
View, and Timeline View). It represents the twenty-one types
of test smells detected by JNose Test.

8 Threats to Validity
Internal Validity. In themanual analysis to construct the ora-
cle, there may have been divergences among the researchers’
analysis.Wemitigated this threat by resolving disagreements
collectively. After collecting data with the JNose Test and
tsDetect tools, we checked if any test smells detected by
the tools were not considered in the manual analysis.
External Validity. Our study results may not be general-

ized to other suites of test classes or other types of test smells.
To mitigate this threat, we used the same dataset used in the
study to validate the tsDetect tool (Peruma et al., 2020).
Conclusion Validity. Although the JNose Test detects

twenty-one types of test smells, this study only validated
eighteen ones because the dataset used did not have the DpT,
DT, and IgT test smells. On the other hand, we used the same
dataset used to evaluate tsDetect (Peruma et al., 2020).
Construct Validity. Although we used four coders to

build the Oracle, they were experts with more than three
years of experience with test smells. They were aware of the
test code of the test smells detection tools.

9 Conclusion
This paper presents the JNose Test and its API, the
JNose-Core. The API supports the detection of twenty-one
types of test smells. It provides a flexible architecture to sup-

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

port the insertion of new test smells detection rules. The
JNose Test tool is a web application to detect test smells
and calculate coverage for Java projects.
To validate the detection rules implemented by

JNose-Core, we conducted an empirical study to com-
pare our tool’s accuracy with the state-of-the-art tool and
manual analysis. We built an oracle to detect test smells
to perform the comparison. The oracle contains sixty-five
test classes analyzed by specialists in the subject. The
comparison between JNose and tsDetect was made at the
class-level.
The results showed that JNose presented higher accu-

racy than tsDetect, in terms of precision and recall. As
we reused the detection rules from the tsDetect to imple-
ment the JNose Test, the results indicated that we success-
fully improved them. Additionally, the JNose also detects
test smells at a fine-grained level. As the tsDetect does not
support this feature, we could only compare the fine-grained
level detection against the manual analysis. Results showed
a high accuracy to determine the exact line location, but it
still needs further improvements.
There are many opportunities for other investigations. For

example, it would be interesting to validate our tool effi-
ciency in a real-world environment through a user study.
Such a study could also consider significant usability con-
cerns. There is open room for introducing new features in
the JNose Test in terms of both detection and refactoring,
and as necessary, in terms of how it behaves in practice con-
sidering quality attributes.

Acknowledgements

This research was partially funded by INES 2.0; CNPq grants
465614/2014-0 and 408356/2018-9 and FAPESB grants
JCB0060/2016 and BOL0188/2020.

References
Bavota, G., Qusef, A., Oliveto, R., De Lucia, A., and Binkley,
D. (2015). Are test smells really harmful? an empirical
study. Empirical Software Engineering, 20(4):1052–1094.

Bavota, G., Qusef, A., Oliveto, R., Lucia, A., and Binkley,
D. (2012). An empirical analysis of the distribution of
unit test smells and their impact on software maintenance.
In 28th IEEE International Conference on Software Main-
tenance (ICSM).

Bell, J., Legunsen, O., Hilton, M., Eloussi, L., Yung, T., and
Marinov, D. (2018). DeFlaker: Automatically Detecting
Flaky Tests. In IEEE/ACM 40th International Conference
on Software Engineering (ICSE), pages 433–444.

Capgemini (2018). World Quality Report 2018-
19. https://www.capgemini.com/service/
world-quality-report-2018-19/. Accessed:
March 1st, 2021.

CISQ (2021). The Cost of Poor Software Quality in the
US: A 2020 Report. https://www.it-cisq.org/pdf/
CPSQ-2020-report.pdf. Acessed: March 1st, 2021.

Deursen, A., Moonen, L. M., Bergh, A., and Kok, G. (2001).
Refactoring test code. In Refactoring Test Code, Amster-
dam, The Netherlands, The Netherlands. CWI (Centre for
Mathematics and Computer Science).

Garousi, V. and Küçük, B. (2018). Smells in software test
code: A survey of knowledge in industry and academia.
Journal of Systems and Software, 138:52 – 81.

Gopinath, R., Jensen, C., and Groce, A. (2014). Code cover-
age for suite evaluation by developers. In Proceedings of
the 36th International Conference on Software Engineer-
ing (ICSE), New York, NY, USA. ACM.

Grano, G., Palomba, F., Di Nucci, D., De Lucia, A., and Gall,
H. C. (2019). Scented since the beginning: On the diffuse-
ness of test smells in automatically generated test code.
Journal of Systems and Software, 156:312–327.

Greiler, M., van Deursen, A., and Storey, M. (2013). Auto-
mated detection of test fixture strategies and smells. In
IEEE Sixth International Conference on Software Testing,
Verification and Validation, pages 322–331.

Guerra Calle, D., Delplanque, J., and Ducasse, S. (2019).
Exposing Test Analysis Results with DrTests. In Inter-
national Workshop on Smalltalk Technologies, pages 1–5,
Cologne, Germany. HAL.

Hallgren, K. A. (2012). Computing inter-rater reliability for
observational data: an overview and tutorial. Tutorials in
quantitative methods for psychology, 8(1):23.

Junior, N. S., Rocha, L., Martins, L. A., and Machado, I.
(2020). A survey on test practitioners’ awareness of test
smells. In Proceedings of the XXIII Iberoamerican Con-
ference on Software Engineering, CIbSE 2020, pages 462–
475. Curran Associates.

Koochakzadeh, N. and Garousi, V. (2010). TeCReVis: A
Tool for Test Coverage and Test Redundancy Visualiza-
tion. In Bottaci, L. and Fraser, G., editors, Testing – Prac-
tice and Research Techniques, pages 129–136, Berlin, Hei-
delberg. Springer Berlin Heidelberg.

Meszaros, G., Smith, S. M., and Andrea, J. (2003). The test
automation manifesto. In Maurer, F. and Wells, D., edi-
tors, Extreme Programming and Agile Methods - XP/Agile
Universe 2003, Berlin, Heidelberg. Springer Berlin Hei-
delberg.

Negar, K. and Garousi, V. (2010). A tester-assisted method-
ology for test redundancy detection. Advances in Software
Engineering, 2010.

Palomba, F., Zaidman, A., and Lucia, A. D. (2018). Au-
tomatic test smell detection using information retrieval
techniques. In IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 311–
322, Madrid, Spain. IEEE.

Pecorelli, F., Di Lillo, G., Palomba, F., and De Lucia, A.
(2020). VITRuM: A Plug-In for the Visualization of Test-
Related Metrics. In Proceedings of the International Con-
ference on Advanced Visual Interfaces, New York, NY,
USA. ACM.

Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W.,
Ouni, A., and Palomba, F. (2019). On the distribution
of test smells in open source android applications: An ex-
ploratory study. In Proceedings of the 29th Annual Inter-
national Conference on Computer Science and Software

https://www.capgemini.com/service/world-quality-report-2018-19/
https://www.capgemini.com/service/world-quality-report-2018-19/
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf
https://www.it-cisq.org/pdf/CPSQ-2020-report.pdf

On the test smells detection: an empirical study on the JNose Test accuracy Virgínio et al. 2021

Engineering (CASCON), Riverton, NJ, USA. IBM.
Peruma, A., Almalki, K., Newman, C. D., Mkaouer, M. W.,
Ouni, A., and Palomba, F. (2020). TsDetect: An Open
Source Test Smells Detection Tool. ACM, New York, NY,
USA.

Santana, R., Martins, L., Rocha, L., Virginio, T., Cruz, A.,
Costa, H., and Machado, I. (2020). RAIDE: A Tool for
Assertion Roulette and Duplicate Assert Identification and
Refactoring. In Proceedings of the 34th Brazilian Sympo-
sium on Software Engineering (SBES). ACM.

Spadini, D., Palomba, F., Zaidman, A., Bruntink, M., and
Bacchelli, A. (2018). On the relation of test smells to soft-
ware code quality. In International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 1–12.
IEEE.

Spadini, D., Schvarcbacher, M., Oprescu, A.-M., Bruntink,
M., and Bacchelli, A. (2020). Investigating severity thresh-
olds for test smells. In Proceedings of the 17th In-
ternational Conference on Mining Software Repositories
(MSR). ACM.

Virginio, T., Martins, L., Soares, L. R., Railana, S., Costa,
H., and Machado, I. (2020). An empirical study of
automatically-generated tests from the perspective of test
smells. In Proceedings of the XXXIV Brazilian Symposium
on Software Engineering (SBES), New York, NY, USA.
ACM.

Virginio, T., Santana, R., Martins, L. A., Soares, L. R., Costa,
H., andMachado, I. (2019). On the influence of test smells
on test coverage. In Proceedings of the XXXIII Brazilian
Symposium on Software Engineering (SBES), pages 467–
471, New York, NY, USA. ACM.

Virgínio, T., Martins, L., Santana, R., Cruz, A., Rocha, L.,
Costa, H., and Machado, I. (2021). On the test smells
detection: an empirical study on the JNose Test accuracy
[Dataset]. Available at: https://doi.org/10.5281/
zenodo.4570751.

Yusifoğlu, V. G., Amannejad, Y., and Can, A. B. (2015).
Software test-code engineering: A systematicmapping. In-
formation and Software Technology, 58:123 – 147.

https://doi.org/10.5281/zenodo.4570751
https://doi.org/10.5281/zenodo.4570751

	Introduction
	Background
	JNose Core
	Architecture
	Detection Rules

	JNose Test
	Processes Description
	Tool Architecture
	Running Example
	By TestClass Analysis
	By TestSmell
	By TestFile
	Evolution Analysis

	Empirical Evaluation
	Dataset Selection
	Oracle Definition
	Data Collection
	Data Analysis

	Results
	Comparison between JNose and tsDetect
	JNose and Manual Analysis Comparison

	Related Work
	Threats to Validity
	Conclusion

