
Journal of Software Engineering Research and Development, 2021, 9:12, doi: 10.5753/jserd.2021.1898
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Development of an Ontology-based Approach for Knowledge
Management in Software Testing: an Experience Report
Érica Ferreira de Souza [Federal University of Technology - Paraná | ericasouza@utfpr.edu.br]
Ricardo de Almeida Falbo [Federal University of Espírito Santo]
Nandamudi L. Vijaykumar [National Institute for Space Research | vijay.nl@inpe.br]
Katia R. Felizardo [Federal University of Technology - Paraná | katiascannavino@utfpr.edu.br]
Giovani V. Meinerz [Federal University of Technology - Paraná | giovanimeinerz@utfpr.edu.br]
Marcos S. Specimille [Federal University of Espírito Santo | marcosspecimille@gmail.com]
Alexandre G. N. Coelho [Federal University of Espírito Santo | alexandregncoelho@gmail.com]

Abstract
Software development organizations are seeking to add quality to their products. Testing processes are strategic ele-
ments to manage projects and product quality. However, advances in technology and the emergence of increasingly
critical applications make testing a complex task and large volumes of information are generated. Software testing
is a knowledge-intensive process. Because of this, these organizations have shown a growing interest in Knowl-
edge Management (KM) programs, which in turn support the improvement of testing procedures. KM emerges to
manage testing knowledge, and, consequently, to improve software quality. However, there are only a few KM
solutions supporting software testing. This paper reports experiences from the development of an approach, called
Ontology-based Testing Knowledge Management (OntoT-KM), that aims to assist in launching KM initiatives in
the software testing domain with the support of Knowledge Management Systems (KMSs). OntoT-KM provides a
process guiding how to start applying KM in software testing. OntoT-KM is based on the findings of a systematic
mapping on KM in software testing and the results of a survey with testing practitioners. Moreover, OntoT-KM
considers the conceptualization established by a Reference Ontology on Software Testing (ROoST). As a proof of
concept, OntoT-KM was applied to develop a KMS called Testing KM Portal (TKMP), which was evaluated in
terms of usefulness, usability, and functional correctness. Results show that the developed KMS from OntoT-KM
is a potential system for managing knowledge in software testing, so, the approach can guide KM initiatives in
software testing.

Keywords: Knowledge Management, Knowledge Management System, Software Testing, Testing Ontology

1 Introduction

With the emergence of new technologies during the last
decades, more advanced techniques have been applied in
software development, in order to achieve high-quality soft-
ware products (Thrane, 2011). Thus, more efficient tech-
niques to qualify a software product should be incorporated
in its development life cycle, ensuring a well-managed pro-
cess. Testing activities play an important role in assessing
and achieving the quality of a software product (Souza,
2014).
Currently, software testing is considered a process consist-

ing of activities, techniques, resources, and tools. Advances
in technology and the emergence of increasingly critical ap-
plications also make testing a complex task. During software
testing, large volumes of information are generated. Software
testing is a knowledge-intensive process, and thus it is impor-
tant to provide computerized support for tasks of acquiring,
processing, analyzing, and disseminating testing knowledge
in an organization (Andrade et al., 2013; Souza, 2014). In this
context, Knowledge Management (KM) emerges to manage
testing knowledge, and, consequently, to improve software
quality. KM can be defined as a set of organizational activ-
ities that must be performed systematically to acquire, orga-
nize, and sharing the different knowledge types in the orga-
nization (O’Leary and Studer, 2001). The adoption of prin-

ciples of KM in software testing can help testers to promote
reuse of knowledge, to support testing processes, and even to
guide management decisions in organizations (Souza et al.,
2015a).
Software testing, in general, can benefit from reusing test

cases, testing techniques, lessons learned, and personal ex-
periences, among others (Li and Zhang, 2012; Janjic and
Atkinson, 2013; Souza et al., 2015a). To enable the reuse of
testing knowledge, software organizations should be able to
capture this knowledge and make it available to be shared
with their teams. However, there are only a few KM solu-
tions in the context of software testing (Souza et al., 2015a).
The major problems in organizations regarding software test-
ing knowledge are the low reuse rate of knowledge and bar-
riers to knowledge transfer. This occurs because most of the
testing knowledge in organizations is not explicit and it be-
comes difficult to articulate it (Souza et al., 2015a). On the
other hand, implementing KM solutions, in general, is not an
easy task. According to Storey and Barnett (2000), a large
number of organizations are taking great interest in the idea
of KM, but, these organizations are not familiar with how
and where to start since they lack the proper guidance to im-
plement KM. So, with an orientation on how to implement
new KM solutions in the organization, or even with an exist-
ing solution that can be customized, becomes interesting for
organizations since it is an opportunity for continued cost re-

mailto:ericasouza@utfpr.edu.br
mailto:vijay.nl@inpe.br
mailto:katiascannavino@utfpr.edu.br
mailto:giovanimeinerz@utfpr.edu.br
mailto:marcosspecimille@gmail.com
mailto:alexandregncoelho@gmail.com

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

duction, quality improvement, and reduction in software de-
livery (Rokunuzzaman and Choudhury, 2011).
Concerning technologies for KM, ontologies have been

widely recognized as a key technology (Herrera and Martin-
B, 2015). Ontologies can be used for establishing a common
conceptualization to be used in the Knowledge Management
System (KMS) to facilitate communication, search, storage,
and representation of knowledge (O’Leary and Studer, 2001).
However, only a few initiatives have used an ontology-based
approach for KM in the software testing domain (Souza et al.,
2015a).
This paper reports our experiences in developing an ap-

proach to assist in launching KM initiatives in the software
testing domain with the support of KMSs. In this paper, we
present OntoT-KM, an Ontology-based Testing Knowledge
Management approach. OntoT-KM provides a process to ap-
ply KM in software testing. OntoT-KM considers the con-
ceptualization established by a software testing ontology. A
striking feature of OntoT-KM is to describe how a testing
ontology can be used for guiding KM initiatives in software
testing. The software testing ontology used in OntoT-KM is
a Reference Ontology on Software Testing, called ROoST
(Souza et al., 2017). ROoST was developed for establish-
ing a common conceptualization about the software testing
domain and can be used to serve several KM-related pur-
poses, such as defining a common vocabulary for knowledge
workers regarding the testing domain, structuring knowl-
edge repositories, annotating knowledge items, and making
searching easier (Souza, 2014; Souza et al., 2017).
Lessons learned and experiences acquired in conducting

this study are presented on two main fronts. Firstly, the
OntoT-KM approach is presented to help software organiza-
tions to implement an initial KM solution in software testing.
Subsequently, a prototype of a KMS was developed, called
Testing KM Portal (TKMP), both as a proof of concept from
the OntoT-KM approach, as well as understanding the needs
of software development professionals in having a KMS in
software testing ready and available for customization.
This research is an extension of a preliminary study pub-

lished in (Souza et al., 2020). The extensions of this work
are essentially threefold. First, we improved several sections
to provide better research understanding through the inclu-
sion of new text, extra depth in some paragraphs, and the
inclusion of new figures and tables. Second, we analyzed
the database created from ROoST using data mining tech-
niques, to present the applicability of this type of research
in the search for useful knowledge in knowledge reposito-
ries. Third, we improved the TKMP analysis by software en-
gineering practitioners. We carried out an analysis separating
the participants by professional position, such as profession-
als directly related to software development companies and
professionals directly related to scientific research.
The main contributions of this research are the guidelines

provided by OntoT-KM for guiding KM initiatives in soft-
ware testing. These guidelines are supported not only by
ROoST, but also from the findings of the mapping study
Souza et al. (2015a) and the results of a survey with 86 test-
ing practitioners. OntoT-KM was applied to develop TKMP,
which was evaluated by test leaders of real projects in which
it was applied. TKMP also was evaluated by 43 practitioners

in terms of usefulness, usability, and functional correctness.
Such evaluation was designed applying the Goal, Question,
Metric (GQM) paradigm (Basili et al., 1994) and Technology
Acceptance Model (TAM) (Davis, 1993).
The remainder of this study is structured as follows. Sec-

tion 2 presents themain research concepts. Section 3 presents
OntoT-KM. Section 4 presents the application of OntoT-KM
and the evaluation results. Section 5 discusses related works.
Finally, in Section 6, we present our final considerations.

2 Background
In this section, the main concepts of this study are discussed.

2.1 Software Testing
Software Testing consists of the dynamic Verification &
Validation (V&V) activities of the behavior of a program
on a finite set of test cases, against the expected behavior
Abran et al. (2004). Testing activities are supported by a well-
defined and controlled testing process (Abran et al., 2004).
The process consists of several activities, namely (Abran
et al., 2004), (Myers, 2004), (Black and Mitchell, 2011),
(Mathur, 2012): test planning, test case design, test coding,
test execution and test result. In the first activity, the test-
ing should be planned, such as, the test environment for the
project, scheduling testing activities, and planning for possi-
ble undesirable outcomes. Test planning is documented in a
test plan. Then, in the test case design the test cases to be
run are designed, documented, and then coded. During test
execution, test code is run, producing results, which are then
analyzed to determine whether test cases have been passed
or failed.
The testing activities are performed at different levels.

Unit testing focuses on testing each program unit or compo-
nent. Integration testing takes place when such units are put
together, aiming at ensuring that the interfaces among the
components are defined and handled properly. Finally, sys-
tem testing regards the behavior of the entire system (Abran
et al., 2004), (Myers, 2004), (Black and Mitchell, 2011),
(Mathur, 2012). In addition, many testing techniques are pro-
viding systematic guidelines for designing test cases, intend-
ing to make testing efforts more efficient and effective. Test-
ing techniques can be classified, among others, as (Burn-
stein, 2003): white-box testing techniques, which are based
on information about how the software has been designed
and coded; black-box testing techniques, which generate test
cases relying only on the input/output behavior, without the
aid of the code that is under test; defect-based testing tech-
niques, which aim at revealing categories of likely or prede-
fined faults; and model-based testing techniques, which are
based on models, such as Statecharts, finite state machines,
and others.
One of the main characteristics of the software testing pro-

cess is that it has a large intellectual capital component and
can thus benefit from experiences gained from past projects
(Souza et al., 2015a). During software testing, large volumes
of information are processed and generated. So, it can be con-
sidered a knowledge-intensive process, making it necessary

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

for automated support acquiring, processing, analyzing, and
disseminating testing knowledge for reuse. In this context,
Knowledge Management (KM) can be used (Souza et al.,
2015a).

2.2 Knowledge Management
KM can be viewed as the development and leveraging of or-
ganizational knowledge to increase an organization’s com-
petitive advantage (Zack and Serino, 2000). In general, KM
formallymanages the increase of knowledge in organizations
in order to facilitate its access and reuse, typically by using
Information Systems (ISs) and KMSs (Herrera andMartin-B,
2015). In particular, KMSs aims at supporting organizations
in knowledge management, in an automated way.
One issue in KMSs is how to represent knowledge. One

alternative is ontologies (O’Leary and Studer, 2001) as they
are considered a key technology for KM (Herrera andMartin-
B, 2015), by defining the shared vocabulary to be used
in the KMS facilitating knowledge communication, integra-
tion, search, storage, and representation. In ontology-based
KMSs, ontologies are typically used to structure the content
of knowledge items, to support knowledge search, retrieval,
and personalization, serving as a basis for knowledge gath-
ering, integration, and organization, and support knowledge
visualization, among others.
KM has shown important benefits for software organi-

zations. In Souza et al. (2015a), we performed a System-
atic Mapping (SM) looking for studies presenting KM ini-
tiatives in software testing. An SM is a secondary study for
an overview of a research area through the classification of
the available evidence (Kitchenham andCharters, 2007). The
main conclusions from this SM were: (i) There are few pub-
lications (only 15 studies were retrieved) addressing KM ini-
tiatives in software testing; (ii) The major problems that have
motivated applying KM in software testing are low knowl-
edge reuse rate and barriers in knowledge transfer; (iii) As
a consequence, knowledge reuse and organizational learning
are the main purposes for managing software testing knowl-
edge; (iv) There is a great concern with both explicit and
tacit knowledge; (v) Reuse of test cases is the perspective
that has received more attention; (vi) KMSs are used in al-
most all initiatives (11 of the 15 studies); and (vii) Different
technologies have been used to implement those KMSs, such
as conventional technologies (databases, intranets, and Inter-
net), yellow pages (or knowledge maps), recommendation
systems, data warehouse, and ontologies.
In particular, one finding drew our attention: only two stud-

ies, actually, used ontologies in a KM initiative applied to
software testing (Liu et al., 2009; Li and Zhang, 2012). This
seems to be a contradiction, since, as pointed out by Staab
et al. (2001), ontologies are the glue that binds KM activities
together, allowing a content-oriented view of KM. One pos-
sible explanation for this low number of studies is the fact
that developing an ontology is a hard task, especially in com-
plex domains, as is the case of software testing (Souza et al.,
2015a).
Based on the findings of the SM, we decided to perform a

Systematic Literature Review (SLR) looking for ontologies
on the software testing domain in the literature (Souza et al.,

2013). An SLR also is a secondary study that uses a well-
defined process to identify available evidence (Kitchenham
and Charters, 2007). From this SLR, 12 ontologies address-
ing this domain were identified. As the main findings, it is
possible to highlight (Souza et al., 2013): (i) Most ontologies
have limited coverage; (ii) The studies do not discuss how the
ontologies were evaluated; (iii) None of the analyzed testing
ontologies is truly a reference ontology, i.e., a domain on-
tology that is constructed with the main goal of making the
best possible description of the domain as realistic as possi-
ble; and, finally, (iv) Although foundational ontologies have
been recognized as an important instrument for improving
the quality of conceptual models in general, and more specif-
ically of domain ontologies, none of the analyzed ontologies
is grounded in foundational ontologies. This motivated us
to build ROoST, a Reference Ontology on Software Testing
(Souza et al., 2017). ROoST was developed for establishing
a common conceptualization of the software testing domain.

2.3 ROoST
ROoST is presented very briefly here since it is not the scope
of this paper to present the entire ontology. Details of the on-
tology can be found in (Souza et al., 2017). Since the test-
ing domain is complex, ROoST was developed in a modu-
lar way, comprising four modules (sub-ontologies): (i) Soft-
ware Testing Process and Activities representing the test-
ing process and the main activities that comprise it, namely
test Planning, test case design, test coding, test execution,
and analysis of the test results; (ii) Testing Artifacts focus-
ing on the artifacts used and produced by the testing activi-
ties; (iii)Techniques for Test Case Design looking at testing
techniques, such as black-box, white-box, defect-based, and
model-based testing techniques; and (iv) Software Testing
Environment addressing the main components of the test-
ing environment, including test hardware resources, test soft-
ware resources, and human resources.
In order to develop ROoST, the Systematic Approach for

Building Ontologies (SABiO) (Falbo, 2014) was adopted.
SABiO method incorporates best practices commonly
adopted in Software Engineering and Ontology Engineering
and addresses the design and coding of operational ontolo-
gies. Furthermore, ROoST has been developed by reusing
and extending ontology patterns from the Software Pro-
cess Ontology Pattern Language (SP-OPL) (Falbo et al.,
2013) and the Enterprise-Ontology Pattern Language (E-
OPL) (Falbo et al., 2014). An Ontology Pattern Language
(OPL) is a network of interconnected domain-related ontol-
ogy patterns that provides holistic support for solving on-
tology development problems for a specific domain (Falbo
et al., 2013). More recently, ROoST has been integrated
into the Software Engineering Ontology Network (SEON)
(Ruy et al., 2016). The full model of ROoST is available at
http://dev.nemo.inf.ufes.br/seon/.
Given the size of ROoST, Figure 1 presents only its Testing

Process and Activities sub-ontology. Concepts reused from
Software Process Ontology are shown in gray. Specific Con-
cepts are shown in white. Some of the main concepts of this
sub-ontology are also presented below. More specific details
of ROoST’s Testing Process and Activities sub-ontology can

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

be found at (Souza et al., 2017) and SEON Network1.

Figure 1. ROoST’s Testing Process and Activities sub-ontology

In this sub-ontology, the Process and Activity Execution
(PAE) pattern was reused. PAE concepts were extended to
the testing domain, as shown in Figure 1. Testing Process
is a subtype of Specific Performed Process, since a testing
process occurs in the context of the entire software process
(General Performed Process) of a Project. A testing process,
in turn, is composed of testing activities, and thus Testing
Activity is considered a subtype of Performed Activity. Sim-
ilarly to Performed Activity, Testing Activity can be further
divided into Composite and Simple Testing Activity. In PAE
pattern, Specific Performed Processes are composed of two
or more Performed Activities. A Performed Activity, analo-
gously, can be simple or composite. A Composite Performed
Activity is composed of other Performed Activities; a Simple
Performed Activity cannot be decomposed into smaller activ-
ities (Falbo et al., 2013).
Besides specializing concepts, relationships were also spe-

cialized fromPAE. For instance, in PAE, there is a whole-part
relationship between Specific Performed Process and Per-
formed Activity. The whole-part relationship between Test-
ing Process and Testing Activity is a subtype of the former.
Whenever a ROoST relationship is a subtype of another rela-
tionship defined in SP-OPL, the same name is used for both.
Regarding the testing process activities, Test Planning and

Level-based Testing are Composite Performed Activities. Al-
though not shown in Figure 1, test planning involves several
sub-activities, such as defining the testing process, allocating
people and resources for performing its activities, analyzing
risks, and so on. Level-based Testing comprises Test Case De-
sign, Test Coding, Test Execution and Test Result Analysis,
which are considered Simple Performed Testing Activities.
Considering the test levels, Level-based Testing groups

simple testing activities according to the Test Level to which
they are related. Thus, Level-based Testing is specialized ac-

1http://dev.nemo.inf.ufes.br/seon/

cording to the instances of Test Level, a second-order type,
whose instances partition Level-based Testing in more spe-
cific types of testing activities. In Figure 1, the three most
cited testing levels in the literature are made explicit: Unit
Testing, Integration Testing and System Testing. However,
there may be others, such as Regression Testing.
Regarding testing stakeholders, the Test Manager is re-

sponsible for performing Test Planning activities. Test Man-
ager also participates in Test Result Analysis activities. Test
Case Designer participates in Test Planning activities, and
she is in charge of performing Test Case Design and Test Re-
sult Analysis activities. Finally, the Tester is responsible for
performing Test Coding and Test Execution.
With respect to testing artifacts, Test Planning produces

a Test Plan, which is used by Level-based Testing activities.
Test Case Design uses several artifacts as Test Case Design
Inputs and applies Testing Techniques for developing Test
Cases. During Test Coding, Test Code is produced, imple-
menting a Test Case. During Test Execution, Test Cases are
executed by running theCode to Be Tested and the Test Code,
producing Test Results. Finally, in a Test Result Analysis ac-
tivity, Test Results are analyzed and the findings are reported
in a Test Analysis Report.

3 OntoT-KM
Given the applicability of KM to improve software testing
processes, we developed OntoT-KM for assisting companies
that want to create their solutions for KM initiatives in dy-
namic software testing, supported by a KMS. OntoT-KM
consists of a process and a set of guidelines for implementing
a KMS in software testing organizations. OntoT-KM is sup-
ported by ROoST, in particular, to structure the KMS knowl-
edge repository. Moreover, OntoT-KM guidelines are based
on the findings of the SM presented in (Souza et al., 2015a),
and the results of a survey performed with testing practition-
ers presented in (Souza et al., 2015b).
The OntoT-KM process comprises the following steps: (i)

Diagnose the Organization’s Testing Process; (ii) Establish
the Testing KM Scope; (iii) Develop a Testing KMS; (iv)
Load Existing Knowledge Items; and (v) Evaluate the Test-
ing KMS. Figure 2 presents OntoT-KM process as a UML
activity diagram. As this figure shows, ROoST is used to
support steps (i) and (iii). Steps (i) and (ii), shown in another
color in Figure 2, are considered optional. Following, each
process step is presented, describing the main guidelines
that apply.

Step 1: Diagnose the Current State of the Organization’s
Testing Process
The first step of the OntoT-KM process is to make a di-

agnosis of the current state of the organization’s testing pro-
cess. It refers to investigating the existing knowledge within
the testing process, in order to identify knowledge assets and
understand how and where testing knowledge is developed
and used in the organization. This step may become optional
given the organization’s maturity level. This step is an impor-
tant step for organizations with low maturity. Once identify-
ing the knowledge items, organizations can then proceed to

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Figure 2. OntoT-KM Process

manage them.
This step may be accomplished by surveys with question-

naires and/or interviews. This activity should consider the en-
tire current state of software testing in the organization con-
cerning, at least, the following aspects: the adopted testing
process, the activities of the candidate testing processes to
be targeted by the KM initiative, the artifacts produced dur-
ing this process, the testing techniques applied, the test lev-
els contemplated by the process, and the test environments
adopted by the organization’s software projects. Aspects re-
lated to KM should also be investigated, such as the current
KM practices applied in the testing process, the organiza-
tion’s purpose of applying KM to software testing, problems
related to testing knowledge in the organization, among oth-
ers. ROoST can be used in this step as the common vocabu-
lary for supporting the analysis of the current status, as well
as to formulate the questions to be used in the questionnaires
and/or interviews with the organization’s testing practition-
ers. The results of these questionnaires/interviews should be
used as guidelines for the next step (establish scope).
For this step, we suggest asking, at least, the following

questions to the testing practitioners participating in the di-
agnosis:

• What are the testing activities that comprise the organi-
zation’s testing process? Evaluate the answers consider-
ing the consensual activities considered in ROoST (Test
Planning, Test Case Design, Test Coding, Test Execu-
tion, and Test Result Analysis), and consider the possi-
bility of improving the organization’s testing process by
aligning it to the testing process captured by ROoST.

• In which activities of the Testing Process is KM more
useful? The activities pointed out in the previous step
should be the ones considered here as possible answers.

• What are the testing levels in which the organization
performs tests? Testing activities can be performed at
different levels. Taking ROoST as a basis, consider at

least the following levels: unit testing, integration test-
ing, and system testing. However, if the organization
tests software at other levels, these should be consid-
ered.

• In which testing level is KM more useful? The testing
levels pointed out in the previous step should be the ones
considered here as possible answers.

• Which resources do you consider more important to
have the knowledge available about themwhen defining
the testing environment? According to ROoST, the pos-
sible answers that are considered for this question are
the following types of resources: hardware, software,
and human.

• Concerning tacit and explicit knowledge, what are the
types of knowledge you consider to be more important
to manage during the software testing process? Testing
practitioners tend to consider both useful, but we need to
evaluate which one is more important and which is eas-
ier to implement. In general, for organizations starting
a KM initiative in software testing, explicit knowledge
is easier to handle. In particular, test cases highlight the
most important artifacts to be managed as a knowledge
item, as pointed in SM (Souza et al., 2015a) and the sur-
vey (Souza et al., 2015b).

• What is the purpose of applying KM in Software Test-
ing? What benefits can KM bring to software testing?
This question captures the feeling of testing practition-
ers regarding why and how an organization can benefit
by applying KM to software testing.

Step 2: Establish the Scope of the Testing KM Initiative
Once the diagnosis of the status of the testing process has

been carried out, the next step is to establish the KM scope.
Similarly, as in the case of step 1, this stepmay also be consid-
ered optional if the organizations already know their needs.
For the KM scope, it is necessary to familiarize oneself with
the organization’s needs. The organization must define the
testing process activities that are to be supported, and knowl-
edge types to be managed.
A major challenge for organizations is to know which

knowledge is useful, and thus identify potential knowledge
items among the several knowledge assets generated in the
testing process. Results from step 1 should be used here. In
addition, it is suggested that organizations start with small
KM initiatives.
As a general guideline, we recommend considering the sur-

vey results that we performed (Souza et al., 2015b). From this
survey, both test case design and test planning were consid-
ered the most important testing activities to be supported by
KM practices, and capturing as knowledge items their main
outcomes, namely: test case and test plan.
When considering test cases as knowledge items, it is nec-

essary to build an appropriate infrastructure that allows for
the analysis, storage, and retrieval of existing test cases. This
structure can be achieved from the OntoTKM approach. In
the reuse of this knowledge item, for example, the test reuse
system may be able to cover a variety of search scenarios in
order to assist its users in different situations. The search en-
gine enables searching for test cases by informed parameters,
for example, test levels or testing techniques. The returned

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

test cases can be reused in similar scenarios. According to
Werner (2014), reusable tests that have been written for a
similar scenario are likely to help to better understand how
a previously created similar system works. In addition, by
reusing the knowledge contained in existing tests, developers
can benefit from the knowledge that others have invested in
developing them. These tests can help to gain better insights
into how a particular kind of component should behave.
Regarding test planning, the survey led to the selection

of testing techniques and the definition of the testing envi-
ronment as the most important tasks to be supported by a
KM initiative. Concerning knowledge about the testing envi-
ronment, managing knowledge about human resources and
software resources is pointed out as the most promising ap-
proach. Regarding knowledge about human resources, this
impression is corroborated by the SM (Souza et al., 2015a),
where yellow pages and knowledge maps appear in various
initiatives.
Other knowledge items related to making tacit knowledge

explicit can also be considered in KM scope, namely:

• Lessons Learned (LL): LL can be understood as
knowledge acquired through experience in a particu-
lar situation. LL can be classified as best practices, er-
rors/critiques, and success factors. LLs are informal
knowledge items that can be understood as ideas, facts,
questions, points of view, decisions, among others. In
addition, LL can also be classified as informative, suc-
cess, or failure lessons. Informative LLs explain how to
proceed in a given situation; lessons of success provide
examples of problems that were solved positively; and
failure lessons provide examples of negative responses
to attempt to solve a problem and potential ways to cope
up with the situation (O’Leary, 1998).

• Knowledge regarding discussion: Discussion among
the organization’s members may be submitted as knowl-
edge items. Tools to support discussion among the or-
ganization’s members, such as discussion forums, have
been fundamental in KM environments (Fischer and
Ostwald, 2001). Discussion forums become important
tools for knowledge management for the following rea-
sons: (i) very useful knowledge can be generated and
captured during discussions (Falbo et al., 2004), and (ii)
a major challenge of KM is to convert tacit knowledge
into explicit knowledge (Nonaka andKrogh, 2009; Dav-
enport and Prusak, 2000).

Step 3: Develop a Testing KMS
This phase concerns developing a KMS to support the KM

initiative and comprises the main activities for developing
systems, in general: requirements specification, design, im-
plementation, and testing.
Requirements must be elicited and specified. Functional

requirements may be created from use case models, class di-
agrams, and state diagrams to model the behavior of knowl-
edge items throughout their existence in the KMS. Non-
functional requirements should also be addressed, such as
security, usability, accessibility, etc.
ROoST is very useful in this step. ROoST can serve as the

initial conceptual model for the KMS, and thus as the basis

for structuring the testing knowledge repository. Specific in-
formation (attributes of the classes in the conceptual model)
should be identified, taking the characteristics of the organi-
zation’s testing artifacts into account, and, most importantly,
information that is available in the tools used for supporting
the testing process.
Furthermore, interoperability issues should also be ana-

lyzed. Ideally, software tools that are part of the test envi-
ronment should be integrated with the Testing KMS to act
together, interacting, and exchanging data to obtain the ex-
pected results. In this context, possible knowledge items iden-
tified in these tools can be automatically converted/imported
to the testing KMS.
Another key point is to define the KM process activities

that are to be supported by the Testing KMS. We recom-
mend providing support to the following typical activities of
a KM process: creating knowledge items, evaluating knowl-
edge items before making them available, searching knowl-
edge items, assessing the usefulness of available knowledge
items, and maintaining the knowledge repository.
During the design of Testing KMS, developers should

consider the platform in which the system is to be built,
and non-functional requirements should be addressed.
Several technologies can be used, including those that
are commonly considered in KM solutions like content
management systems, document management systems, and
wiki, as well as those considered intelligent KM solutions,
such as knowledge-based and expert systems, reasoners, and
semantic wikis. Once designed, the KMS should be coded
and tested.

Step 4: Load Existing Knowledge Items.
For initially populating the knowledge repository of the

Testing KMS, the organization should look for existing
knowledge items. For instance, if the system must manage
test cases, existing test cases can be imported to the Testing
KMS. The existing knowledge items should be reengineered
to ensure conformance with the knowledge repository struc-
ture. Knowledge items can be registeredmanually in the Test-
ing KMS or mechanisms for loading and reengineering these
knowledge items can be built to automate the loading pro-
cess.
Once a knowledge repository can be created and popu-

lated, data mining can be explored. The knowledge reposi-
tory can contain useful hidden information (knowledge) of
major relevance to the business, so, mining on these data
can be performed. Data mining is the application of specific
algorithms for extracting patterns from data. Data mining
integrates the Knowledge Discovery in Databases (KDD),
process knowledge data structuring (Fayyad et al., 1996).
Data mining methods are used in the identification of rele-
vant information in large volumes of data, such as Classifi-
cation, Regression, Clustering, Summarization, Association
Rule, Dependency Modeling, among others (Fayyad et al.,
1996).
Mining stored data, in large databases to discover poten-

tial information and knowledge, has been a popular topic
in database research. Data mining is a technology to obtain
information and valuable knowledge (Yun et al., 2003).
According to Basili and Rombach (1991), the quality of

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

software development can be improved by reusing acquired
experiences, rather than starting from scratch. Therefore, as
a result of applying KDD, another knowledge item type can
be considered: Mined items. Mined items can be provided
by a mining process in a KM database and can identify
relationships that are not apparent, facilitating decision-
making. Furthermore, identifying behavior patterns in
data stored in knowledge bases can help the organization to
reuse and share the knowledge acquired in previous projects.

Step 5: Evaluate the Testing KMS.
Evaluation should be done to determine if the Testing

KMS meets the expectations. Improvements can be carried
out, implying a return to the previous steps. A suggestion to
evaluate the testing KMS is to analyze some quality charac-
teristics, such as usefulness, usability, and functional correct-
ness. To do that, twomodels can be considered: GQM (Basili
et al., 1994) and TAM (Davis, 1993).
GQM is a measurement model, organized into three levels.

In the first level (conceptual level), the study goals should
be defined. The second level (operational level) refers to a
set of questions that should be defined to characterize the
evaluation or the accomplishment of a specific goal. Finally,
in the last level (quantitative level), a set of metrics should be
associated with questions, to answer them measurably. The
result of applying the GQM approach is the specification of
a measurement system targeting a particular set of issues and
a set of rules for interpreting measurement data (Basili et al.,
1994). GQM is useful because it facilitates identifying not
only the precise measures required but also the reasons why
the data are being collected (Park et al., 1997).
TAM determines the acceptance of a given technology by

users, considering two-factor analysis: usefulness and usabil-
ity. When evaluating these two factors, it is possible to map
the users’ acceptance of new technology.
Usefulness refers to how much the user realizes that cer-

tain technology is useful to her in terms of productivity in-
crease. According to ISO/IEC 25010 (ISO/IEC, 2011), use-
fulness is the “degree to which a user is satisfied with their
perceived achievement of pragmatic goals, including the re-
sults of use and the consequences of use”. In this standard,
usefulness is part of the quality in use model.
The perception of usability refers to the effort reduction

that the user achieves when using a given technology instead
of using other alternatives (Davis, 1993). In ISO/IEC 25010
(ISO/IEC, 2011), usability refers to the “degree to which a
product or system can be used by specified users to achieve
specified goals with effectiveness, efficiency, and satisfac-
tion in a specified context of use”. It is a quality character-
istic of the product quality model, but for consistency with
its established meaning, it is also defined as a subset of the
quality in use model.
In this work, we also decided to evaluate another quality

characteristic: functional correctness, a sub characteristic of
functional suitability in the ISO/IEC 25010 product quality
model. According to ISO/IEC (2011), functional correctness
is the “degree to which a product or system provides the cor-
rect results with the needed degree of precision”.

4 Applying OntoT-KM
Our experience in developing the OntoT-KM approach has
two fronts. First, we introduce the approach, and then we cre-
ate a prototype of a KMS based on OntoT-KM that allows
us to evaluate the approach, as well as obtain the opinion of
software professionals in having a KMS in software testing
ready and available for customization. Following, the KMS
development based on OntoT-KM and all processes of the
evaluations are presented.
To evaluate the OntoT-KM approach, we applied it to

build a prototype of a KMS for managing software testing
knowledge, called Testing Knowledge Management Portal
(TKMP). The resulting system was populated with data from
two real projects and different evaluations were conducted.
The projects were (Souza, 2014): (i) Amazon Integration
and Cooperation for Modernization of Hydrological Moni-
toring (ICAMMH) Project; and (ii) On-Board Data Handling
(OBDH) software inside the Inertial Systems for Aerospace
Application (SIA) Project.
ICAMMH Project was a collaboration involving the

Brazilian Aeronautics Institute of Technology and the Brazil-
ian NationalWater Agency, supported by the Brazilian Finan-
cial Foundation for Projects - FINEP. The project developed
a pilot system for modernization and integration of teleme-
try points collected from hydrological data, as a basis for
managing water resources in the Amazon region. The sec-
ond project is devoted to developing software for the onboard
computer of the SIA Project, which is a computational sys-
tem for OBDH (On-Board Data Handling) to Attitude and
Orbit Control (AOC) of satellites that can be adapted for fu-
ture space applications at the National Institute for Space Re-
search (INPE). The first version of the OBDH software was
in the testing phase when this work was being done. The fi-
nal version of this software aims at adding all the functional-
ities of OBDH of a satellite. Its main functionalities are: (i)
receiving and analyzing ground station telecommands; (ii)
Formatting and transmission of telemetry; (iii) Data acquisi-
tion from on-board subsystems (Real Time and Stored); (iv)
Housekeeping; and (v) Fault Detection Isolation and Recov-
ery (FDIR). At the time we were carrying out this research,
ICAMMH Project had already been finalized and the SIA
project was in its early stage.

4.1 Diagnose the Current State of the Organi-
zation’s Testing Process

As ICAMMH Project has already been finalized and the test-
ing activities of the SIA project were only in the very initial
phase, it was not possible to run the diagnostic step. This
step was replaced by the findings from the survey with 86
testing practitioners we performed (Souza et al., 2015b). Out
of these 86 participants, some are also team members and
leaders of the ICAMMH and SIA project.
The survey’s purpose was to identify which is the most ap-

propriate scenario in the software testing domain, from the
point of view of testing stakeholders, for starting a KM ini-
tiative. The survey presents questions that addressed aspects
considered both in the conceptualization of ROoST and by
the SM presented in (Souza et al., 2015a), as shown in Table

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

1. Furthermore, managing testing knowledge is not an easy
task, and thus it is better to start with a small-scale initiative.
Thus, firstly, it is necessary to identify essential knowledge
items of a sub-topic of software testing to be dealt with in the
KMS.
From the survey results, the following conclusions are con-

sidered: (i) the participants identified test case design and test
planning as being the activities in which KM would be most
useful. Therefore, test cases and test plans are considered the
most useful artifacts to be reused; (ii) explicit knowledge was
considered more important than tacit knowledge. Explicit
knowledge represents the objective and rational knowledge
that can be documented, and thus it can be accessed by many
(Nonaka and Takeuchi, 1997). On the other hand, the tacit
knowledge is the subjective and experience-based knowl-
edge and typically remains only in people’s minds (Nonaka
and Takeuchi, 1997); (iii) among the most targeted artifacts
to reuse, test cases stood out with 90.7%; and (iv) the pur-
poses for which experts are more interested in applying KM
in software testing are related to improving the quality of re-
sults in software testing, and reducing cost, time and effort
spent in a software project.

4.2 Establish the Scope of the Testing KM Ini-
tiative

Considering the main findings of the survey, test case design
was considered the software testing activity to be supported,
and test case the main artifact to be managed. All relevant
information for designing test cases had to be considered in
the scope of the TKMP development. Thus, concepts related
to test cases in ROoST were also considered in the scope of
the initiative, namely: Test Case Input, Expected Result, Test
Result, Test Code, Test Case Designer and Testing Technique.
Besides the test cases as the main artifacts to be managed,

LL and Knowledge regarding discussion were also consid-
ered in the scope of TKMP.
These two types of knowledge items were considered in

the scope of TKMP since survey participants pointed out in-
dividual experiences and communication between test team
members as the types of tacit knowledge with more signifi-
cant importance to generate explicit knowledge items. In ad-
dition, meetings with the project leaders from ICAMMH and
SIA projects also helped to reach this scope.
Still, concerning tacit knowledge, we decided that TKMP

should also include a Yellow Page System since survey par-
ticipants pointed out human resources as the most useful re-
source to be managed and test case designers are in the scope
of this KM initiative.
Finally, we also decided to apply KDD for discovering use-

ful knowledge from existing data and identifying the mined
items. As presented in Section 3, Step 4, different mining
methods can be used in the identification of relevant infor-
mation in large volumes of data. In this project, for creating
the mined items, the method of association rule was used.
The association rule method identifies patterns of behavior
in the set of data that often occur jointly in the database and
model rules from these sets. The association rules, when ap-
plied to a data set, allow finding rules of the type of X →
Y, i.e., transactions of the database which contain X tend to

contain Y. The method of Rule Association was used along
with the Apriori algorithm (Agrawal and Srikant, 1994; Wit-
ten et al., 2005). Apriori algorithm is the best known in rule
discovery methods (Agrawal and Srikant, 1994).

4.3 Develop a Testing KMS

Considering the scope defined in the previous activity,
TKMPwas developed. The specification of the main require-
ments was developed, such as the use case diagram and class
diagram conceptual model. Figure 3 shows a partial use case
diagram describing the main functionalities of TKMP and ac-
tors. The use cases in gray are general, in the sense that they
apply to manage software engineering knowledge items of
different nature. Use cases in white represent testing-specific
features. The Developer is the main actor, representing all
types of professionals involved in the software development
process. Knowledge Manager represents a user with specific
permissions, guaranteeing access to features inherent only to
a Knowledge Manager. Next, the use cases shown in Figure
3 are briefly described.

• Create Knowledge Item: This use case allows devel-
opers to create a knowledge item.

• Create Discussion-related Knowledge Item: This use
case allows developers to register a Discussion-related
Knowledge Item.

• Create Lesson Learned: This use case allows develop-
ers to register a Lesson Learned.

• CreateMined Item:This use case allows the developer
to register a Mined Item.

• Create Test Case: This use case allows developers to
register a Test Case.

• Include Test Result:This use case allows the developer
to include a test result relative to a test case.

• Include Incident: This use case allows the developer
to report an incident related to a test result.

• Include Issue: This use case allows the developer to
register an issue related to an incident.

• Change Knowledge Item: This use case allows the
knowledge manager to change a knowledge item.

• Delete Knowledge Item: This use case allows the
knowledge manager to delete a knowledge item.

• Pre-evaluate Knowledge Item: This use case allows
the knowledge manager to pre-evaluate a knowledge
item, making it available, rejecting it, or selecting ex-
perts to evaluate it.

• Evaluate Knowledge Item: This use case allows a de-
veloper to make a detailed evaluation of a knowledge
item, to support the knowledge manager in making de-
cisions about whether the item should be approved or
rejected.

• Visualize Knowledge Item:This use case allows devel-
opers to visualize the details of a knowledge item.

• Visualize Test Case: This use case allows developers
to visualize the details of a test case.

• Search Knowledge Item: This use case allows the de-
veloper to search for knowledge items available per in-
formed parameters.

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Table 1. Relationships between the Survey Questions (SQ) and the Research Questions (RQ) from the mapping study and ROoST
Survey Question Based on
SQ1. In which activities of a Testing Process is KM more use-
ful?
SQ2. In which activities of Testing Planning is KM more use-
ful?

ROoST: Testing Process and Activities sub-
ontology

SQ3. A test environment consists of, among others, human
resources, hardware, and software. About which of these re-
sources are more important to have available knowledge when
defining the test environment?

ROoST: Testing Environment sub-ontology

SQ4. In which testing level is KM more useful? ROoST: Testing Process and Activities sub-
ontology

SQ5. What is the type of knowledge you consider to be more
important during the software testing process?

Mapping Study: RQ7. What are the types of
knowledge items typically managed in software
testing?

SQ6. Regarding the types of knowledge items listed below, in-
dicate the importance of generating explicit knowledge from
tacit knowledge.

Mapping Study: RQ7

SQ7. Regarding testing artifacts, which are the ones you judge
to be more appropriate for reuse?

Mapping Study: RQ7
ROoST: Testing Artifacts sub-ontology

SQ8.What is the purpose of applying KM in Software Testing? Mapping Study: RQ6. What are the purposes of
employing KM in software testing?

SQ9. What benefits KM can bring to software testing? Mapping Study: RQ9. What are the main benefits
and problems reported regarding applying KM in
software testing?

Figure 3. Functionalities of TKMP

• Search Test Case: This use case allows the developer
to search for test cases per informed parameters.

• ValueKnowledge Item: This use case allows the devel-
oper to value the utility of a knowledge item consulted.

• Find Experts: This use case allows the developer to
find and select experts with a desired profile, as well
as viewing the profiles of experts found. It works as a
Yellow Pages system.

Figure 4 shows a partial conceptual model of TKMP. This
model focuses on Knowledge Items, on test cases. Classes

in gray are derived from ROoST, i.e., the ROoST con-
ceptual model was used as the starting point for specify-
ing TKMP, mainly to structure its knowledge repository re-
garding the software testing notions. Information from the
software tools that compose the testing environment of the
ICAMMH Project was used as the basis for identifying at-
tributes and enumerated types, to specify TKMP in detail.
These tools are TestLink2, a web-based test management sys-
tem, and MantisBT3, a bug tracking system.

2http://testlink.org/
3http://www.mantisbt.org/

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Figure 4. Conceptual model of TKMP.

TestLink is a web-based test management system. It offers
support for test cases, test suites, test plans, test projects, and
user management and reports. MantisBT is a bug (or defect)
tracking system. However, it is often configured by users to
serve as a more generic issue tracking system and project
management tool. In the case of the ICAMMH Project, Man-
tisBTwas customized to deal with two categories of requests:
activity-related requests and defect-related requests.

In the context of the ICAMMH Project, an integration
scheme between TestLink and MantisBT was used. TestLink
can integrate with MantisBT, allowing for a test case to be
associated with a defect-related request. Thus, all incidents
that were registered in MantisBT, as defect-related requests,
were conditioned to the existence of a test case in TestLink.

TKMP project and requirements specifications are cur-
rently available at https://cutt.ly/KyBOLUn.

4.4 Load Existing Knowledge Items

Once TKMP was developed, previous existing knowledge
items in the two projects were loaded to the knowledge repos-
itory. Initially, TKMP’s knowledge repository was populated
with 1568 test cases extracted from ICAMMH Project. Next,
other test cases from the SIA Project were also inserted in
TKMP’s knowledge repository using TKMP’s functionali-
ties.
In the context of the ICAMMH Project, test case related

information was stored both in TestLink andMantisBT. Each
one of these tools has its data repository, implemented in
different ways, demanding analysis of the structure of each
one to load the data. Moreover, each tool has its terminol-
ogy to represent the manipulated data, i.e., different terms
are used to represent the same concept. Thus, to load exist-
ing test cases, a featurewas developed to connect and get data
from the repositories of MantisBT and TestLink, and then to

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

convert them into objects (instances) of the data schema of
TKMP. ROoST was used for mapping concepts from the in-
volved tools. This procedure is illustrated in Figure 5.

Figure 5. Loading existing knowledge items

In this step, we decided to mine the stored knowledge
items, since mined items also were considered as scopes of
KM initiatives in Software Testing (see Section 4.2). Data
mining was performed on ICAMMH data. To create the
mined items, the method of Rule Association was used. One
of the algorithms to the better known association rules is the
Apriori algorithm. It can work with a large number of at-
tributes, generating various combinations among them. For
the generation of association with the Apriori algorithm, the
Waikato Environment for KnowledgeAnalysis (WEKA) tool
was used (Witten et al., 2005). WEKA is a collection of ma-
chine learning algorithms for data mining tasks. A brief ex-
planation of how this item can be generated is given below.
Considering only those test cases that failed, 415 records

were returned from a query in the knowledge repository. Ta-
ble 2 presents the first 20 returned and 8 attributes consid-
ered in this data mining, corresponding to classes: Human
Resource, Test Case, Incident, Issue.
After loading the data set, the Apriori algorithm was ex-

ecuted using the WEKA tool. WEKA returns the most im-
portant 10 associations. This number can be changed in the
algorithm settings. The listing in Table 3 shows the results of
the associations that were found.
Analyzing the rules some conclusions can be inferred. The

fifth rule, for example, shows that out of 219 recorded inci-
dents with status Resolved and resolution priority Normal,
the importance of test cases is Medium in 210 of them. This
is quite reasonable because the importance of completing the
test case is consideredMedium, an incident generated by this
test case can also be a priority of correction Normal. Just as
with all the other rules, one realizes that there are consisten-
cies among associations that were presented.
About the associations returned with the TKMP data, no

irregularities were detected. In this case, it is concluded that
the classes used to generate associations have the correct reg-
istration patterns by the project members. However, more
classes could be incorporated into the associations to allow
more analyses of the data. Furthermore, other mining algo-
rithms could be used. By using association rules combined
with other mining methods one could detect behaviors not
seen by the naked eye, for example, to notice or register a cer-
tain type of defect tends to appear when changing a certain
software component or the severity of the test case is always

major when they are related to a particular module. Behav-
iors like these could help the responsible expert in project
decisions related to the tests being conducted.
For the registration of a knowledge item of the mined item

type in TKMP, generic information about that item was con-
sidered given the diversity of methods and algorithms that
exist in data mining. In the conceptual model of TKMP (Fig-
ure 4), theMinedItem table shows the attributes that are avail-
able for the registration of a mined item. The attributes are:
Description, Algorithm, Result, and Analysis.

4.5 Evaluate the Testing KMS

Although TKMP is still considered a prototype, built as a
proof of concept for the OntoT-KM approach, we decided to
conduct different evaluations for this KMS in order to get the
feeling of software professionals in having a KMS available
for customization.
TKMPwent through a preliminary evaluation in two steps.

Firstly, TKMP was evaluated by the leaders of the two
projects, ICAMMH and SIA. Secondly, TKMP was made
available on the Web, and software engineering practition-
ers were invited to use it and then to answer a questionnaire
to give feedback in terms of usefulness, usability, and func-
tional correctness.

4.5.1 Evaluation with the project leaders

Once TKMP’s knowledge repository was populated with
data from the two real projects (ICAMMH and SIA), demon-
strations with the data obtained from the projects were made
and the leaders were requested to use and analyze the por-
tal. Then, we interviewed in order to collect opinions and/or
impressions of the leaders about the TKMP. The interview
was conducted in an unstructured manner and anonymously.
This configuration for the interview allowed information to
emerge more freely. We began the interview by consider-
ing three open questions to serve as a guide: “What is the
perceived usefulness of TKMP?”, “Do you think it’s easy to
learn to use TKMP?” and “Do you notice inconsistencies
when using TKMP?”. Open questions allowed respondents a
wide range of answers and diverse discussions about the tool.
Some of the leaders’ comments on the TKMP are presented
below.
The leaders of both projects stressed the importance of

such a system to better support the software testing pro-
cesses. Positive responses were presented by the leaders to
the TKMP in terms of usefulness, usability, and inconsisten-
cies.
With respect to ICAMMH Project, the leader observed

that there was always a great loss of knowledge due to the
turnover rate of the team members. In her words, “a KMS
such as TKMP would be indeed beneficial for finding simi-
lar test cases to be reused in the design of new ones to other
similar situations in different modules and future projects”.
With respect to the SIA Project, the leader’s evaluation

was that TKMP would be very important for dealing with
critical systems. However, he pointed out that a challenge
would be to change team members’ culture because many

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Table 2. Attributes analyzed (first 20 records)
Test Case
Author

Execution
Author

Importance Severity Reproducibility Issue
Status

Priority Resolution
Status

7 7 High Minor Bug Always Closed Normal Fixed
7 7 High Major Bug Always Closed Normal Fixed
7 7 High Minor Bug Always Closed Normal Fixed
7 7 High Crashes the ap-

plication or OS
Always Closed High Fixed

7 7 High Major Bug Always Closed Normal Fixed
7 7 High Major Bug Always Closed High Fixed
7 7 High Major Bug Always Closed High Fixed
7 7 High Major Bug Always Closed High Fixed
7 7 High Major Bug Always Closed High Fixed
7 7 High Minor Bug Always Resolved Normal Fixed
7 7 High Major Bug Always Closed Normal Fixed
7 7 High Major Bug Always Resolved High Fixed
7 2 High Minor Bug Have not tried Resolved Normal Fixed
7 7 High Mijor Bug Always Closed Normal Fixed
7 2 High Minor Bug Have not tried Closed Normal Fixed
7 2 High Minor Bug Have not tried Closed Normal Fixed
7 2 High Minor Bug Have not tried Resolved Normal Fixed
7 7 High Minor Bug Always Closed Normal Not a bug
7 2 High Major Bug Have not tried Closed Normal Fixed
7 2 High Minor Bug Have not tried Resolved Normal Fixed

Table 3. Results of the associations
Rule Associations
1 IssueStatus=Resolved 236 ==> ResolutionStatus=Fixed 235 conf:(1)
2 importance=Medium IssueStatus=Resolved 226 ==> ResolutionStatus=Fixed 225 conf:(1)
3 IssueStatus=Resolved Priority=Normal 219 ==> ResolutionStatus=Fixed 218 conf:(1)
4 importance=Medium IssueStatus=Resolved Priority=Normal 210 ==> ResolutionStatus=Fixed 209 conf:(1)
5 IssueStatus=Resolved Priority=Normal 219 ==> importance=Medium 210 conf:(0.96)
6 IssueStatus=Resolved Priority=Normal ResolutionStatus=Fixed 218 ==> importance=Medium 209 conf:(0.96)
7 IssueStatus=Resolved 236 ==> importance=Medium 226 conf:(0.96)
8 IssueStatus=Resolved ResolutionStatus=Fixed 235 ==> importance=Medium 225 conf:(0.96)
9 IssueStatus=Resolved Priority=Normal 219 ==> importance=Medium ResolutionStatus=Fixed 209 conf:(0.95)
10 IssueStatus=Resolved 236 ==> importance=Medium ResolutionStatus=Fixed 225 conf:(0.95)

times the team is not ready or does not accept new concepts,
tools, and ideas.

4.5.2 Evaluation by software engineering practitioners

TKMP was also evaluated by 43 practitioners in Soft-
ware Engineering, and it was based on GQM, TAM, and
functional correctness. The evaluation based on the GQM
paradigm involved four steps: Planning, Definition, Data
Collection, and Interpretation.

(I) Planning and Definition. At GQM’s conceptual level,
measurement goals should be defined. We identified three
goals for this evaluation, and from these goals, at the oper-
ational level, we defined seven questions, as Table 4 shows.
Finally, at the quantitative level, we defined metrics associ-
ated with the questions, in order to answer them measurably.
For each question, as Table 5 shows, we defined five metrics,
each one aiming at computing the number of participants
that strongly disagree (MG.Q.1), disagree (MG.Q.2), neither

agree nor disagree (MG.Q.3), agree (MG.Q.4), or strongly
agree (MG.Q.5) with a statement corresponding to the ques-
tion. Figure 6 summarizes the GQM approach we followed.
Table 6 presents the statements that we used to represent

the questions in the questionnaire that participants answered.
Questions Q1.1–Q1.4 were used to characterize the por-

tal usefulness, questions Q2.1–Q1.2 were used to collect
data on the level of usability. Question Q3.1 was used to
evaluate TKMP functional correctness. Table 7 shows how
to interpret the results. The lines should be read as “IF
<<expression>> THEN <<interpretation>>”. For exam-
ple, the interpretation of Question 3.1 (Q3.1) is “IF M1+M2
> M4+M5 THEN the users do not notice inconsistencies
when using the TKMP”, where M1, M2, M4, M5 are the re-
sponses given by the participants (metrics). It is important to
notice that M1 and M2 (see Table 5) are answers that totally
or partially disagree with the question. On the other hand,
M4 and M5 are answers that totally or partially agree with
the question.
In addition to the questions created using GQM’s con-

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Table 4. Defined Goals and Questions

G1:
Evaluate
TKMP
usefulness

Q1.1.What is the perceived usefulness of
TKMP regarding creating software testing
knowledge items?
Q1.2.What is the perceived usefulness of
TKMP regarding searching for software
testing knowledge items?
Q1.3.What is the perceived usefulness of
TKMP regarding reusing software testing
knowledge items?
Q1.4.What is the perceived global useful-
ness of TKMP?

G2:
Evaluate
TKMP
usability

Q2.1. To what extent do users recognize
that it is easy to learn to use TKMP? (learn-
ability)
Q2.2. To what extent do users recognize
that TKMP is appropriate for their needs?
(appropriateness recognizability)

G3:
Functional
Correctness

Q3.1 Do users notice inconsistencies
when using TKMP?

Table 5.Metrics used in the GQM
MG.Q.1 Number of participants who strongly disagree
MG.Q.2 Number of participants who disagreed
MG.Q.3 Number of participants who neither agree nor

disagree
MG.Q.4 Number of participants who agree
MG.Q.5 Number of participants who strongly agree

Table 6. Statements used to refer to the questions
Q1.1 TKMP is useful to create software testing knowl-

edge items.
Q1.2 TKMP is useful to search for software testing

knowledge items.
Q1.3 TKMP is useful to reuse software testing knowl-

edge items.
Q1.4 I would use or recommend the TKMP.
Q2.1 I learned to use the TKMP quickly.
Q2.2 I recognize TKMP as being suited to my tester

needs.
Q3.1 I did not notice inconsistencies when using the

TKMP.

ceptual level, at the end of the questionnaire, we present
three open questions to professionals in order to allow the
participant to externalize their opinion about the TKMP in
terms of good points, bad points, and general comments.

(II) Data Collection. The data used to evaluate the TKMP
were based on the metrics presented above. To collect the
data, we requested experts in software organizations to use
TKMP to perform activities to create, validate and search for
knowledge items. After using the tool, 43 participants an-
swered a questionnaire containing the questions previously
presented.
Considering the participants’ profile, out of these 43,

8 hold Doctoral degrees, 13 hold Masters, 22 finished

Figure 6. GQM approach to evaluate the TKMP

undergraduate programs. All of them are from the Software
Engineering area and they have an average of six years
of experience in the area. In relation to software testing
knowledge, 42.9% of participants reported having basic
knowledge, 37.2% reported having intermediate knowledge,
and 23.3% considered having advanced knowledge on
software testing. A summary of the responses given by
the participants is shown in Table 8. This table shows the
number of responses according to the goals, questions and
metrics used.

(III) Interpretation. Figures 7, 9 and 10 present charts that
show the answers per question used in our GQM model.
These answers were interpreted according to Table 7:

Goal 1: Evaluate TKMP usefulness - Figure 7
presents the chart generated from the answers related to
TKMP usefulness. Applying the interpretation expres-
sions shown in Table 7, in relation to this goal, the re-
sults show that the participants considered TKMP a use-
ful tool for managing software test knowledge items.
Regarding evaluating TKMP usefulness, we also car-
ried out an analysis separating the 43 participants by pro-
fessional position: professionals directly related to soft-
ware development companies (23 professionals); and
professionals directly related to scientific research (22
participants). This separation by position allowed us to
infer how the software industry and the academic envi-
ronment view the usefulness investigated topic. Figure
8 presents the chart generated from the answers related
to TKMP usefulness by position. In general, analysis of
the metrics for this chart, both for industry profession-
als and for researchers, TKMP is a type of tool that they
would use or indicate, especially for research-related
professionals (14 strongly agree).
Despite the interest, industry professionals presented a
lower perception of the usefulness of the TKMP than
academic researchers. In the SM conducted by Souza
et al. (2015a) the main problems reported on the imple-
mentation of KM initiatives in software testing in the or-
ganization were investigated. The main problems men-
tioned were that KM systems are not yet appropriate;
employees are normally reluctant to share their knowl-
edge and increased workload. We believe that these
problems may be related to the participants’ responses.

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Table 7. Results interpretation
01 For Q1.i, i=1 to 4: M1+M2 > M4+M5 TKMP is not useful for managing software testing knowledge

items.
02 For Q1.i, i=1 to 4: M1+M2 < M4+M5 TKMP is useful for managing software testing knowledge

items.
03 For Q1.i, i=1 to 4: M3 > M4+M5 or M1+M2

= M4+M5
We cannot say that TKMP is useful tomanage software testing
knowledge items

04 To Q2.1 and Q2.2: M1+M2 > M4+M5 TKMP cannot be easily used to manage software testing
knowledge items.

05 To Q2.1 and Q2.2: M1+M2 < M4+M5 TKMP can be easily used to manage software testing knowl-
edge items.

06 To Q2.1 and Q2.2: M3 > M4+M5 or M1+M2
= M4+M5

We cannot say that TKMP can be easily used to manage soft-
ware testing knowledge items.

07 To Q3.1: M1+M2 > M4+M5 TKMP can be considered functionally correct.
08 To Q3.1: M1+M2 < M4+M5 TKMP cannot be considered functionally correct.
09 ToQ3.1: M3>M4+M5 orM1+M2 =M4+M5 We cannot say if TKMP is functionally correct or not.

Table 8. Results Summary
Questions Metrics

Goal M1 M2 M3 M4 M5 Total
Q1.1 0 0 0 19 24 43

G1 Q1.2 2 2 8 17 14 43
Q1.3 0 1 7 16 19 43
Q1.4 0 4 9 8 22 43

G2 Q2.1 0 2 11 17 13 43
Q2.2 1 0 11 17 14 43

G3 Q3.1 3 5 14 14 7 43

On the other hand, in the academic area, there is con-
siderable growth in research in KM and Software En-
gineering. In 2008, Bjørnson and Dingsøyr (2008) al-
ready presented the growing interest in research on KM
in software engineering. This growing interest contin-
ues to these days (Menolli et al., 2015; Vasanthapriyan
et al., 2015; Pinto et al., 2018; Napoleão et al., 2021).

Figure 7. Questions and answers related to usefulness of TKMP

Goal 2: Evaluate the usability of TKMP - Figure 9
presents the chart generated from the answers related
to usability. The results showed the participants consid-
ered that TKMP can be easily used to manage software
testing knowledge items.

Figure 8. Questions and answers related to usefulness by position

Figure 9. Questions and answers related to usability of TKMP

Goal 3: Evaluate the functional correctness of
TKMP - Figure 10 presents the chart related to func-
tional correctness. The results show that TKMP can be

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

considered functionally correct. However, even the met-
rics pointing out that most of the participants did not
find inconsistencies to the point that they were not able
to use TKMP, by Figure 10, it is possible to notice that
the participants found inconsistencies in TKMP. We
consider this a normal result since TKMP is still a pro-
totype.

Figure 10.Question and answers related to functional correctness of TKMP.

As mentioned in the questionnaire planning, we present
three open questions to professionals to externalize good
points, bad points, and general comments about the TKMP.
As can be seen in Figure 7 (usefulness), Figure 9 (ease of use)
and Figure 10 (functional correctness), some professionals
chose the option “Strong disagreement or Disagree” in the
TKMP evaluation. We analyzed open-ended responses that
practitioners wrote to identify improvements to the tool and
consequently the approach.
When analyzing the responses of these 10 participants,

most of the comments are related to functional correctness
analysis (Figure 10). In general, we noticed that many of the
observations were more related to the small inconsistencies
identified in the tool. Two of the professionals, for example,
mentioned that the search for knowledge items could be im-
proved to be faster. One of the professionals mentioned that
when there is a lot of data to be returned in a database, in the
implementation it is possible to use more advanced strategies
to optimize this process. Other comments for improvements
were: the system would better work with images; allow ac-
cess to an instructional help in any part of the tool; keep all
fields in the tool as case sensitive; and allow sharing of in-
formation via email, as well as sending an email of evalua-
tions of knowledge items performed. It is worth noting that
the TKMP is a prototype considered as a proof of concept.
Despite this, all suggestions for improvements will be con-
sidered in the evolution of this research.
It’s also possible to notice, especially, by the charts of Fig-

ures 7 and 9, that a considerable number of participants chose
the option “Neither agree nor disagree” for TKMP useful-
ness and usability. When analyzing the responses of these
participants separately (15 participants), we did not find any
pattern that justified this choice. We only noted that concern-
ing the knowledge level in software testing, 10 participants
mentioned having basic or intermediate knowledge. It is not
possible to say, but we believe that a low time of knowledge
about software testing may have some influence on the an-
swer about TKMP utility and usability.

4.6 Other Partial Applications of OntoT-KM

Wealso started to applyOntoT-KM in software organizations.
Three companies evaluated OntoT-KM and TKMP. First, we
conducted the diagnostic and scope definition activities in
these three companies by applying a questionnaire based on
the survey presented in Souza et al. (2015b).
Respondents to the questionnaire were software testers re-

sponsible for the software testing activities within the com-
panies. For privacy reasons, we do not mention the com-
pany’s names. However, some characteristics are: located in
Brazil; medium sized software organizations; the main prod-
ucts they develop are systems for the fiscal area, such as
an electronic fiscal receipt, metrology, and also customized
systems to meet the needs of customers from diverse seg-
ments. The main diagnosis results by the three companies
are: (i) “Test Case Design” activity was the most useful; (ii)
“Test Environment Structuring” was the testing planning ac-
tivity in which KM is most useful; (iii) “Human resource”
and “Software Resource” are considered the resources from
which it is quite important to have the knowledge available
at the time of setting the test environment; (iv) the explicit
knowledge was considered more important than tacit knowl-
edge; (v) “Test Plan” and “Test Case” were considered the ar-
tifacts most reusable ones; (vi) There is no formal instrument
for KMwithin the three companies; and (vii) “Increasing the
testing process efficiency” and “Best test case selection” are
the main expected benefits of applying KM in software test-
ing. The results were very close to the results obtained in the
general survey applied to the 86 participants in Souza et al.
(2015b). From the diagnosis results in the companies, it was
possible to establish the scope for software testing initiatives.
The test plan definition and test case designwere considered
the software testing activities to be first supported, and test
cases the main knowledge item to be managed.
Until now, we have not conducted the remaining activities

of the OntoT-KM approach (develop a KMS Testing, Load
Existing Knowledge Items, and Evaluate the Testing KMS),
although companies have shown interest in developing their
own KMS solution. We intended that companies would also
use TKMP. We proposed to the three companies the use of
TKMP already developed from the research project’s scope
since the diagnosis results were similar. Companies were at
ease in uploading the organization’s data in TKMP or regis-
tering new data if they wish. The purpose was to analyze if
an already existing KM tool, such as TKMP, could be cus-
tomized by the organization to meet its current needs. Some
suggested customizations were: (i) to implement a traceabil-
ity matrix among test cases and lessons learned in order to
assist the test coverage; (ii) to develop a repository of arti-
facts (historical basis); and (iii) turning TKMP into a plug-in
to integrate with project management tools (e.g., JIRA, Red-
mine).
The two fronts analyzed in this study were well accepted

by the three organizations that participated in the survey. The
participants mentioned that it is interesting to have their solu-
tion for a KMS using OntoT-KM. However, they mentioned
this would be possible if the company had a team to develop
the system. On the other hand, it is also attractive to have
a more general and open source KMS available to be cus-

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

tomized by the company. We believe that the experience we
had from evaluations performed both OntoT-KM, as well as
TKMP, give us motivations and directions for future works,
for example, we intend to consider some of the customization
suggestions and enhancements to be implemented in TKMP
since there is an intention to create a robust version of the
portal to be made available to the Software Testing commu-
nity.

4.7 Study Limitations
There were limitations in the study. The first limitation refers
to the low representativeness of companies participating in
the study (3 companies). Validating an approach, as OntoT-
KM in a real environment, needs the authorization and trust
of the organization to use its data and information, and al-
locate employees for system development. However, we no-
ticed an enormous barrier to this. Several other companies
were invited to apply OntoT-KM. While they recognize the
benefits from KM in software testing, many refused to par-
ticipate. The invited organizations mentioned that the idea of
implementing KM in the organization, even with an existing
tool, could generate an increased workload. This position is
in line with the results detected through the SM conducted
in Souza et al. (2015a). Shortage of time is also a potential
risk to incorporate KM principles in software testing because
knowledge sharing can imply increasing the employee work-
load and costs. We intend to continue inviting software com-
panies to participate in the research and look for strategies
that allow the company to feel safe in relation to use or build
a KMS, for example, allow the company to install the system
on-premises and on their database server.
A second limitation of this research concerns the sample

size of the software engineering practitioners that answered
the questionnaire. 43 practitioners answered the question-
naire. Of these, 23 are professionals directly related to soft-
ware development companies. The results cannot be gener-
alized. Therefore, we intend to replicate this survey as many
software practitioners as possible in real projects in the in-
dustry. In addition, we also intend to conduct interviews with
these professionals. The interview purpose is to better under-
stand the responses that professionals have about TKMP, for
example, to better understand the reason that led profession-
als to shore up the option “Neither agree nor disagree”, as
can be seen in the Figures 7, 9 and 10.
Another limitation is related to step 1 of OntoT-KM. This

step was not employed on both projects (ICAMMH and SIA).
For this step, we used the results of a survey. The diagnosis
step was not made exclusively for the projects in question.
However, some survey participants were team members and
leaders of the ICAMMH and SIA projects. We believe that
the participation of these team members may have helped to
achieve a specific diagnosis for the projects under study.

5 Related Work
Different approaches to the development of KMSs can be
found in the literature. Dehghani and Ramsin (2015) pro-
vided a review of seven methods for KMS development.

In general, these methods provide activities, principles, and
techniques intending to apply KM in the organizations (R-
Montano et al., 2001; Calabrese and Orlando, 2006; Chal-
meta and Grangel, 2008; Iglesias and Garijo, 2008; Sarnikar
and Deokar, 2010; Moteleb et al., 2009; Amine and Ahmed-
Nacer, 2011). Some of these KMS methodologies are pre-
sented below.
Chalmeta and Grangel (2008) presented a methodology

called KM-IRIS. KM-IRIS was defined on a general level
that can be used as a guide to managing knowledge in any
kind of organization. The methodology is divided into five
phases: (i) Analysis and Identification of the target knowl-
edge; (ii) Extraction of the target knowledge; (iii) Classifica-
tion and representation; (iv) Processing and storage. In this
activity an operational KMS is implemented; and (v) Utiliza-
tion and continuous improvement by using the KMS. Chal-
meta andGrangel (2008) mention that ontologies can be used
in the first phase of the methodology, that is, after identify-
ing the knowledge, this knowledge can be detailed building
on an ontological classification so that it can be represented,
processed, and used in a later phase. Ontologies are also sug-
gested by Chalmeta and Grangel (2008) to be used in the
second phase of the methodology. OntoT-KM also has guide-
lines that identify target knowledge, called knowledge items,
and this item should be ranked. OntoT-KM is based on a test
ontology and the diagnostic phase of the test environment, as
well as the development of KMS, are strongly related to this
ontology.
In (R-Montano et al., 2001), a methodology to develop

a KMS was presented. The phases of this methodology
are as follows: (i) A strategic planning; (ii) Models logical
and physical aspects by specifying the strengths and weak-
nesses of the organizational KM process; (iii) Development
of the KMS prototype; (iv) verification and validation the
KMS through practical usage of the system; and (v) Deploy
and maintain the KMS. Similar to the methodology of (R-
Montano et al., 2001), OntoT-KM also proposes a planning
stage, called diagnosis, as well as generation of models to
support the construction of a KMS and its validation. How-
ever, these main activities in OntoT-KM are supported by a
software testing ontology.
Calabrese and Orlando (2006) presented a methodology

that consists of 18 phases: (i) KM principles and governance;
(ii) Organizational structure and sponsorship; (iii) Require-
ments analysis; (iv) Measurement; (v) Knowledge audit; (vi)
Initiative scoping; (vii) Prioritization; (viii) Technology solu-
tion assessment; (ix) Planning the development of the KMS;
(x) Knowledge elicitation; (xi) Building the KMS; (xii) Ver-
ifies and validates the KMS; (xiii) Review and update the
KMS; (xiv) Knowledge maintenance processes; (xv) Com-
munication and change management; (xvi) Train and pub-
lish the KMS; (xvii) Maintenance and support; and (xviii)
Measurement and reporting. In general, themethodology pre-
sented byCalabrese andOrlando (2006) is the detailing of the
process for constructing a KMS. For example, in the OntoT-
KM process (Figure 2) it is possible to notice that after the
evaluation activity of KMS testing, improvements can be the
system returning to previous process activities. However, we
do not treat this action as an explicit activity but in the form of
a relationship arrow. On the other hand, in the case presented

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

by Calabrese and Orlando (2006), this action is considered in
phases (xiii), (xiv), (xv), (xvii) and (xviii).
In (Sarnikar and Deokar, 2010), a methodology is pre-

sented to direct the development process based on the work-
flows within the organization. The methodology consists of
7 different design steps: (i) Business process model devel-
opment of the organization; (ii) Knowledge intensity identi-
fication; (iii) Requirements’ identification; (iv) Knowledge
sources identification; (v) Knowledge reuse assessment; (vi)
Task-user knowledge profile development; and (vii) Designs
the system components to support the tasks investigated in
previous phases. Different from the OntoT-KM process and
also from the other methodologies presented in (Dehghani
and Ramsin, 2015), the (Sarnikar and Deokar, 2010) method-
ology presents the design and construction of KMS only in
its last phase.
Iglesias and Garijo (2008) presented a methodology that

is not specifically targeted at developing a KMS but can be
effectively used for this purpose. Iglesias and Garijo (2008)
proposed the methodology MASCommonKADS that ex-
tends object-oriented and knowledge engineering techniques
for the conceptualization of multi-agent systems. The phases
of the methodology are as follows: (i) Obtains the initial view
of the problem domain; (ii) Discovers system requirements;
(iii) Designs the system; (iv) Develops and tests; and (v) Op-
erates and maintains the system. In the Designs phase, an
initial set of agents are determined and a model is developed.
The communication between the agents is expressed in an
ontology.
In (Amine and Ahmed-Nacer, 2011), an ontology-based

agile methodology is presented to develop a KMS to reduce
the risks of component-based development through manag-
ing the knowledge needed for component selection, update,
and maintenance. The phases are as follows (the last four
phases are iterative): (i) Initialization. The main objective of
this phase is to have the deepest understanding possible of
the organization. In this phase the creation of an initial on-
tology of the organization domain can be conducted; (ii) Do-
main mapping. Continuously refines the problem domain on-
tologies created in the initialization phase; (iii) Profiles and
policies identification; Specifies the authentication mecha-
nisms and the level of system access allowed for each user;
(iv) Implementation and personalization of the KMS; and (v)
Verification and validation of the KMS. The phases of the
methodology proposed by Amine and Ahmed-Nacer (2011)
are very similar to OntoT-KM. As with Amine and Ahmed-
Nacer (2011), we also use the resources of an ontology. How-
ever, unlike Amine and Ahmed-Nacer (2011), the ontology
we use is not created based on the organization but rather
on an already validated domain ontology and that aims at es-
tablishing a common conceptualization about the software
testing domain.
Finally, the methodology presented by Moteleb et al.

(2009) aims at using practical experiences for developing
KMSs in small organizations. The methodology is divided
into five phases: (i) Sense-making that aims at investigating
whether KMS development is a conceivable solution for the
organizational problems; (ii) Categorize the conceivable so-
lutions through communicating with the stakeholders; (iii)
The system is designed based on the solutions presented in

the previous phase; (iv) Specifies the appropriate technolo-
gies based on the technical, social and organizational fea-
tures of the KMS; and (v) Monitors and maintains the KMS.
OntoT-KM also analyzes the solution for the organization in
the diagnostic phase, as well as the design to construct the
KMS. However, as mentioned, OntoT-KM is supported by
software testing ontology, since this domain is the goal of
OntoT-KM.
Table 9 presents a brief comparison of related work, dis-

cussed above, that presented approaches to the development
of a system for supporting KM.
To the best of our knowledge, there is no method devoted

to developing a KMS for supporting KM in software test-
ing. In this way, we compared the system developed using
OntoT-KM (TKMP) with other works addressing KM in soft-
ware testing. These works are some of the ones selected in the
mapping study on initiatives applyingKM in software testing
presented in (Souza et al., 2015a). Thus, the studies retrieved
in this mapping were used here as a baseline for comparison
with our work. Most of the studies providing automated sup-
port for managing testing knowledge employing a KMS. In
addition, themapping results point out that test case reuse has
been the major focus of these initiatives. These results are in
line with the findings of the survey that guided us in the de-
velopment of TKMP, concerning the fact that test cases are
the main knowledge item to be managed.
In (Janjic and Atkinson, 2013), an automated test recom-

mendation approach that proactively makes test case sugges-
tions while a tester is designing test cases was presented.
They developed a prototype of an automated, non-intrusive
test recommendation system called Test Tenderer. A search
engine, called SENTRE, uses the current test case to perform
a search for reusable, semantically matching components.
Analogously to (Janjic and Atkinson, 2013), test case design
was considered the software testing activity to be supported
by TKMP. However, Test Tenderer addresses unit testing,
while TKMP is more general. Although Janjic and Atkinson
say that SENTRE performs a search for reusable, semanti-
cally matching components, the heuristics applied are name-
based searches. In TKMP, in turn, the knowledge repository
is structured based on ROoST, which is also used as the ba-
sis for the search functionality. Finally, Test Tenderer works
non-intrusively in the background and smoothly integrates
into normal working environments. Thus, the developer’s
normal working practices are not disturbed, and they only
need to break away from the task of writing new test cases to
consider already existing tests suggested by the recommenda-
tion engine. TKMP, on the other hand, does not proactively
suggest test cases. Testers must make a query for retrieving
similar test cases.
The technologies to support KM in software testing were

another important question investigated by the mapping. The
mapping showed that Knowledge Maps/Yellow Pages seem
to have good results. A Knowledge Map contains informa-
tion about experiences that employees possess. In (Liu et al.,
2009), for instance, a KM model whose one of its main com-
ponents is a KnowledgeMap repository was created. The sys-
tem identifies, utilizing statistics, the staff with some knowl-
edge, improving the culture of knowledge-sharing in the en-
terprise. Analogously, TKMP also provides a Yellow Page

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Table 9. Characteristics for different approaches to the development of KMSs
Approach Objective Number

Phases
Ontology Evaluation

Chalmeta and Grangel
(2008)

Methodology for directing
the process of developing
and implementing aKMS in
any type of organisation

5 Ontologies are sug-
gested to be used in the
steps (i) Analysis and
Identification of the
target knowledge and
(ii) Extraction of the
target knowledge

The methodology was ap-
plied to a large textile enter-
prise

R-Montano et al. (2001) Recommendations to de-
velop a KMS

5 - -

Calabrese and Orlando
(2006)

Process for a comprehen-
sive KMS

12 - A sensitivity/realism assess-
ment using an actual con-
figuration management ap-
plication to demonstrate the
utility of the process was
conducted

Sarnikar and Deokar
(2010)

A design process for KMS 7 - The design process was val-
idated by demonstrating the
feasibility of the proposed
design process and compar-
ing the approachwith others
modeling approaches

Iglesias and Garijo
(2008)

Methodology MASCom-
monKADS that extends
object-oriented and
knowledge engineering
techniques for the concep-
tualization of multi-agent
systems

5 An ontology can be
used in the commu-
nication between the
agents

A case study was con-
ducted in a travel agency
context

Amine and Ahmed-
Nacer (2011)

Implementation of KMS us-
ing Component-based soft-
ware engineering (CBSE)

5 An ontology-based
agile methodology was
used

A case study of the ap-
plication of the method-
ology was conducted in a
software organization

Moteleb et al. (2009) Use of practical experiences
for developing KMSs in
small organizations

5 - The approach was validated
in practice by an inquiry
into a number of problems
experienced by particular
organizations

OntoT-KM Development of an
ontology-based approach
for KM in Software Testing

5 An a Reference Ontol-
ogy on Software Test-
ing was used

A KMS was development
as proof of concept. KMS
was evaluated in terms of
usefulness, usability, and
functional correctness

feature. Li and Zhang (2012) presents a Knowledge Manage-
ment Model and one of the elements of this model is also
a knowledge map. This model is based on an ontology of
reusable test cases. However, this ontology has limited cov-
erage when compared with the ROoST.

6 Conclusions
This work presents our experiences in developing an ap-
proach to assist in launching KM initiatives in software test-
ing. OntoT-KM provides guidelines to apply KM with the
development of KMSs and based on a software testing on-
tology. Although there are approaches for developing KMSs
Dehghani and Ramsin (2015), to the best of our knowledge,
there is no approach devoted to developing a KMS for sup-

porting KM in software testing. In this respect, OntoT-KM
is an original contribution. Results show that the developed
KMS from OntoT-KM is a potential system for managing
knowledge in software testing, so, the approach, can guide
KM initiatives in software testing.

An approach like OntoT-KM can support different sce-
narios in software development companies. Organizations
that develop different products or product lines, for example,
have a large turnover of knowledge when compared to orga-
nizations that build specific software for each client/project
(Matturro and Silva, 2005). Hence, the reuse of testing knowl-
edge becomes more frequent in the later phases of software
development. Thus, a KM system, such as TKMP, would al-
low searching for solutions to similar problems registered in
the tool. Reuse is related not only to similar test cases, but

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

also to lessons learned, best practices, and patterns of behav-
ior in the project that can be identified by item mined and
that can be reused or at least assist in project decisions.
In relation to OntoT-KM evaluation, in this work, we in-

tended to evaluate the approach, as well as the generated
KMS. Now we intend to apply the diagnosis to as many soft-
ware development companies as possible to reach a common
scope in order to be developed in a general KMS. This KMS
will be part of an environment already maintained by this
research project, called Software Engineering KNOWledge
management diagnosis (SEKNOW) Santos et al. (2019). Cur-
rently, SEKNOWwas developed only to analyze KM in soft-
ware development organizations (diagnostics step), however,
given the evolution of research, SEKNOW has been under-
going adaptations to meet more activities related to KM and
software organizations. We also intend as future work to ex-
tend TKMP considering other conceptualizations established
by ROoST. We also intend to conduct more experimental
studies to confirm the results of the evaluations discussed in
this paper.
As mentioned earlier, we will apply KM diagnosis in soft-

ware development companies that maintain different project
domains with agile or traditional developments. The objec-
tive of KM diagnosis is to measure the organization’s cur-
rent state of KM. KM diagnosis can help the company to
understand the real needs before devoting costly efforts to
KM implementation and thus better target KM application
initiatives at strategic points (Bukowitz and Williams, 2000).
Conducting KM diagnostics in different domains of software
development can shows how KM activities are present in en-
vironments with agile or traditional practices. For this rea-
son, we have been conducting the synthesis on KM andAgile
Software Development (ASD) (Napoleão et al., 2021), and it
will certainly be considered in the next stages of this project.
Just like ADS, Purpose Development and Operations (De-
vOps) practices are also strongly related to KM. DevOps is a
methodology that combines flexibility with rigorous testing
and communication routines, aiming to deliver software ef-
ficiently and quickly (Mishra and Otaiwi, 2020). The adop-
tion of DevOps in an organization provides many benefits
including quality but also brings challenges to an organiza-
tion, for example, knowledge reuse. It is in our interest to
use the study conducted in this work in an organization that
adopts DevOps and measures how much is possible to man-
age knowledge in software testing in this context.

Acknowledgements

The first author would like to thank Professor Ricardo de Almeida
Falbo (in memoriam) for successfully leading this work and shar-
ing your valuable advice. The authors would like to thank: Brazilian
Aeronautics Institute of Technology (ITA) and the BrazilianAgency
of Research and Projects Financing (FINEP) - Project 5206/06-
ICAMMH; and the SIA Project for providing the data. Brazilian
funding agency CNPq Project 432247/2018-1. All participants that
used the TKMP and answered the evaluation questionnaire are also
duly acknowledged.

References

Abran, A., Bourque, P., Dupuis, J., and Moore, W. (2004).
Guide to the software engineering body of knowledge -
SWEBOK. Technical report, A project of the IEEE Com-
puter Society Professional Practices Committee.

Agrawal, R. and Srikant, R. (1994). Fast algorithms for min-
ing association rules in large databases. In 20th Interna-
tional Conference on Very Large Data Bases, pages 487–
499.

Amine,M. andAhmed-Nacer,M. (2011). An agile methodol-
ogy for implementing knowledge management systems: a
case study in component-based software engineering. Soft-
ware Engineering Applications, 5:159–170.

Andrade, J., Ares, J., Martinez, M., Pazos, J., Rodriguez, S.,
Romera, J., and Suarez., S. (2013). An architectural model
for software testing lesson learned systems. An architec-
tural model for software testing lesson learned systems,
55:18–34.

Basili, V. and Rombach, H. D. (1991). Support for compre-
hensive reuse. Software Engineering Journal, 6:303–316.

Basili, V. R., Caldiera, C., and Rombach, H. (1994). Guide
to the software engineering body of knowledge - SWE-
BOK. Technical report, Goal Question Metric Paradigm,
New York: John Wiley & Sons.

Bjørnson, F. O. and Dingsøyr, T. (2008). Knowledge man-
agement in software engineering: A systematic review of
studied concepts, findings and research methods used. In-
formation and Software Technology, 50:1055–1068.

Black, R. and Mitchell, J. L. (2011). Advanced software test-
ing. Rocky Nook, USA, 3 edition.

Bukowitz, W. and Williams, R. L. (2000). The knowledge
management fieldbook. Financial Times Prentice Hall,
Great Britain.

Burnstein, I. (2003). Practical Software Testing: A Process-
oriented Approach. Springer Professional Computing,
New York, 3 edition.

Calabrese, F. and Orlando, C. (2006). Deriving a 12-step pro-
cess to create and implement a comprehensive knowledge
management system. Journal of Information and Knowl-
edge Management Systems, 3(36):238–254.

Chalmeta, R. and Grangel, R. (2008). Methodology for the
implementation of knowledge management systems. Jour-
nal of the American Society for Information Science and
Technology, 5(59):742–755.

Davenport, T. H. and Prusak, L. (2000). Working knowledge.
Harward Business School Press, Boston, USA, 2 edition.

Davis, F. D. (1993). User acceptance of information technol-
ogy: system characteristics, user perceptions and behav-
ioral impacts. International Jounal of Man-Machine Stud-
ies, 38:475–487.

Dehghani, R. and Ramsin, R. (2015). Methodologies for
developing knowledge management systems: an evalu-
ation framework. Journal of Knowledge Management,
19(4):682–710.

Falbo, R. A. (2014). Sabio: Systematic approach for building
ontologies. In 8th Intern. Conference on Formal Ontology
in Information Systems.

Falbo, R. A., Arantes, D. O., and Natali, A. C. C. (2004).

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

Integrating knowledge management and groupware in a
software development environment. In International Con-
ference on Practical Aspects of Knowledge Management,
pages 94–105.

Falbo, R. A., Barcellos, M., Nardi, J., and Guizzardi, G.
(2013). Organizing ontology design patterns as ontology
pattern languages. In Extended Semantic Web Conference,
Montpellier.

Falbo, R. A., Ruy, F. B., Guizzardi, G., Barcellos, M. P., and
Almeida, J. P. A. (2014). Towards an enterprise ontology
pattern language. In Symposium On Applied Computing,
Gyeongju.

Fayyad, U., Gregory, P., and P.Smyth, P. (1996). From data
mining to knowledge discovery in databases. American
Association for Artificial Intelligence, pages 37–54.

Fischer, G. and Ostwald, J. (2001). Knowledge management:
problems, promises, realities, and challenges. IEEE Intel-
ligent Systems, 16:60–72.

Herrera, R. J. G. andMartin-B,M. J. (2015). A novel process-
based KMS success framework empowered by ontology
learning technology. Engineering Applications of Artifi-
cial Intelligence, 45:295–312.

Iglesias, C. and Garijo, M. (2008). The agent-oriented
methodology MAS-CommonKADS. In Intelligent In-
formation Technologies: Concepts, Methodologies, Tools,
and Applications, Information Science, pages 445–468.

ISO/IEC (2011). ISO/IEC 25010 - Systems and software
engineering - Systems and software Quality Requirements
and Evaluation(SQuaRE)Syste - m and software quality
models.

Janjic, W. and Atkinson, C. (2013). Utilizing software reuse
experience for automated test recommendation. In Inter-
national Workshop on Automation of Software Test, pages
100–106, San Francisco.

Kitchenham, B. and Charters, S. (2007). Guidelines for per-
forming systematic literature reviews in software engineer-
ing. Technical Report EBSE 2007-001, Keele University
and Durham University, UK.

Li, X. and Zhang, W. (2012). Ontology-based testing plat-
form for reusing. In Intern. Conference on Internet Plat-
form for Reusing, pages 86–89, Henan, China.

Liu, Y., Wu, J., Liu, X., and Gu, G. (2009). Investigation of
knowledge management methods in software testing pro-
cess. In Inter. Conference on Information Technology and
Computer Science, pages 90–94, Kiev.

Mathur, A. P. (2012). Foundations of software testing. Pear-
son Education in South Asia, India, 5 edition.

Matturro, G. and Silva, A. (2005). A knowledge-based per-
spective for preparing the transition to a software product
line approach. In International Conference on Software
Product Lines, pages 96–101, Berlin, Heidelberg.

Menolli, A., Cunha, M. A., Reinehr, S., and Malucelli, A.
(2015). “old” theories, “new” technologies: Understand-
ing knowledge sharing and learning in brazilian software
development companies. Information and Software Tech-
nology, 58:289–303.

Mishra, A. and Otaiwi, Z. (2020). Devops and software qual-
ity: A systematic mapping. Computer Science Review,
38:100308.

Moteleb, A., Woodman, M., and Critten, P. (2009). Towards
a practical guide for developing knowledge management
systems in small organizations. In European Conference
on Knowledge Management, pages 559–570.

Myers, G. J. (2004). The art of software testing. John Wiley
and Sons, Canada, 2 edition.

Napoleão, B. M., Souza, E. F., Ruiz, G. A., Felizardo, K. R.,
Meinerz, G. V., and Vijaykumar, N. L. (2021). Synthesiz-
ing researches on knowledge management and agile soft-
ware development using the meta-ethnography method.
Journal of Systems and Software, 178:110973.

Nonaka, I. and Krogh, G. (2009). Tacit knowledge and
knowledge conversion: controversy and advancement in
organizational knowledge creation theory. Organization
Science, 30:635–652.

Nonaka, I. and Takeuchi, H. (1997). The knowledge-creating
company. Oxford University Press, Oxford, USA.

O’Leary, D. and Studer, R. (2001). Knowledge management:
an interdisciplinary approach. IEEE Intelligent Systems,
16(1).

O’Leary, D. E. (1998). Enterprise knowledge management.
IEEE Computer Magazine, pages 54–61.

Park, R., Goethert, W., and Florac, W. (1997). Goal-Driven
Software Measurement. Handbook CMU/SEI-96-HB-
002.

Pinto, D., Oliveira,M., Bortolozzi, F.,Matta, N., and Tenório,
N. (2018). Investigating knowledge management in the
software industry: The proof of concept’s findings of a
questionnaire addressed to small and medium-sized com-
panies. In 10th International Joint Conference on Knowl-
edge Discovery, Knowledge Engineering and Knowledge
Management - KMIS, pages 73–82.

R-Montano, B., Liebowitz, J., Buchwalter, J., McCaw, D.,
Newman, B., and Rebeck, K. (2001). A systems thinking
framework for knowledgemanagement. Decision Support
Systems, 31:5–16.

Rokunuzzaman,M. and Choudhury, K. P. (2011). Economics
of software reuse and market positioning for customized
software solutions. Journal of Software, 6:31–1029.

Ruy, F. B., Falbo, R., Barcellos, M., Costa, S. D., and Guiz-
zardi, G. (2016). SEON: A Software Engineering Ontol-
ogy Network. In 20th Inter. Conference on Knowledge
Engineering and KnowledgeManagement (EKAW), pages
527–542.

Santos, V., Salgado, J. G., Souza, E. F., Felizardp, K. R.,
and Vijaykumar, N. L. (2019). A tool for automation of
knowledge management diagnostics in software develop-
ment companies. In Brazilian Conference on Software:
Theory and Practice (CBSoft) - Tools Session.

Sarnikar, S. and Deokar, A. (2010). Knowledge manage-
ment systems for knowledge-intensive processes: design
approach and an illustrative example. In International
Conference on System Sciences, pages 1–10.

Souza, E. F. (2014). Knowledge management applied to soft-
ware testing: an ontology based framework. Thesis in
computer science, National Institute for Space Research
(INPE), Brazil.

Souza, E. F., Falbo, R. A., Specimille, M. S., Coelho, A.
G. N., Vijaykumar, N. L., Felizardo, K. R., and Mein-

Development of an Ontology-based Approach for Knowledge Management in Software Testing: an Experience Report Souza et al. 2021

erz, G. V. (2020). Experience report on developing an
ontology-based approach for knowledge management in
software testing. In 19th Brazilian Symposium on Software
Quality - Experience Reports (SBQS ’20), pages 1–10.

Souza, E. F., Falbo, R. A., and Vijaykumar, N. (2017).
ROoST:Reference Ontology on Software Testing. Applied
Ontology, 12:59–90.

Souza, E. F., Falbo, R. A., and Vijaykumar, N. L. (2013).
Ontology in Software Testing: a Systematic Literature Re-
view. In Research Seminar Ontology of Brazil (ONTO-
BRAS), pages 71–82, Belo Horizonte.

Souza, E. F., Falbo, R. A., and Vijaykumar, N. L. (2015a).
Knowledge management initiatives in software testing: A
mapping study. Information and Software Technology,
57:378–391.

Souza, E. F., Falbo, R. A., and Vijaykumar, N. L. (2015b).
Using lessons learned from mapping study to conduct a
research project on knowledge management in software
testing. In 41st Euromicro Conference on Software Engi-
neering and Advanced Applications (SEAA), pages 208–
215, Madeira, Portugual.

Staab, S., Studer, R., Schurr, H. P., and Sure, Y. (2001).
Knowledge processes and ontologies. Intelligent Systems,
16:26–34.

Storey, J. and Barnett, E. (2000). Knowledge management
initiatives:learning from failure. Journal of Knowledge
Management, 4:145–156.

Thrane, C. (2011). Quantitative models and analysis for re-
active systems. Thesis in applied computing, Department
of Computer Science - Aalborg University, Denmark.

Vasanthapriyan, S., Tian, J., and Xiang, J. (2015). A survey
on knowledge management in software engineering. In
International Conference on Software Quality, Reliability
and Security Companion (QRS-C), pages 237–244, Van-
couver, BC, Canada.

Werner, J. (2014). Reuse-Based Test Recommendation
in Software Engineering. PhD thesis, Universität
Mannheiml, Mannheim. Zugl. als Druckausg. im Verl. Dr.
Hut, München erschienen.

Witten, I. H., Frank, E., and Hall, M. A. (2005). Data mining:
practical machine learning tools and techniques. Morgan
Kaufmann, San Francisco, 3 edition.

Yun, H., Ha, D., Hwang, B., and Ryu, K. (2003). Mining asso-
ciation rules on significant rare data using relative support.
Journal of Systems and Software, 67:181–191.

Zack, M. and Serino, M. (2000). Knowledge management
and collaboration technologies. In Knowledge, Group-
ware and the Internet, pages 303–315, Butterworth.

	Introduction
	Background
	Software Testing
	Knowledge Management
	ROoST

	OntoT-KM
	Applying OntoT-KM
	Diagnose the Current State of the Organization's Testing Process
	Establish the Scope of the Testing KM Initiative
	Develop a Testing KMS
	Load Existing Knowledge Items
	Evaluate the Testing KMS
	Evaluation with the project leaders
	Evaluation by software engineering practitioners

	Other Partial Applications of OntoT-KM
	Study Limitations

	Related Work
	Conclusions

