
Journal of Software Engineering Research and Development, 2021, 9:14, doi: 10.5753/jserd.2021.1911

� This work is licensed under a Creative Commons Attribution 4.0 International License.

Attributes that may raise the occurrence of merge conflicts

José William Menezes� [ Universidade Federal do Acre | jose.william@sou.ufac.br]

Bruno Trindade� [ Universidade Federal do Acre | bruno.trindade@sou.ufac.br]

João Felipe Pimentel� [ Universidade Federal Fluminense | jpimentel@ic.uff.br]

Alexandre Plastino� [ Universidade Federal Fluminense | plastino@ic.uff.br]

Leonardo Murta� [ Universidade Federal Fluminense | leomurta@ic.uff.br]

Catarina Costa� [ Universidade Federal do Acre | catarina.costa@ufac.br]

Abstract

Collaborative software development typically involves the use of branches. The changes made in different branches

are usually merged, and direct and indirect conflicts may arise. Some studies are concerned with investigating ways

to deal with merge conflicts and measuring the effort that this activity may require. However, the investigation of

factors that may reduce the occurrence of conflicts needs more and deeper attention. This paper aims at identifying

and analyzing attributes of past merges with and without conflicts to understand what may induce direct conflicts.

We analyzed 182,273 merge scenarios from 80 projects written in eight different programming languages to find

characteristics that increase the chances of a merge to have a conflict. We found that attributes such as the number of

changed files, the number of commits, the number of changed lines, and the number of committers demonstrated to

have the strongest influence in the occurrence of merge conflicts. Moreover, attributes in the branch that is being

integrated seem to be more influential than the same attributes in the receiving branch. Additionally, we discovered

positive correlations between the occurrence of conflicts and both the duration of the branch and the intersection of

developers in both branches. Finally, we observed that PHP, JavaScript, and Java are more prone to conflicts.
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1 Introduction

Software development normally involves collaboration

among members of the project team. This collaborative de-

velopment is supported by a Version Control System (VCS).

Often, when there is a need to develop new features or fix

bugs, developers choose to create a branch, which is a separate

development line. This separate development line helps teams

to focus on their tasks, without prematurely worrying about

how it affects other parts of the software (Bird et al., 2011).

However, the use of branches can cause problems, as changes

made in different branches are usually merged, and direct and

indirect conflicts may arise (Brindescu et al., 2020b; Costa

et al., 2016; Sarma et al., 2011; Brun et al., 2011). According

to Bird et al. (2011), the effort involved in the merge process

is dependent on how much work went on in the branches.

Some studies investigate ways to deal with merge conflicts

by proactively detecting changes that can lead to conflicts

(Brun et al., 2011; Sarma et al., 2011), identifying merge

characteristics (Accioly et al., 2018; Ghiotto et al., 2018;

Vale et al., 2020), investigating the characteristics of difficult

merge conflicts (Brindescu et al., 2020b), and examining the

decisions usually made to resolve conflicts (Accioly et al.,

2018; Ghiotto et al., 2018). However, only recently, some

studies started to investigate factors that may induce the oc-

currence of conflicts. Dias et al. (2020) verify how seven

factors related to modularity, size, and timing of develop-

ers’ contributions affect conflict occurrence. Leßenich et al.

(2018) analyze the predictive power of seven indicators, such

as the number, size, and scattering degree of commits in each

branch, to forecast the number of merge conflicts. In the same

direction, Owhadi-Kareshk et al. (2019) investigate the pre-

dictive power of nine lightweight Git feature sets, such as

the number of changed files in both branches, the number of

commits and developers, and the duration of the development

of the branch. Finally, Vale et al. (2020) investigate the role

of communication activity and the number of modified lines,

chunks, files, developers, commits, and days that a merge

scenario lasts in the increase or reduction of merge conflicts.

Similar to Dias et al. (2020), Leßenich et al. (2018),

Owhadi-Kareshk et al. (2019), and Vale et al. (2020), we

assume that by analyzing attributes of past merges, it is possi-

ble to identify characteristics that may increase the chances

of having a merge conflict. However, in addition to the at-

tributes investigated by those authors (e.g., isolation, number

of changed files, changed lines, commits, commit density,

and developers), we analyzed some other attributes, such as

the programming language, the frequency of one or more

developers committing in both branches, and the existence

of self-conflicts1 (Zimmermann, 2007). As mentioned by

Brindescu et al. (2020a), the changes in conflict are generally

authored by two different developers, but merge conflicts can

also happen between the edits of the same developer, in two

different branches. Besides, in terms of the number of ana-

lyzed merges, our corpus is representative (it is only smaller

than the corpus of Owhadi-Kareshk et al. (2019)), and our

analysis of the number of commits, commit density, commit-

ters, and changed lines and files is performed by branch, not

using averages. Finally, it is important to mention that some

metrics with similar names in the related work are calculated

differently.

Thus, our work aims at providing a more in-depth analysis

of how a set of merge attributes can influence the occur-

rence of conflicts. To do so, we mined association rules from

1A self-conflict is a conflict among changes committed by the same

developer.
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182,273 merge scenarios extracted from 80 software projects

hosted on GitHub, written in eight different programming

languages. The following eight research questions guided the

analysis:

• RQ1. How is the isolation of a branch related to the

occurrence of merge conflicts? Our intuition is that the

longer the isolation time of the branches, the greater the

likelihood of having conflicts.

• RQ2. How is the number of commits related to the occur-

rence of merge conflicts?Our intuition is that the greater

the number of contributions in terms of commits in the

branches, the greater the likelihood of having conflicts.

• RQ3. How is the number of developers that performed

commits related to the occurrence of merge conflicts?

Our intuition is that the greater the number of contribu-

tors in the branches, the greater the likelihood of having

conflicts.

• RQ4. How is the number of changed files related to the

occurrence of merge conflicts? Our intuition is that the

greater the number of contributions in terms of changed

files in the branches, the greater the likelihood of having

conflicts.

• RQ5. How is the number of changed lines related to the

occurrence of merge conflicts? Our intuition is that the

greater the number of contributions in terms of changed

lines in the branches, the greater the likelihood of having

conflicts.

• RQ6. How is the programming language related to the

occurrence ofmerge conflicts?We had no intuition about

the programming language, but we would like to know

if any language was more prone to have conflicts.

• RQ7. How is the intersection of developers in both

branches related to the occurrence of merge conflicts?

Our intuition is that the greater the number of contribu-

tors in both branches, the lesser the chances of having

conflicts, because these developers are aware of the

parallel changes.

• RQ8. How prevalent is the occurrence of merge self-

conflicts?We had no intuition about the proportion of

self-conflicts, but we would like to know if it is common

in projects.

The answers to these questions can provide insights on

how software project teams’ work may affect the occurrence

or avoidance of merge conflicts. We found that the investi-

gated attributes have a positive correlation with merges with

conflicts. Notably, in the integrated branch, the number of

changed files, the number of commits, the number of changed

lines, and the number of committers have the strongest influ-

ence in the occurrence of conflicts among all attributes we

analyzed. Surprisingly, having some developers committing

in both branches also increases the chance of conflicts, but

having no common developer or having exactly the same de-

velopers committing in both branches decreases the chance of

conflicts. We also verified that three programming languages

(PHP, JavaScript, and Java) are more prone to conflicts.

This paper is an extended version of a conference paper

(Menezes et al., 2020) inwhichwe answered six research ques-

tions, focused on the impact of the attributes time, commits,

committers, changed files, intersection, and self-conflicts, in

the occurrence of merge conflicts. This work complements

our previous work by adding two new research questions and

three new attributes, the number of changed lines, the com-

mits density, and the programming language. Additionally,

we detail the investigation of developer intersection and re-

place the old “some intersection” category by percentages of

intersections in association rules. We also deep the analysis

of self-conflicts, obtaining the number of self-conflicts per

chunk instead of per file. After all, a file can have several

pieces of conflicting code that are from the same or different

developers. Hence, the analysis became more precise. In ad-

dition, we mine rules to verify the relation to the attributes in

the occurrence of self-conflicts.

Besides this introduction, this paper is organized in 7 sec-

tions. In Section 2, we present the research steps followed. In

Section 3, we present the results of our statistical analysis, the

association rules, and the discussion about the self-conflicts.

In Section 4, we present the answers to our research questions.

In Section 5, we discuss threats to validity. In Section 6, we

discuss the related work. Finally, in Section 7 we present the

conclusion.

2 Materials and Methods

To answer the research questions presented in the introduc-

tion, we performed an exploratory study. The following steps,

detailed in the following, compose our exploratory study:

merge attributes definition, projects and merges selection,

merges and attributes extraction, and data mining.

2.1 Merge Attributes Definition

The attributes were mainly derived from our research ques-

tions and defined in Table 1. We divided the attributes

into project attributes, merge attributes, and branch at-

tributes.

The project attributes are the predominant programming

language, number of merges, number of analyzed merges

(non-fast-forward), merges with conflicts, merges without

conflicts, and self-conflicts.

The merge attributes are the information collected by

the merge scenario, using the information present in both

branches. The merge conflict occurrence (yes or no), timing

metrics, and information about changes and developers in

both branches.

The branch attributes are collected and presented by each

branch2 (B1 and B2). We do not adopt any aggregation of

2When referring to the identification of branches in merges, i.e., the

distinction between branch 1 (B1) and branch 2 (B2), we borrow the reasoning

of Chacon and Hamano (2009): “the first parent is the branch you were on

when you merged, and the second is the commit on the branch that you

merged in”.
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Table 1. Attributes

# Attributes Definition

Project attributes

a) Programming language Predominant programming language.

b) Total of merges Number of merges in total.

c) Analyzed merges Number of three-way merges, not considering fast-forward merges.

d) Merges with conflicts Number of analyzed merges with conflicts.

e) Merges without conflicts Number of analyzed merges without conflicts.

f) Merges with self-conflict Number of analyzed merges with the same developer authoring both

sides of at least one conflicting chunk.

Merge attributes

g) Merge conflict occurrence Binary attribute (yes or no) indicating if the merge has conflicts.

h) Branching-duration The effective duration of development in the branches, from the first

branch commit (min(B1,B2)) to the last branch commit (max(B1,B2)),

in days.

i) Total-duration The total duration of isolation, from the common ancestor (base commit)

to the merge commit, in days.

j) Committers in both branches Percentage of developers in both branches.

k) Conflicting chunk Number of conflicting chunks.

l) Conflicting chunk by the same developers Number of conflicting chunks authored by the same developer in both

sides.

Branch attributes (B1 and B2)

m) Commit Density Number of commits in the Branching-duration.

n) Loc-churn Number of lines changed (added + deleted) in each branch.

o) Changed files Number of changed files in each branch.

p) Commits Number of commits in each branch.

q) Committers (commit authors) Number of developers that authored commits in each branch.

values. The branch attributes are the number of commits, num-

ber of committers (commit authors), number of changed files,

and loc-churn (number of lines changed: added + deleted).

The attributes are collected for merges with conflicts and

merges without conflicts. They allow us to compare different

characteristics between merges with and without conflicts.

Some of these attributes are also mentioned in related work,

such as the timing metrics, merge conflict occurrence, num-

ber of merge conflicts, number of commits, commit density,

committers, and changed lines and files (Dias et al. (2020);

Leßenich et al. (2018); Vale et al. (2020)).

2.2 Projects and Merges Selection

First, we decided to select projects developed in different and

popular programming languages. Thus, we identified the top-

8 programming languages present in the following surveys:

GitHub3 top active languages survey 2019, Stack Overflow4

developer survey results in 2019, and TIOBE 5 Index 2019.

The top-8 selected programming languages present in the

three surveys were: JavaScript, Python, Java, PHP, C#, C++,

C, and Ruby.

We selected the projects using the GitHub API. We used

the following criteria: (1) popular projects (projects with more

than 1,000 stars), (2) software projects, (3) number of merges

greater than 100, (4) projects with a wiki or some documenta-

tion, and (5) a balanced amount of merges per project. After

3https://githut.info/
4https://insights.stackoverflow.com/survey/2019#

technology
5https://www.tiobe.com/tiobe-index/

applying the first criterion, we initially selected 461 projects.

After applying criteria 2 to 4, 279 projects remained. To ob-

tain a balanced corpus in terms of the number of analyzed

merges per project, we selected ten projects per programming

language, where the number of analyzed merges was less

than 5% of the total number of analyzed merges in the dataset

(Table 2). For example, the Graal project is the project with

the highest number of analyzed merges (7,064). However, it

represents just 3.9% of our final dataset (182,273).

Table 2. General information of our dataset.

Programming

Language

Total

Merges

Analyzed

Merges

Conflicting

Merges

C 31,013 21,948 981

C# 31,468 21,148 2,003

C++ 32,463 24,155 2,290

Java 32,989 24,109 2,519

JavaScript 31,542 21,803 2,613

PHP 31,208 22,371 3,376

Python 32,591 22,585 1,923

Ruby 37,001 24,154 2,114

Total 260,275 182,273 17,819

It is important to mention that although the total number of

merges was initially 260,275 (Table 2), we removed 78,002

merges from the analysis: 74,293 fast-forward merges (i.e.,

merges with no changes in a branch, in which Git would be

able to just moves the pointer forward, but due to the option

--no-ff, a merge commit was created (Chacon and Hamano,
2009)), 37 merges with negative total-duration (i.e., merges

https://githut.info/
https://insights.stackoverflow.com/survey/2019#technology
https://insights.stackoverflow.com/survey/2019#technology
https://www.tiobe.com/tiobe-index/
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in which the date of the common ancestor is more recent than

the date of the merge, probably due to some clock misconfig-

uration in the developer computer), and 3,672 merges with

only merge commits (merges in which all commits from both

branches are merge commits).

2.3 Merges and Attributes Extraction

We have implemented a tool to extract the attributes. The

tool and the dataset are publicly available on GitHub6. The

tool was developed in Java to parse the log provided by Git,

retrieving all merge commits. Then, it identifies the parent

commits that were merged and navigated until the common

ancestor, just before forking the history. Our tool also checks

whether the merge resulted in conflicts.

Figure 1 shows a merge example composed of: a merge

commit (C57), two parents commits that were merged (C55

and C56), and the common ancestor (C50). From these com-

mits, it is possible to identify the commits within each branch.

These commits are located between the common ancestor,

and each of the parents commits merged (including the par-

ent commits). The “feature” branch in the example has three

commits (C51, C54, and C56), and the “master” branch also

has three commits (C52, C53, and C55). By identifying all

commits from the branches of each merge, our tool was able

to collect all the attributes listed in Section 2.1.

In our example, to calculate the branching-duration, we

check the date of the first branch commit (min(B1,B2)),

“08 Aug 2020”, and the date of the last branch commit

(max(B1,B2)), “22 Aug 2020”. So, the branching-duration

was 14 days. In the attribute verification of committers in

both branches, the tool would identify that Ana made changes

to both branches. In the verification of the conflicting chunk

by the same developers, Ana could also have been the author

of a self-conflict. In the committers attribute verification, the

“feature” branch has two committers (Lisa and Ana), and the

“master” branch also has two committers (Ana and Tom).

Three files were changed in the “feature” branch (A, B, and

C), and two files (A and B) were changed in the “master”

branch.

With the attributes of the 182,273 merge cases, we

could conduct statistical analysis to understand the differ-

ence between the distributions of merges with and with-

out conflicts. Additionally, we plotted graphs represent-

ing the probability of having a conflict in a merge (axis

y) given that an attribute is higher than a value (axis x).

We calculated this probability according to the Bayes the-

orem: P (conflict|attribute > value) = P (conflict ∩
attribute > value)/P (attribute > value).

2.4 Data Mining

In this step, we adopted a data mining technique called as-

sociation rules extraction. In summary, an association rule

R is a pair (X, Y ) of two disjoint entity sets, X and Y . In

the notation X → Y , X is called antecedent, and Y is called

consequent (Han et al. (2012)). The rules aim at finding as-

sociations or correlations, but, as said by Zimmermann et al.

6https://github.com/catarinacosta/macTool/

Figure 1.Merge example.

(2004), rules do not tell an absolute truth. They have a prob-

abilistic interpretation based on the amount of evidence de-

termined by two metrics (Agrawal et al., 1994): (a) support,
the joint probability of having both antecedent and conse-

quent, and (b) confidence, the conditional probability of
having the consequent when the antecedent is present. An-

other measure of interest used is the (c) lift, which indicates
how much the occurrence of Y increases given the occur-

rence of X . Han et al. (2012) explain that lift(X → Y ) =
confidence(X → Y )/support(Y ), where lift = 1 indi-

cates that the antecedent (X) does not interfere with the oc-

currence of the consequent (Y ), lift > 1 indicates that the
occurrence of X increases the chances of the occurrence of

Y , and lift < 1 indicates that the occurrence of X decreases

the chances of the occurrence of Y .

We adopted the Knowledge Discovery in Databases (KDD)

process (Fayyad et al. (1996)) to extract the association rules

from our dataset: (a) data selection, (b) preprocessing, (c)

transformation and data enrichment, (d) association rules ex-

traction, and (e) results interpretation and evaluation.

After we selected and collected the projects and the at-

tributes using our tool (step a), we removed instances (merge

cases) with inconsistent values (step b), for example, merge

cases with negative total-duration. These two initial steps

were described in Section 2.1 to 2.3.

The discretization (step c) was performed through the su-

pervised algorithm proposed by Fayyad and Irani (1992),

available in the Weka7 tool. This algorithm transforms nu-

merical attributes into categorical ones, aiming at reducing

the entropy of the original class distribution by finding ranges

that maximize their class-related purity. In this study, the class

attribute indicates the merge conflict occurrence.

For the association rules extraction (step d), we used R8

with the Apriori (Agrawal et al. (1994)) algorithm and the

Rattle9tool. In this study, our focus was on finding rules with

the occurrence of conflict in the consequent (conflict=YES).

However, due to the presence of conflicts being approximately

10% of our dataset, we lowered the support and confidence

measures of interest considerably, to 0.01%.

Finally, we looked at all the association rules extracted that

would help us answer the research questions (step e). In this

step, we performed the analysis of the results.

7https://www.cs.waikato.ac.nz/ml/weka/
8https://cran.r-project.org/bin/windows/Rtools/
9https://rattle.togaware.com/

https://github.com/catarinacosta/macTool/
https://www.cs.waikato.ac.nz/ml/weka/
https://cran.r-project.org/bin/windows/Rtools/
https://rattle.togaware.com/
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3 Results

This section answers the research questions posed in Section 1

according to the research process described in Section 2. Sec-

tion 3.1 presents a statistical analysis of the merge attributes.

Section 3.2 analyzes the extracted association rules. Section

3.3 presents the number of self-conflicts.

3.1 Statistical Analysis

In this section, we analyze the distribution of each merge

attribute for merges with and without conflict to understand

which attributes act more as an indicator of conflict. Hence,

we divided the dataset of 182,273 merges into two subsets:

one with 164,454 merges without conflicts and the other with

17,819 merges with conflicts.

Table 3 presents the comparison of the distributions. For

comparing the distribution of the attributes, we first ana-

lyzed their normality using the Anderson-Darling test (An-

derson and Darling, 1954). We chose this test due to the

size of the distributions. We observed non-normality in all

distributions at 95% confidence. Then, we applied the Mann-

Whitney test (Mann and Whitney, 1947) for each pair of

subsets, and we found statistically significant differences for

all the distributions, except the number of committers in B1

p-value = 0.323. After calculating the mean of the statisti-
cally different distributions, we observed that merges with

conflicts have higher values than merges without conflicts for

all the attributes. Given these results and the non-normality of

the distributions, we used Cliff’s Delta (Macbeth et al., 2011)

to calculate the effect size of these differences. We found four

attributes with a large effect size (the ones related to B2) and

five with a small effect size (the ones related to the time and

most of the ones associated with B1).

For clarification, let us analyze the distributions of changed

files in B2 from Table 3 as an example. We started the analy-

sis by applying the Anderson-Darling test for the distribution

of changed files in B2 for merges without conflicts and ob-

tained a p-value < 10−15 rejecting the null hypothesis at
95% confidence (i.e., we found that this data are not from

a population with a normal distribution). Then, we applied

the same test for the distribution related to merges with con-

flict, and we also observed a p-value < 10−15. Since both
distributions are not normal nor paired, we compared them

with a non-parametric test for unpaired data: Mann-Whitney.

Once again, we observer a p-value < 10−15, indicating that
the distributions are statistically different from each other.

Note in Table 3 that both the average and the boxplot of the

number of changed files in B2 for merges with conflicts (WC)

are higher than the ones for merges without conflicts (WO).

Finally, we used Cliff’s delta to calculate the effect size of

the difference between these distributions, and we obtained

a magnitude of −0.57, which is classified as large (Romano
et al., 2006).

After analyzing the distributions and observing a significant

statistical difference in most of them, we applied the Bayes

theorem to calculate the probability P (conflict|attribute ≥
x) and we variated x for values within the range of the box-

plots presented in Table 3 (i.e., between max(Q1 − 1.5 ×
IQR, minimum) and min(Q3+1.5×IQR, maximum)).

Figure 2 presents the distribution of probabilities for each

numeric distribution. As expected, all probabilities start

at around 10%, which represents the percentage of merge

conflicts, but they grow at different rates. Figure 2 high-

lights the probabilities in the medians of the distributions

with and without merge conflicts and the probability in

the last value of the interval. Note in Figure 2(e) that the

P (conflict|committers B1 ≥ x) is 9% for x = 2 (the me-
dian for both merges with and without conflicts). It indicates

that the probability had a small decrease in comparison to the

starting point (x = 1).
Continuing our example using the number of changed files

in B2, note that the P (conflict|changed files B2 ≥ x) in
Figure 2(h) starts at 9.8% when x = 0. Then, when x reaches
the median number of changed files in B2 for merges without

conflicts (x = 2), the probability is 13.5%. When x reaches

the median number of changed files in B2 for merges with

conflicts (x = 19), the probability is 29.5%. Finally, at the end
of the interval (x = Q3 + 1.5 × IQR = 205), the probability
is 47.9%. As expected, in Figure 2, attributes with a large

effect size (changed files in B2, commits in B2, changed lines

in B2, and committers in B2) grow faster than attributes with

a smaller effect size (changed lines in B1, branching-duration,

changed files in B1, total-duration, and commits in B1).

3.2 Association Rules

We used data mining to enrich our analyzes with associa-

tion rules. Table 4 presents the extracted association rules

in which the antecedent is the range value of each attribute,

obtained by the discretization process, and the consequent

is the presence of conflicts. It also presents the three mea-

sures of interest used, support (Sup.), confidence (Conf.), and

lift. In general, smaller attributes’ values make the chance

of merge conflicts decrease (lift < 1), while higher values
make the chance of merge conflicts increase (lift > 1). For
instance, for just one changed file in B2, the probability of

merge conflicts decreases by 81% (lift = 0.19). However,
for more than 30 changed files, the probability of merge con-

flicts increases by 243% (lift = 3.43).
Through all these analyzes, we observed that attributes

related to B2 (i.e., the branch being integrated into B1) influ-

ence more the probability of merge conflicts than the other

attributes, with the number of changed files, number of com-

mits, number of changed lines, and number of committers in

B2 being the attributes that influence the most, in this order.

We observed that the attributes branching-duration and total-

duration have a similar impact on the probability of merge

conflicts and could be used interchangeably in most situations.

We also verified the eight programming languageswe selected

regarding their influence on the occurrence of conflicts. Three

languages (PHP, JavaScript, and Java) have shown a positive

conflict dependency (lift > 1), which increases the chances
of conflicts occurring (Table 5). We observe that, when us-

ing PHP, the probability of conflicts occurrence increases by

53% (lift = 1.53). On the other hand, when programming
in C, the probability of having conflicts decreases by 54%

(lift = 0.46).
Finally, we evaluated the intersection of developers, i.e.,

the number of developers working in both branches. Some
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Table 3. Comparison of merge distributions with (WC) and without conflicts (WO)

Attribute
Anderson-Darling

(p-value)

Mann-

Whitney
Average Cliff’s Delta Distribution

WO WC (p-value) WO WC Value
Mean-

ing

Branching-

duration
< 10−15 < 10−15 < 10−15 6.26 18.53 -0.3 Small

0 10 20 30
WC
WO

Total-

duration
< 10−15 < 10−15 < 10−15 7.27 19.71 -0.27 Small

0 10 20 30
WC
WO

Commits B1 < 10−15 < 10−15 < 10−15 73.51 252.91 -0.24 Small

0 100 200
WC
WO

Commits B2 < 10−15 < 10−15 < 10−15 9.76 81.07 -0.53 Large

0 25 50 75
WC
WO

Committers

B1
< 10−15 < 10−15 0.32 8.52 21.31 - -

5 10 15
WC
WO

Committers

B2
< 10−15 < 10−15 < 10−15 2.01 9.4 -0.48 Large

5 10 15
WC
WO

Changed

Files B1
< 10−15 < 10−15 < 10−15 100.8 425.44 -0.29 Small

0 100 200 300 400
WC
WO

Changed

Files B2
< 10−15 < 10−15 < 10−15 21.43 166.3 -0.57 Large

0 50 100 150 200
WC
WO

Loc-churn

B1
< 10−15 < 10−15 < 10−15 6666.95 32934.05 -0.33 Small

0 5000 10000 15000 20000
WC
WO

Loc-churn

B2
< 10−15 < 10−15 < 10−15 1623.7 13734.43 -0.51 Large

0 2000 4000 6000 8000
WC
WO

Density B1 < 10−15 < 10−15 < 10−15 545.98 1074.17 0.07
Negligi-

ble
0 25 50 75 100

WC
WO

Density B2 < 10−15 < 10−15 < 10−15 35.21 51.53 -0.11
Negligi-

ble 0 10 20 30 40
WC
WO

studies have already mentioned that developers may work

in both branches (Costa et al., 2014, 2016; Zimmermann,

2007). According to Zimmermann (2007), many developers

work at different places (e.g., home and office) or on different

branches, and, at some point, they need to synchronize their

changes. Costa et al. (2014) analyzed the number of merges

in repositories according to three scenarios: the presence of

the same developers in both branches, disjoint sets of devel-

opers, or some intersection of the developers. They found

a significant number of merges with developers working in

both branches. We also performed this analysis in our dataset,

but we compared the numbers of merges with and without

conflicts. Figure 3 shows the number of merges cases with

no intersection, with some intersection, and with all the de-

velopers in common for merges with and without conflicts.

Since the number of merges with conflicts is much smaller

than the number of merges without conflicts, we normalized

both groups according to the total number of merges.

Then, we mined association rules to find the increase or de-

crease in the probability of merge conflicts. Table 6 presents

the results, which indicates that having some intersection

(67% to 99%) increases the chance of conflicts by 265%

(lift = 3.65), and having no intersection reduces the chances
of conflict by 41% (lift = 0.59).

After extracting rules with only one attribute in the an-

tecedent, and considering the multidimensional characteris-

tics of an association rule (Lu et al. (2000)), we decided to

analyze the combination of rules and understand if the com-

bination of factors increases some measures of interest in the

occurrence of conflict. The algorithm that brought the best

results in the selection of attributes was InfoGainAttributeE-
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Figure 2. Probability of conflicts given that the attribute is greater than the

value on the x axis. Green stars represent the probability on the median of

the distributions without conflicts. Red triangles represent the probability

on the median of the distributions with conflicts. Blue squares represent the

probability on the maximum value.

val10. Six attributes (Branching-duration, Committers in B2,

Intersection, Commits in B2, and Changed Files and Lines in

B2) with the best classification were selected and ten combi-

nations of attributes with the rules with the best measures of

interest are presented in Table 7.

10weka.attributeSelection.InfoGainAttributeEval

Table 4.Measures of interest for the rules {attribute = range value}

→ {conflict=YES}

Attibute
Range

Value

Sup.

(%)

Conf.

(%)
Lift

Branching-

Duration

(in days)

< 1 2.85 5.84 0.60

1 – 7 3.84 10.87 1.11

8 – 15 1.13 16.31 1.67

16 – 30 0.77 17.93 1.84

> 30 1.17 25.45 2.61

Total-

Duration

(in days)

< 1 2.22 6.01 0.62

1 – 7 4.19 9.43 0.97

8 – 15 1.27 15.06 1.54

16 – 30 0.83 16.85 1.73

> 30 1.24 24.20 2.48

Commits

in B1

1 1.27 5.99 0.61

2 – 5 1.98 7.60 0.78

6 – 20 2.38 17.82 1.82

> 20 4.37 15.01 1.54

Commits

in B2

1 1.60 3.39 0.35

2 – 5 2.33 7.76 0.79

6 – 20 2.38 17.82 1.82

> 20 3.46 36.92 3.78

Committers

in B1

1 – 3 6.14 9.71 1.00

4 – 10 1.51 6.88 0.70

11 – 30 1.08 10.91 1.12

> 30 1.04 21.00 2.15

Committers

in B2

1 – 3 5.84 6.57 0.67

4 – 10 2.19 29.51 3.02

11 – 30 1.15 43.00 4.40

> 30 0.59 59.12 6.05

Changed

Files in B1

1 file 0.42 3.18 0.33

2 – 5 1.55 6.85 0.70

6 – 30 2.94 9.34 0.96

> 30 4.85 14.90 1.53

Changed

File in B2

1 file 0.60 1.89 0.19

2 – 5 1.99 5.99 0.61

6 – 30 3.07 13.55 1.39

> 30 4.10 33.47 3.43

Loc-churn

in B1

0 – 10 0.41 3.03 0.31

11 – 100 1.44 9.25 0.64

101 – 1000 2.94 9.32 0.95

1001 – 10000 2.83 12.81 1.31

> 10000 2.15 22.27 2.28

Loc-churn

in B2

0 – 10 0.82 3.04 0.31

11 – 100 1.95 5.52 0.57

101 – 1000 3.04 12.13 1.24

1001 – 10000 2.59 26.81 2.74

> 10000 1.36 46.25 4.73

Density B1

0 – 5 4.33 10.82 1.11

> 5 – 20 2.07 7.44 0.76

> 20 – 40 0.84 8.72 0.89

> 40 2.83 11.30 1.16

Density B2

0 – 5 4.95 8.39 0.86

> 5 – 20 2.69 13.73 1.40

> 20 – 40 0.82 11.44 1.16

> 40 1.32 9.26 0.95

Considering the first rule in Table 7, when the Branching-

duration is 16-30 days, the number of Committers in B2, is 4-
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Table 5. Measures of interest for the rules {language} → {con-

flict=YES}

Language
Sup.

(%)

Conf.

(%)
Lift

C 0.55 4.47 0.46

C# 1.11 9.62 0.97

C++ 1.27 9.49 0.96

Java 1.42 10.77 1.09

JavaScript 1.45 12.18 1.23

PHP 1.87 15.18 1.53

Python 1.04 8.43 0.85

Ruby 1.18 8.88 0.90

Table 6.Measures of interest for the rules related to the intersection

of developers {intersection} → {conflict=YES}

%

Intersection

Sup.

(%)

Conf.

(%)
Lift

0% 3.39 5.78 0.59

1% – 33% 4.91 17.83 1.83

34% – 66% 0.74 11.94 1.22

67% – 99% 0.13 35.68 3.65

100% 0.60 8.19 0.84

10, the intersection of developers is 26%-50%, and the number

of Commits in B2 is greater than 20, then the probability of

conflict occurrence increases by 850% (lift = 9.50). Please
note the confidence and lift of this rule are greater when

compared to the individual rules of each attribute.
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Figure 3. Intersection of developers in branches.

3.3 Self-Conflicts

We observed a significant number of developers intersec-

tion in Figure 3. So, we investigated conflicting chunks and

commits that have been made by the same developer. We no-

ticed something interesting: in some cases, a developer made

parallel changes that resulted in a merge conflict. Zimmer-

mann (2007) named this phenomenon as self-conflicts. We

identified self-conflict cases in all 80 investigated projects.

Figure 4 summarizes the comparison between self-conflicts

and conflicts inserted by different committers in each of the

80 projects, grouped by programming language, for merges

with conflicts. In this analysis, we divided the number of con-

flicting chunks by the same developer by the total number of

conflicting chunks.

We also decided to mine association rules about the at-

tributes investigated in this study and their effect on the oc-

currence of self-conflicts. When looking at attributes such as

time, the number of commits, committers, changed lines and

Table 7.Measures of interest for the rules combined

Antecedent
Sup.

(%)

Conf.

(%)
Lift

Branching-Duration = 16 – 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 26% – 50% ∧
Commits B2 = 20

0,01 92,86 9,50

Branching-Duration = 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 1% – 25% ∧
Changed File in B2 = 30 ∧
Loc-churn = 101 – 1000

0,02 90,91 9,30

Branching-Duration = 30 ∧
% intersection = 1% – 25% ∧
Commits B2 = 6 – 20 ∧
Changed File in B2 = 30 ∧
Loc-churn = 101 – 1000

0,01 89,47 9,16

Branching-Duration = 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 1% – 25% ∧
Commits B2 = 6 – 20 ∧
Changed File in B2 = 30

0,02 89,29 9,14

Branching-Duration = 16 – 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 26% – 50% ∧
Changed File in B2 = 30

0,01 87,50 8,96

Branching-Duration = 30 ∧
Committers in B2 = 4 – 10 ∧
Commits B2 = 6 – 20 ∧
Changed File in B2 = 30

0,02 87,10 8,91

Branching-Duration = 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 1% – 25% ∧
Commits B2 = 6 – 20 ∧
Loc-churn = 101 – 1000

0,03 86,27 8,83

Branching-Duration = 16 – 30 ∧
Committers in B2 = 4 – 10 ∧
% intersection = 26% – 50%

0,01 85,00 8,70

Branching-Duration = 30 ∧
Committers in B2 = 11 – 30 ∧
% intersection = 1% – 25% ∧
Changed File in B2 = 30 ∧
Loc-churn = 101 – 1000

0,01 82,35 8,43

Branching-Duration = 30 ∧
Commits B2 = 6 – 20 ∧
Changed File in B2 = 30 ∧
Loc-churn = 101 – 1000

0,01 81,82 8,37

files, intersection, commits density, and the programming lan-

guage. Only the existence of developer intersection showed

a strong influence on the occurrence of self-conflicts. Self-

conflict logically only exists when a developer works in both

branches. However, it is important to verify that there is a

tendency for the chances of self-conflict to increase as the

percentage of intersection increases (with a slight exception

in the range of 67% - 99%, which reduces the chances by 1%

compared to the range of 34% - 66%), as shown in Table 8.
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Figure 4. Conflicting chunks in projects grouped by programming language.

Table 8.Measures of interest for the rules related to the intersection

of developers {intersection} → {self-conflict=YES}

%

Intersection

Sup.

(%)

Conf.

(%)
Lift

0% 2.40 6.98 0.19

1% – 33% 23.06 45.93 1.27

34% – 66% 4.67 59.33 1.65

67% – 99% 0,70 59,18 1.64

100% 5.22 81.48 2.26

4 Discussions

In this section, we answer the research questions presented in

Section 1 based on the results described in Sections 3.1, 3.2,

and 3.3. In general, the results for B2 (ie, the branch that is

integrated into B1 during the merge) demonstrated a greater

impact on the occurrence of conflicts, mainly for the number

of changed files, commits, changed lines, and committers.

As the identification of B1 and B2 is based on the merge

direction, it depends on the strategy adopted by the software

project.

4.1 How is the isolation of a branch related to

the occurrence of merge conflicts? (RQ1)

The isolation of the branches is mentioned by some stud-

ies (Bird et al. (2011); Costa et al. (2014); Dias et al. (2020);

Leßenich et al. (2018)) as a factor that may contribute to the oc-

currence of conflicts. In our study, we measured the isolation

of branches using two attributes related to time: the branching-

duration and the total-duration. We calculated these attributes

for each merge case (with conflicts and without conflicts), in

days. In Section 3.1, we observed that both attributes have a

very similar distribution, and they both present some impact

on the occurrence of merge conflicts (effect sizes of -0.3 and

-0.27 for branching-duration and total-duration, respectively).

After mining association rules, we noted that the proba-

bility of conflicts occurring decreases when the duration is

very short (less than a day): 40% less for branching-duration

(lift = 0.60) and 38% less for total-duration (lift = 0.62).
When the time is medium (8-15 days), the chances of having

a conflict increases by 67% (lift = 1.67) for branching-
duration, and 54% (lift = 1.54) for the total-duration. So,
the results indicate a positive dependence between the dura-

tion increase and the chances of having a conflict. The lift

of very long duration (more than 30 days) suggests that the

chances of having a conflict increases by 161% (lift = 2.61)
for branching-duration and by 148% (lift = 2.48) for the
total-duration.

Answer to RQ1: The branch-duration and total-

duration have a small impact on the occurrence of merge

conflicts (effect sizes of -0.3 and -0.27, respectively). De-

spite the small impact, the association rules indicate that

the occurrence of conflict increase when time increases

(lift close to 1 for durations of 1-7 days and lift > 2.4 for

durations bigger than 30 days).

4.2 How is the number of commits related to

the occurrence of merge conflicts? (RQ2)

To answer this question, we checked the amount of work done

in terms of commits in each branch. In Section 3.1, we ob-

served that both the number of commits in B1 and the number

of commits in B2 have a positive impact on the occurrence

of merge conflicts. However, the impact of commits in B2 is

larger (effect size of -0.53) than the impact of commits in B1

(effect size of -0.24), indicating that the number of commits

in B2 (i.e., the branch that is being integrated into B1) is a

better predictor of conflicts than the number of commits in

B1.

We analyzed howmuchmore frequent the conflict becomes

with the increase in the number of commits in both branches

in Figure 2 and Table 4. We can see that contributions with

few commits in B1 and B2 have a negative dependency on

the occurrence of conflicts. When the branch has only one

commit, the occurrence of conflict decreases by 39% (lift =
0.61) for B1 and 65% (lift = 0.35) for B2. Having few
commits (2-5) shows a decrease of 22% (lift = 0.78) for B1,
and 21% (lift = 0.79) for B2. The lift of 1.54 for B1 and
3.78 for B2 when there are more than 20 commits indicates

that the chances of having a conflict increase by 54% for B1

and by 278% for B2. By looking at the probability of having

a conflict given the number of commits in Figure 2(c) and

Figure 2(d), it is possible to see that this probability grows

faster according to the number of commits in B2, reaching

around 40% for 30 commits while reaching just around 16%

for 30 commits in B1.

We also verified the commit density, i.e., the number of

commits in B1 and B2 in relation to branching-duration. We

noticed a significant difference between the impact of the

number of commits and the number of commits divided by

the branching-duration, the commit density. The impact of

commit density in B1 (0.05) and B2 (−0.12) is negligible.
When looking at the density association rules, we observed

that unlike other attributes, there is no pattern of evolution

when the value of the attribute increases, that is, when the

number of commits in B1 or B2 divided by the branching-

duration is greater. When the number of commits in B1 and

B2 is between 0 to 5, the chance of having a conflict increases

11% for B1 (lift = 1.11) and decreases 14% for B2 (lift =
0.86). When the number of commits in B1 or B2 divided

by the branching-duration is greater than 40, the chance of

having a conflict increases 16% for B1 (lift = 1.16) and
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decreases 5% for B2 (lift = 0.95).

Answer to RQ2: The number of commit has a small

impact for B1 (effect size of -0.24) and a large impact for

B2 (effect size of -0.53) on the occurrence of merge con-

flicts. The association rules indicate that the chances of

conflict increase when the number of commits increases

(according to the ranges of commits, lifts in B1 range

from 0.61 to 1.54 and lifts in B2 range from 0.35 to 3.78).

4.3 How is the number of developers that per-

formed commits related to the occurrence

of merge conflicts? (RQ3)

For this question, we checked the number of committers in

each branch. We observed that the number of committers in

B1 (i.e., the branch that receives the integration) does not

seem to have a statistically significant impact on the probabil-

ity of merge conflicts. On the other hand, we observed that

the number of committers in B2 has a large impact on the

occurrence of merge conflicts (effect size of -0.48). These dif-

ferences can also be observed in Figure 2(e) and Figure 2(f),

which present the probabilities of conflicts. While the proba-

bility barely grows according to the numbers of committers in

B1 (from 10% for one committer to 11% for six committers),

it has a considerable growth for the number of committers

in B2 (from 10% for one committer to 40% for six commit-

ters). Hence, the number of committers in the branch that is

being integrated (B2) seems to be a good indication of the

possibility of merge conflicts.

Comparing the distributions of committers in B2 for merges

with and without conflicts in Table 3, we noted that while

merges without conflicts usually have a single committer

in B2, conflicting merges seem to have more committers.

The association rules in Table 4 also indicate that when the

number of committers is large, the chances of conflicts are

higher. First, having few committers (1-3) in B1 does not

imply more or fewer conflicts (lift = 1.00). However, there
is a negative dependency when considering B2. In this case,

the occurrence of conflict decreases by 33% (lift = 0.67).
For a very large number of committers (i.e., more than 30

committers), we observed an increase in the chances of having

a conflict by 115% for B1 (lift = 2.15) and 505% for B2

(lift = 6.05).

Answer to RQ3: The number of committers has no

impact for B1 (p-value is 0.32) and a large impact for

B2 (effect-size of -0.48) on the occurrence of merge

conflicts. The association rules indicate that the chances

of conflict increase when the number of committers in-

creases, especially for B2 (lift goes from 0.67 for 1–3

committers to 6.05 for >30 committers).

4.4 How is the number of changed files re-

lated to the occurrence of merge conflicts?

(RQ4)

For this question, we checked the amount of work done in

terms of changed files in each branch. The results are simi-

lar to the ones related to the number of commits in B1 and

B2, with changes on B2 influencing more the probability of

merge conflicts (effect size of -0.57) than changes on B1 (ef-

fect size of -0.29). Figure 2(g) and Figure 2(h) present the

distributions and the probabilities of conflicts according to

the number of changed files in B1 and B2, respectively. The

probability of a merge conflict after changes in 40 or more

files in B1 is around 16%.

On the other hand, the probability after changes in the

same number of files in B2 is approximately 36%. For the

number of changed files, as expected, the association rules

also confirmed that fewer changed files are less likely to cause

conflicts. As shown inTable 4, a single changed file indicates

lower chances of conflicts: 67% less for B1 (lift = 0.33) and
81% less for B2 (lift = 0.19). However, for many changed
files (i.e., more than 30), we observed an increase of 53% for

B1 (lift = 1.53) and 243% for B2 (lift = 3.43).

Answer to RQ4: The number of changed files has a

small impact for B1 (effect-size of -0.29) and a large

impact for B2 (effect-size of -0.57) on the occurrence of

merge conflicts. The association rules indicate that the

chances of conflict increase when the number of commits

increases (> 30 files in B1 has lift 1.53; > 6 files in B2

has lift 1.39; > 30 files in B2 has lift 3.43).

4.5 How is the number of changed lines re-

lated to the occurrence of merge conflicts?

(RQ5)

For this question, we checked the loc-churn, the total number

of lines of code added and removed in each branch (Gousios

and Zaidman, 2014; Nagappan and Ball, 2005; da Silva et al.,

2020). We verified that changed lines on B2 influence more

the probability of merge conflicts (effect size of -0.51) than

changed lines on B1 (effect size of -0.33). This result is sim-

ilar to the ones related to the number of changed files and

commits.

We also verified that association rules involving changed

lines of code have a negative conflict dependency for val-

ues less than 100 changed lines . Rules with values of 0-10

changed lines have their chances of conflict reduced by 69%

(lift = 0.31) for B1 and B2. For changes involving 11-100
lines, the chances are reduced by 36% (lift = 0.64) for B1
and 43% (lift = 0.57) for B2. For modifications involv-
ing many changed lines, the chances of a conflict occurring

are increased. For more than ten thousand lines of code, the

chances increased by 128% (lift = 2.28) for B1 and 373%
(lift = 4.73) for B2.
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Answer to RQ5: The number of changed lines has

a small impact for B1 (effect-size of -0.33) and a large

impact for B2 (effect-size of -0.51) on the occurrence of

merge conflicts. The association rules indicate that the

chances of conflict increase when the number of changed

lines increases (lift goes from 0.31 for 0 – 10 loc to 2.28

for > 10000 loc in B1 and 0.31 for 0 – 10 loc to 4.73 for

> 10000 loc in B2).

4.6 How is the programming language re-

lated to the occurrence of merge conflicts?

(RQ6)

For this question, we observed the eight programming lan-

guages adopted in the selected projects. As shown in Table 5,

for five programming languages (C, C#, C++, Python, and

Ruby), the chances of conflict occurrences decrease. The lan-

guage C reduces the chances of conflicts in 54% (lift = 0.46).
Python and Ruby also decreases the chances of conflicts, in

15% (lift = 0.85) and 10% (lift = 0.90), respectively.
On the other hand, three programming languages (PHP,

JavaScript, and Java) selected for this study present a positive

dependency to conflict occurrence. We observed that PHP

increases the chances of conflict by 53% (lift = 1.53) and
JavaScript increases in 23% (lift = 1.23). For projects writ-
ten in Java, there is an increase of 9% (lift = 1.09) in the
chances of a merge conflict.

Answer to RQ6: The association rules indicate that

the chances of conflict increase when the project is writ-

ten in PHP (53%), JavaScript (23%), and Java (9%).

4.7 How is the intersection of developers in

both branches related to the occurrence of

merge conflicts? (RQ7)

For this question, we checked the frequency of the committers

in both branches and divided the merges into three groups:

merges with no intersection, merges with some intersection,

and merges with all developers in common. Contrary to our

expectations, as presented in Figure 3, the intersection of

developers does not decrease the chance of merge conflicts.

When we mined association rules related to the intersection

of developers, we divided the merges into five groups: 0%

(merges with no intersection), 1%-33%, 34%-66%, 67%-99%,

and 100% (merges with all developers in common) (Table 6).

We observed that having some intersection (67%-99%) in-

creases the chance of conflict by 265% (lift = 3.65), while
having no intersection decreases the probability of conflict

by 41% (lift = 0.59). However, when the merge has all
developers in common, the chance of conflicts also decreases

by 16% (lift = 0.84). So, having all the developers or no
developers in common seems to be better than having just

one set of developers in common.

Answer to RQ7: The association rules indicate that

having some intersection increases the chances of con-

flict (67% - 99% in 265%, 1% - 33% in 83%, and 34% -

66% in 22%).

4.8 How prevalent is the occurrence of merge

self-conflicts? (RQ8)

Conflicts caused between commits of the same developer

seemmore common thanwe anticipated. Note that the percent-

age of self-conflicts in Figure 4 ranges from 5.46% (of 3,152

conflicting chunks) in Yii2 project to 66.23% (of 835 conflict-

ing chunks) in Vert.x project. Note also that ten projects had

more than 50% of self-conflicts. When considering projects

with more than 40% of self-conflicts cases, 22 projects are

listed. We then decided to analyze a merge case (commit

456424) from the Elasticsearch project, and observed two

examples of self-conflicts in a source-code file and in a debug

file. Regarding the source-code file, in B1, the developer cre-

ated an instance of a SearchResponse object with a parameter

(commit 3a6429), and in B2, the developer performed valida-

tion and also created an instance of a SearchResponse object,

but without parameters (commit d82faf). Regarding the de-

bug file, the developer added several lines in both branches

(commits 3a6429 and d82faf), possibly during execution in a

test environment.

When we mined association rules related to the occurrence

of self-conflicts, we verified when the merge involves all

the developers in common, the chances of a self-conflict oc-

curring are increased by 126% (lift = 2.26), as shown in
Table 8. We analyzed other attributes, but none showed a

strong influence (> 27%), with the exception of the intersec-

tion of developers.

Answer to RQ8: We identified self-conflicts in all

80 projects. The percentage of self-conflicts range from

5.46% (of 3,152 conflicting chunks) in Yii2 project to

66.23% (of 835 conflicting chunks) in Vert.x project.

5 Threats to Validity

As in any study, ours also has limitations. Our approach uses

the committers’ git ID (names and/or email addresses) to iden-

tify developers who committed in both branches. Developers

may use multiple aliases, eventually generating inconsisten-

cies (i.e., false negatives) in the results. We adopted the strat-

egy to turn all letters in uppercase and remove all existing

spaces to reduce this threat. We may have missed some cases

when the aliases are lexically different, but in this case, the

number of committers in both branches and self-conflicts

would be higher.

We believe that a branch’s isolation time is relative. Some-

one can create a branch and not commit to it for a while or

someone can perform the branch’s last commit and not merge

for a while. Therefore, the measurement of the duration of

a branch has limitations. We used two metrics of time to
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mitigate this threat: considering just the commits performed

within the branches (branching-duration) and considering the

merge commit (total-duration).

We are investigating only three-way merge scenarios in-

tegrating two branches, so we found and excluded 74,293

fast-forward merges. Different merge strategies may not have

been considered, for example, the Git rebase, as it flattens the

rich information of parallel development into a linear history.

We also excluded 37 merge cases in which the time metrics

were negative. Since the timestamp for each commit is gener-

ated on the developer’s computer, if the computer’s clock is

wrong, the timestamp is recorded incorrectly. In a merge case

(merge commit 1da7521) from the Elasticsearch project, for

example, while the merge was committed on 2/8/2017, the

common ancestor (commit 5ee82e4) of the parents’ commits

(commits 1ba5f8f and e761b76) was committed on 4/20/2018.

Finally, we excluded 3,672 merges with only merge commits.

For example, in a merge commit (197f57c) of the Osu project,

we found just one commit in each branch, and these commits

are also merge commits (commits 660afb4 and 436e155).

6 Related Work

Vale et al. (2020) investigated the role of communication ac-

tivity in the increase or reduction of merge conflicts. They ana-

lyzed the history of 30 popular open-source projects involving

19,000 merge scenarios. The authors mined and linked con-

tributions from Git and communication from GitHub data.

They used bivariate and multivariate analyses to evaluate the

correlations. In bivariate analysis, they found a weak posi-

tive correlation between GitHub communication activity and

the number of merge conflicts. In the multivariate analysis,

they discovered that GitHub communication activity does not

correlate with the occurrence of merge conflicts. Thus, they

investigated if it depends on the merge scenarios’ character-

istics, such as the number of modified lines, chunks, files,

developers, commits, and days a merge scenario lasts. These

variables are calculated by merge scenario (both branches).

For example, the authors considered the sum of the number

of developers in both branches. They found that there is no re-

lation between the communication measures and the number

of merge conflicts when considering these factors. They con-

cluded that: (1) longer merge scenarios with more developers

involve more GitHub communication, but not necessarily

more merge conflicts, (2) the size of the changes of merge

scenarios (in terms of numbers of files, chunks, and lines of

code involved) is not sufficient to predict the occurrence of

merge conflicts.

Leßenich et al. (2018) surveyed 41 developers and ex-

tracted a set of seven indicators (the number of commits,

commit density, number of files changed by both branches,

larger changes, fragmentation of changes, scattered changes

across classes or methods, and the granularity of changes

above or within class declarations) for predicting the number

of conflicts in merge scenarios. They also checked additional

indicators mentioned in the survey, i.e., whether the more

developers contribute to a merge scenario, the more likely

conflicts happen and whether branches that are developed

over a long time without a merge are more likely to lead to

merge conflicts. After determining the respective value for

each branch, they compute the geometric mean of these values.

To evaluate the indicators, the authors performed an empiri-

cal study on 163 open-source Java projects, involving 21,488

merge scenarios. They found that none of the indicators can

predict the number of merge conflicts, as suggested by the

developer survey. Hence, they assumed that these indicators

are not useful for predicting the number of merge conflicts.

Owhadi-Kareshk et al. (2019) also investigated if conflict

prediction is feasible. They verified nine indicators (the num-

ber of changed files in both branches, number of changed

lines, number of commits and developers, commit density,

keywords in the commit messages, modifications, and the

duration of the development of the branch) for predicting

whether a merge scenario is safe or conflicting. They adopted

norm-1 as the combination operator to combine the indica-

tors extracted for each branch into a single value. To evalu-

ate the predictor, they performed an empirical study on 744

GitHub repositories in seven programming languages, involv-

ing 267,657 merge scenarios. Similar to related work, they

did not find a correlation between the chosen indicators and

conflicts, but using the same indicators, they designed a clas-

sifier that was able to detect safe merge scenarios (without

conflicts) with high precision (0.97 to 0.98) using the Random

Forest classifier.

Dias et al. (2020) also conducted a study to understand

better how conflict occurrence is affected by technical and

organizational factors. They investigated seven factors related

to modularity, size, and timing of developers’ contributions.

They computed the geometric mean of the branch values

for each factor. The authors analyzed 125 projects, involv-

ing 73,504 merge scenarios in GitHub repositories of Ruby

(100) and Python (25) MVC projects. They found that merge

conflict occurrence significantly increases when contributions

to be merged are not modular in the sense that they involve

files from the same MVC slice (related model, view, and

controller files).

As previously discussed, Vale et al. (2020) and Owhadi-

Kareshk et al. (2019) tried to predict the occurrence of merge

conflicts. Complementary, Leßenich et al. (2018) tried to pre-

dict the number of merge conflicts. Vale et al. (2020) and

Leßenich et al. (2018) did not find a strong correlation be-

tween the analyzed attributes and the occurrence and number

of conflicts. Owhadi-Kareshk et al. (2019) also found no cor-

relation between the indicators and conflicts, but were able

to design a classifier for merge conflicts. Our study investi-

gated some similar attributes to the ones evaluated by Vale

et al. (2020) and Owhadi-Kareshk et al. (2019) (time metric,

number of commits, committers, changed lines and files),

and by Leßenich et al. (2018) (number of commits, commit

density, and files in both branches), however, in our results

the investigated attributes seem to have a positive correlation

with merges with conflicts.

Similar to our results, Dias et al. (2020) found that more

developers, commits, changed files, and contributions devel-

oped over long periods are more likely associated with merge

conflicts. However, no evaluated attributes showed predictive

power concerning the number of merge conflicts. They also in-

vestigated some similar attributes, as timing metrics, number

of commits, committers, changed lines, and files. Although
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we did not check whether the contributions were modular or

not, we added some attributes, such as the frequency of one or

more committers in both branches and the verification of con-

flicting chunks and commits that have been made by the same

developer. The extraction of association rules also showed us

a tendency to merge conflicts when there is a longer duration,

more commits, committers, and files changed.

It is worth mentioning that the attributes evaluated by the

previous studies might not be computed in the same way, de-

spite the attributes’ name similarity. For example, the number

of commits is presented in all the related work. Leßenich et al.

(2018) reported the number of commits between the com-

mon ancestor and the merge as the geometric mean of both

branches. Vale et al. (2020) report this number as the sum

of commits performed in the two branches. Owhadi-Kareshk

et al. (2019) used norm-1 (also a sum of absolute values)

as the combination operator for the number of commits be-

tween the ancestor and the last commit in a branch. Dias et al.

(2020) also used the geometric mean of the number of com-

mits in each contribution. In our work, we decide to keep the

information by branch, using no aggregate measure.

7 Conclusion

In this work, we analyzed 182,273 merge scenarios from 80

projects written in eight programming languages to under-

stand which attributes impact on the occurrence of merge

conflicts. While all attributes seem to have a positive influ-

ence on the probability of merge conflicts, some appear to

have a more significant impact than others. The attributes

that presented a higher relation to the occurrence of merge

conflicts are changed files, commits, changed lines, and com-

mitters in the branch B2 (i.e., the branch that is integrated into

B1 during the merge). These attributes in the branch B1 have

a smaller impact (changed lines, changed files, and commits)

or even no statistically significant difference (committers) on

the occurrence of conflict. Both the branching-duration and

the total-duration seem to have an impact comparable to the

impact of attributes in B1. Despite some attributes presenting

a smaller impact on merge conflicts when we compare the

whole distributions, the association rules indicate that higher

values of them increase the chances of conflicts by over 53%.

In addition to these attributes, we analyzed the impact

of the selected programming language and the intersection

of developers between branches on the occurrence of con-

flicts. Among the eight programming languages verified, PHP,

JavaScript, and Java, have a positive conflict dependency, and

PHP increases the chances of conflicts by 53%. Regarding the

intersection of developers, we noticed that merges with one

or more committers acting in both branches do not seem to

reduce the chances of merge conflicts. Instead, having some

intersection in the developers increases the chance of con-

flicts (1%-33% by 83%, 34%-66% by 22%, and 67%-99%

by 265%). However, having all the developers or no devel-

opers in common reduces the chances of conflicts (41% and

16%, respectively). Finally, we analyzed how common it is

for a single developer to make self-conflicts. We observed

that all projects have self-conflicts with a huge variation on

the proportion. While some projects have only 5.46% of self-

conflicts, other projects have up to 66.23% of self-conflicts.

While some attributes have a large impact on the occur-

rence of merge conflicts, they may not be used as predictive

attributes since the probability of having a conflict given the

value of these attributes is relatively small. Nonetheless, these

attributes can be used to elaborate policies and best practices

to reduce the chances of merge conflicts. The adoption of

recognized best practices such as frequent commits, small

changes, continuous integration, among others, can be rein-

forced with attention to the number of developers involved

and conflicting changes by the same developer.

As future work, we intend to increase the number of at-

tributes and further investigate some of them by conducting

a qualitative study on the programming language (what ac-

tually influences a language to have greater chances of con-

flicts, such as verbosity, developer freedom, among other

aspects) and self-conflicts (if self-conflicts are evenly dis-

tributed among the project’s committers or if some commit-

ters concentrate the majority of self-conflicts). We also would

like to verify our results with some of the analyzed project

communities. Finally, we intend to develop a tool that ana-

lyzes the project’s history and measures these metrics from

time to time to warn the project team.
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