
Journal of Software Engineering Research and Development, 2022, 10:2, doi: 10.5753/jserd.2021.1939
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Strategies to Evolve ExM Notations Extracted from a Survey
with Software Engineering Professionals Perspective
Bruno Gabriel Araújo Lebtag [Federal University of Goiás | brunogabriel@inf.ufg.br]
Paulo Gabriel Teixeira [Federal University of Goiás | paulogabriel@inf.ufg.br]
Rodrigo Pereira dos Santos [Federal University of the State of Rio de Janeiro | rps@uniriotec.br]
Davi Viana [Federal University of Maranhão | davi.viana@ufma.br]
Valdemar V. Graciano Neto [Federal University of Goiás | valdemarneto@ufg.br]

Abstract
Contemporary complex systems often exhibit dynamic structures and behaviors, several components/systems in-
volved, and multiple interoperability links. Those systems have been exposed to fragilities of traditional software
specification languages (e.g. UML and SySML), since such languages were designed to document single (not mul-
tiple interoperating) systems. Those limitations can potentially further compromise the quality of the final software
product. In this context, Executable Models (ExM) technology, such as simulation models, models@runtime and
executable UML, satisfy the aforementioned requirements by supporting engineers with visualization of the sys-
tem structures (still at design-time) and the ability to exercise their behaviors and interactions. In our prior study,
we presented the results of an exploratory study on the perceptions of those professionals (from both industry and
academia) regarding the use of ExM to solve problems in their current practice. We exposed 58 professionals (re-
searchers and practitioners) to situations to solve problems using a specific type of ExM (DEVS simulation models),
based on survey research. Responses were quantitatively and qualitatively analyzed. In this article, we extended the
obtained results by analyzing and compiling a list of strategies to improve ExM notations to better address the needs
of software engineering professionals. Later, we assessed those strategies with software engineering researchers to
confirm the importance of the proposed strategies. Results revealed that executable languages still require advances
to bring them even closer to the current software engineering practice and towards a more significant adoption in the
future. The proposed strategies focus on improvements on the robustness of the ExM notations, visual representation
of the models, the usability of the models, and user support.

Keywords: executable models, software-intensive systems, simulation, survey research

1 Introduction
Software systems have increased their dimension and com-
plexity and become large-scale to address emerging business
needs. They have been pressured to interoperate with sev-
eral other systems and to establish even ephemeral/tempo-
rary links with other systems to comply with emerging busi-
ness needs (Fernandes et al., 2018). As such, those systems
and the forthcoming generation of systems, as smart cities,
will be composed of several independent systems with a dy-
namic architecture that should be analyzed, predicted, and
evaluated still at design-time and, hopefully, also monitored
at runtime. On the other hand, the world is experiencing a
blackout of specialized labor to work in the software indus-
try1, which has pressured researchers and practitioners to
propose solutions progressively more intuitive that enable to
involve even non-specialists in the software production en-
deavor as earlier as possible. Emerging technologies, such
as Low-Code Development (Prinz et al., 2021), and even
more traditional ones as model-driven engineering (MDE)
approaches - which can include modeling and simulation
(M&S) practices - are emerging, reascending and becoming
popular for supporting the engineering of complex systems,
once they enhance the presence of models in system life cy-
cle while leveraging the level of abstraction and offering a vi-

1https://www.bloomberg.com/news/newsletters/2021-05-27/labor-
shortages-are-plaguing-tech-companies-too

sual appeal to deal with the contemporary systems inherent
dynamics and complexity (Mahmood et al., 2013; Bogado
et al., 2014; Neis et al., 2019).
Several MDE solutions use general-purpose static lan-

guages to build systems, e.g. UML or SysML, i.e., despite the
existence of some executable versions of such formalisms,
their models are not natively animated to dynamically repre-
sent the systems’ behaviors, for instance. Moreover, those
languages were not conceived to precisely capture multi-
ple systems, but to support the documentation of single sys-
tems with multiple models. Moreover, interoperability links
among those systems can be established at runtime, which
can be hard to model using only static notations. To solve
that problem, one possible solution is Executable Models
(ExM2) (Dahmann et al., 2017a). This technology offers the
possibility of representing (and executing) the structural and
behavioral attributes of the whole system through its corre-
sponding models/documentation (Hu et al., 2014; Gray and
Rumpe, 2016; Dahmann et al., 2017a; Hojaji et al., 2019),
which can be very useful to deal with dynamic environments
and evolving systems.
When using ExM to engineer current and forthcoming sys-

tems, ExM is demanded as means to provide (i) continu-
ous monitoring of the systems status, (ii) dynamic reason-
ing about its underlying architecture to underpin strategic

2Herein, the acronymExMwill be interchangeably used to express both
singular and plural forms: executable model and executable models.

https://orcid.org/0000-0002-7208-5811
mailto:brunogabriel@inf.ufg.br
https://orcid.org/0000-0002-0172-9712
mailto:paulogabriel@inf.ufg.br
https://orcid.org/0000-0003-4749-2551
mailto:rps@uniriotec.br
https://orcid.org/0000-0003-0470-549X
mailto:davi.viana@ufma.br
https://orcid.org/0000-0003-2190-5477
mailto:valdemarneto@ufg.br

Lebtag et al. 2022

decisions, and (iii) a visual and intuitive perception of the
whole system. However, we have observed an opposite phe-
nomenon in the industry. Since 2011, there is evidence about
a decreasing use of models such as UML and SysML (Torchi-
ano et al., 2011; Agner et al., 2013; Gorschek et al., 2014).
Moreover, there is a resistance to MDE due to a diversity of
reasons, including lack of tool support and domain-specific
scope notations so that they have been applied to only a few
domains (Torchiano et al., 2011; Agner et al., 2013; Whittle
et al., 2017). We claim that professionals3 still lack abilities
to use ExM to solve even simple problems in their practice
and maybe ExM lack syntactic or visual complements that
may hamper their adoption.
In this context, the goals of this study are: (i) to perform

a survey with software engineering professionals to collect
their perspective in the use of ExM notations to develop soft-
ware, (ii) to develop a list of strategies based on the results
of the survey to evolve ExM notation to be aligned with soft-
ware engineering professionals needs and (iii) to assess the
obtained strategies with software engineering researchers to
identify their agreement. Thus, the main contribution of this
paper is twofold: to report on the results of survey research
on the understandability and expressiveness of a specific type
of ExM (DEVS Kim and Zeigler (1987) simulation models)
from the perspective of software engineering professionals
and to present a set of 19 strategies to evolve ExM notations
based on the results of the survey. The software engineering
professionals that took part in the survey used the visual rep-
resentation of the simulation from two given scenarios as a
basis to solve small-scale problems similar to situations they
often face in their routine. Based on this experience, we col-
lected information to answer the established research ques-
tions: “What are the perceptions of software engineering
professionals about of adoption of DEVS executable sim-
ulation models to solve current practice problems?” and
“How to support the evolution of ExM notations to be
aligned with software engineering professionals’ needs?”.
We claim that if software engineering professionals face dif-
ficulties to solve problems at a small-scale using ExM, they
should manage even more difficulties when using ExM to
deal with complex scenarios (Boehm, 2006).
In our previous study, we conducted survey research that

received 58 answers: 44 from Brazil and 14 from nine dif-
ferent countries. As a result, participants attest several bene-
fits and opportunities for using ExM, such as: (i) providing
a broad view of the problem and solution, (ii) serving as a
communication document, and (iii) facilitating the inclusion
of new members in the development team. However, partic-
ipants also reported new opportunities mainly related to the
improvements in ExM languages capabilities, visual support,
and ExM education and training.
We extended our prior study Lebtag et al. (2020) by (i)

elaborating a compilation of strategies to guide the evolu-
tion of ExM notations and (ii) the evaluation of the set of
strategies with experts. The strategies were derived from the
qualitative analysis conducted over the answers in our first
study. The elaborated set contains 19 strategies split into

3In the scope of this article, we use the term software engineering pro-
fessionals, or simply professionals to denote the academia and industry re-
searchers and practitioners.

four categories of improvements of ExM notations: (i) no-
tation, (ii) visual presentation, (iii) usage, and (iv) user sup-
port. We assessed these strategies with 13 software engineer-
ing researchers to validate their agreement with the proposed
strategies and also discussed the implication of the results for
practice and theory. The strategies had a positive reception
among researchers since most of them received “agree”.
Figure 1 presents the methodology used throughout the de-

velopment of this work. In the first section of the method-
ology, we performed survey research (described next), in
which we planned a questionnaire, executed a survey with
software engineering professionals, analyzed the results and
elaborated a study reporting the results (Lebtag et al., 2020).
Next, we re-analyzed the obtained results and looked into
problems reported by participants and from those results, we
elaborated and created a list of strategies to deal with those
reported problems. Lastly, we elaborated a likert question-
naire and invited software engineering researchers to assess
those strategies.

Figure 1. The process used in this article from the survey to the confection
of the strategies and the assessment of the strategies.

The remainder of this article is organized as follows: Sec-
tion 2 presents the paper background; Section 3 describes the
survey research, including its planning, execution, results,
qualitative analysis and discussion of the results; Section 4
presents a list of strategies to evolve ExM notation to be bet-
ter suite to software engineers needs; Section 5 presents the
assessment of the presented strategies; In Section 6, we dis-
cuss the implications to theory and practices of the presented
strategies; Section 7 brings the study limitations; finally, Sec-
tion 8 concludes the paper with final remarks.

2 Background
The adoption of models is prominent to support software
quality assurance (Michael et al., 2011; Bogado et al., 2014).
Moreover, given the increasingly complex scenarios, we
must face in the forthcoming years, ExM can be used as a
means to carry out their analysis and evaluation (Michael
et al., 2011).
Herein, we understand an ExM as any model that can be

run. ExM can be used as: (i) executable “simulation” models,
i.e. themodel subject to be executedworks as a prototype that

Lebtag et al. 2022

is not used to directly track the final system that it reflects;
and (ii) executable “design” models, i.e. the model that is ex-
ecuted is the same model that will be used to be part of the
final product, such as models@runtime. Discrete-Event Sys-
tem Specification (DEVS) (Kim and Zeigler, 1987; Zeigler
et al., 2016) and Colored Petri Nets (CPN) (Levis and Wa-
genhals, 2000) are examples of the former case, while fUML
(OMG Executable UML, 2018) and ALF (OMG Executable
UML, 2017) are expressive examples of the latter case.
Most of ExM are animated, i.e. some tools offer the possi-

bility to animate the execution steps and states transitions so
that an observer can visualize them and see the systems rep-
resented as a model (e.g. DEVS, CPNTools, IBMRhapsody)
(Dahmann et al., 2017a). In situations where visualization is
unfeasible (e.g. due to the presence of thousands of interoper-
ability links (Fernandes et al., 2018) and subsystems), ExM
still offer and rely on an execution engine. The engine can
suppress the animation but still execute the model step-by-
step and deliver a diagnosis on the system at the end.
Levis and Wagenhals (2000) argue that ExM can foster in-

tercommunication in the development team. Moreover, the
authors demonstrate the capabilities provided by the software
architecture, its structure and dynamics to stakeholders using
ExM. An ExM behaves as like a software application by re-
ceiving inputs from external sources, processing and manip-
ulating data, and returning generated output.

3 Survey on Executable Models

The survey is a technique to acquire knowledge by hearing
the voices of professionals and observing their responses,
attitudes and behaviors to offer a broader understanding of
a given phenomenon of interest (Wohlin et al., 2012). Sur-
vey research has been extensively used in several knowl-
edge areas. Particularly in software engineering, it is consid-
ered one of the most used research methods for conducting
exploratory empirical investigations (Molléri et al., 2016).
ExM users are frequently software engineers. Since we are
interested in understanding how those professionals perceive
the use of ExM in practice, we decided to use the survey as
the strategy for this study. We elaborated a research proto-
col and a corresponding questionnaire to collect perceptions
of software engineering professionals on the use of ExM to
solve problems in two small-scale scenarios via an online
questionnaire.
For this survey, we developed a protocol inspired by the

guidelines proposed by Kasunic (Kasunic, 2005), Linåker
et al. (2015) and Molléri et al. (2016). We established our
methodology according to four steps: Step 1) Planning, Step
2) Execution, Step 3) Analysis, and Step 4) Reporting, as
shown in Figure 2: Step 1 (Planning) is composed of (i)
Identification of the research objectives, (ii) Identification
& characterization of the target audience, (iii) Design of the
sampling plan, and (iv) Design & elaboration of the ques-
tionnaire. Step 2 (Execution)was performed with (v) a Pilot
study and (vi) Survey invitation. Step 3 (Analysis) and Step
4 (Reporting) were conducted as separate steps. The follow-
ing sections detail those steps and how they were conducted.

3.1 Planning
In Section 1, the following main questions (MQ) were
established: “MQ1. What are the perceptions of software
engineering professionals about of adoption of DEVS
executable simulation models to solve current practice
problems?” and “MQ2. How to support the evolution of
ExM notations to be aligned with software engineering
professionals’ needs?’. To solve MQ1, we conducted the
survey relying on the research objectives and sub-questions
(RQ), as follows. From the results obtained, we extracted
the 19 strategies that allowed us to answer MQ2.

1. Identification of the research objectives. The es-
tablished research objectives to answer MQ1 referred to (i)
collect evidence on the understandability and expressiveness
of a specific type of ExM (DEVS simulation models) from
the perspective of software engineering professionals; and,
as a result, (ii) establish a set of 19 strategies to evolve ExM
notations based on the survey results. Understandability
can be measured as the capability of the professionals to
correctly answer our raised technical questions using the
ExM as a source for answer. Meanwhile, expressiveness
is a manifold characteristic comprising strengths, facilities,
visual characteristics and other attributes a language has.
To achieve these objectives, we collect professionals’ per-

ceptions, possible applications they could envision, possible
improvements for the language as well as what they perceive
as positive and negative on the use of ExM in their current
practice. RQ1was established to target understandability and
RQ2 to RQ5 address expressiveness.
For achieving the established research objectives, there-

fore, we derived the following research questions (RQ):

RQ1 - What is the understandability degree achieved
by software engineering professionals during the use of
ExM to solve the presented low-scale problems?
Rationale: In this RQ, we are using the obtained score

achieved by software engineering professionals to indicate
how well is the understandability of the presented ExM. Sev-
eral ExM share similar features and the obtained results can
offer aboard view of ExM area. This RQ is answered through
a quantitative analysis of the results.

RQ2 - What are the strengths of ExM?
Rationale: This RQ was designed to collect the ben-

efits that ExM can bring to software development. This
information may help software engineers in the process of
decision-making, but also support the research and industry
communities with a list of perceived benefits.

RQ3 -What application opportunities do professionals
envision for using ExM in their projects?
Rationale: We aim to know what opportunities for

the application of ExM in their daily use are envisioned
by participants. This result can support the research and
industry communities with inputs for new applications and
insights for ExM, such as gaps to be exploited.

RQ4 -What could be added to ExM visual perceptions

Lebtag et al. 2022

Figure 2. A survey workflow prescribed by (and adapted from) Kasunic (Kasunic, 2005) and mapped for the elaborated methodology.

in order to improve/enrich useful information for soft-
ware engineers?
Rationale: ExM rely on models themselves. Conse-

quently, models of visual aspects are important to conduct
activities. We ask professionals to tell, from their perspec-
tive, what could be improved to foster an evolution in the
current executable languages to make them closer to the
software engineers’ needs.

RQ5 - What difficulties did software engineers face
during the use of ExM to solve the presented low-scale
problems?
Rationale: By answering this question, we are able to

identify a list of difficulties to be solved in order to improve
ExM receptivity by software engineers.

RQ6 - What are the weaknesses of ExM?
Rationale: Conversely to the prior question, we also

aim to collect the perceived weaknesses of ExM from the
software engineers’ perspective. We intend to produce a list
of perceived weaknesses to support the research and practice
communities with new opportunities and gaps to be explored.

2. Identification of target audience. This study’s pop-
ulation is formed by professionals who work on software
engineering in either industry or academia.

3. Design of sampling plan. The adopted sampling
plan is classified by the literature as an accidental sampling,
i.e. by sending invitations to a large number of participants
and snowballing sampling, i.e. by asking participants to
invite close professionals (Linåker et al., 2015).

4. Design and elaboration of the questionnaire.
The objectivewas to collect perceptions of software engi-

neering professionals on the use of ExM to solve problems
in two small-scale scenarios via an online questionnaire.
Due to the current COVID-19 pandemic situation, we
avoided face-to-face activities that could put participants at
risk. Then, an online questionnaire was elaborated as the
main instrument for the conduction of the study. The scope
was the executable simulation models, more specifically the
DEVS formalism (Zeigler et al., 2018). The rationale behind
it is the fact that DEVS is an ExM language used to analyze
and evaluate, for instance, software architectures and it is
also highly used to analyze complex systems (Bogado et al.,

2014; Zeigler et al., 2016; Neto et al., 2018; Manzano et al.,
2020).
In Listing 1, we provide a small fragment of code used in

this study which represents a Hibernate transaction state ma-
chine. We claim that, if we want to progress to use ExM for
complex systems, software engineering professionals must
firstly be able to deal with ExM in simpler systems/scenar-
ios. Therefore, we exposed the participants to two videos of
DEVS simulation models (a type of ExM) being executed
and running on MS4ME4 - each video representing a differ-
ent scenario. The first video5 showed a scenario on how user
comments on some web forums are submitted to Pluck6 us-
ing AJAX technologies7. The second video8 shows a Spring9
application using Hibernate10 for transactionmanagement. A
short explanatory text was made available together with each
video. For each pair text-video, in conformance with Kasunic
(2005), Linåker et al. (2015) and Molléri et al. (2016) guide-
lines, we asked participants to answer the study questions.

Listing 1: Code used in Hibernate JDBC Transaction for
SQ2.
to s t a r t p a s s i v a t e in s0 !
when in s0 and r e c e i v e Commit go to s1 !
when in s0 and r e c e i v e Begin go to s0 !
when in s0 and r e c e i v e Ro l l b a ck go to s0 !
hold in s1 f o r t ime 1!
a f t e r s1 output F lu sh !
from s1 go to s0 !

The structure of the questionnaire was conceived as illus-
trated in Table 1. We elaborated (i) demographic questions
(DQ), i.e. characterization questions to obtain the partici-
pants’ profile, (ii) study questions (SQ) to ask the participants
specific information about the problems being presented in
each video, and (iii) attitudinal questions (AQ), whose pur-
pose was to collect the perceptions of participants and their
opinions after being exposed to both videos and after solved
problems by solely watching the running of an ExM. The
SQ presented two scenarios - with two questions each - re-
garding the videos, in a total of four problems to be solved
using ExM. We also added two questions for each problem

4http://www.ms4systems.com/pages/ms4me.php
5https://youtu.be/S9a9bg4S29w
6http://directwebremoting.org/dwr/index.html
7https://developer.mozilla.org/en-US/docs/Web/Guide/AJAX
8https://youtu.be/6jeELosgx90
9https://spring.io/
10http://hibernate.org/

Lebtag et al. 2022

regarding the confidence of participants in their answers and
one final open-ended question for each scenario where par-
ticipants could express their difficulties.
Given the low adoption of ExM in the industry, we of-

fered participants the opportunity to use them in a limited
set-up. The main goal is not to evaluate the extension to
which ExM can help participants on answering the questions,
but to expose them to analyze and solve the presented prob-
lems using ExM and collect their perceptions from that ex-
perience. We elaborated closed-ended questions (CEQ) and
open-ended questions (OEQ). CEQ were used to standardize
the answers, facilitate reading and synthesize the required in-
formation. OEQ allowed participants to better describe their
responses and expose their experience and perceptions after
solving problems using the visual part of an ExM. CEQ sup-
ported DQ and SQ, as shown in Table 2 and Table 3, respec-
tively. The aim of CEQ in SQ was to observe whether the
participants were capable of objectively understanding the
model and correctly answer questions related to the problem.
In turn, the aim of OEQ in SQ was to collect participants’
perceptions for enabling a qualitative analysis. AQs were es-
sentially composed of OEQ to enable a qualitative analysis
of the provided answers, as shown in Table 4.

Table 1. Questionnaire Layout.
Demographic Questions Characterization Questions

Study Questions 1
Video Problem 1
Closed-ended Questions
Open-ended Questions

Study Questions 2
Video Problem 2
Closed-ended Questions
Open-ended Questions

Attitudinal Questions Open-ended Questions

Table 2. Demographic open-ended questions (OEQ) and closed-
ended questions (CEQ).
ID Characterization Questions (CQ)
OEQ1 What is your affiliation?
OEQ2 What is your age?
OEQ3 In what country do you live?
CEQ1 What is your education level?
CEQ2 What is your main occupation?
OEQ4 What is your gender?
CEQ3 What is your professional experience in academia?
CEQ4 What is your professional experience in industry?
CEQ5 What is your experience with static models?

3.2 Execution
According to the survey workflow (Figure 2), in the execu-
tion phase, we have two activities: 5. Pilot Study, and 6. Sur-
vey invitation.
5. Pilot Study. For this study, two questionnaires were de-
veloped in two different languages: Portuguese and English.
Then, we proceeded to conduct a pilot study with a small
sample of the target population. The initial questionnaire was
composed of questions accompanied by static and executable

Table 3. Study questions with open-ended questions (OEQ) and
closed-ended questions (CEQ).
ID Study Questions 1 (SQ1)

CEQ6 When a CAPTCHA check fails, will the user be
able to post his/her comments?

CEQ7 How confident are you about your answer?
CEQ8 Which service will publish the comments?
CEQ9 How confident are you about your answer?

CEQ10 Do you feel any difficulty to understand the
model?

CEQ11 Can you mentally execute/debug the model?
OEQ5 Have you felt any difficult? Please tell us.

Study Questions 2 (SQ2)

CEQ12 What happens when saveOrUpdate() rises an ex-
ception?

CEQ13 How confident are you about your answer?

CEQ14 Is close() method called when any exception oc-
curs?

CEQ15 How confident are you about your answer?

CEQ16 Do you feel any difficulty to understand the
model?

CEQ17 Can you mentally execute/debug the model?
OEQ6 Have you felt any difficult? Please tell us.

Table 4. Attitudinal open-ended questions.
ID Attitudinal Questions (AQ)

OEQ7 In your opinion, what were the strengths of us-
ing executable models to represent the cases?

OEQ8 In your opinion, what were the weaknesses of
using executable models to represent the cases?

OEQ9
What could be added to the visual perception of
the executable models to improve and/or enrich
useful information for a software engineer?

OEQ10
What application opportunities do you see for
using executable models in your software engi-
neering projects?

OEQ11 Did you feel any difficulty or problem in this
survey?

models. Six participants answered the initial questionnaire.
We were able to identify a bias related to the use of static
models. Therefore, we decided to remove the static models
in the questions. A second version of the questionnaire was
developed with no reference to static models. We submitted
it to seven participants, which enabled us to identify somemi-
nor typographic problems. After that, the questionnaire was
ready to be applied.
6. Survey Invitation. The questionnaire was sent to profes-
sionals that work with software engineering in the industry
and to software engineering researchers. With the purpose
of obtaining participants from different regions and national-
ities, the invitation channels were a lists of e-mails from some
universities in Brazil and professional chat lists in platforms
such as WhatsApp11 and Telegram12 groups. We also used
online IT communities as invitation channels such as Hacker

11https://www.whatsapp.com/
12http://telegram.org/

Lebtag et al. 2022

news13, WhatApp14, IT communities, Telegram15 computer
and programming related groups, and LinkedIn16. Moreover,
the questionnaire was sent to 292 software engineering pro-
fessionals. The survey was conducted between November
14th, 2019 and April 15th, 2020. We obtained 58 answers.
The number of answers in a survey it is an important fac-
tor for the validity of its results. We found other survey re-
searches in the literature published in relevant venues (such
as SBES17 and ICSE18) with a similar number of participants
(Ferreira et al., 2018; Sedano et al., 2019; da Costa Carvalho
et al., 2020). After the execution, we generated individual
files with the content of each answer. The documents were
mischaracterized to preserve the participants identities.

3.3 Analysis Procedure
The data obtained from the questionnaire were analyzed
quantitatively and qualitatively. In the quantitative analysis,
descriptive statistics were used to represent and describe the
data to characterize the participants and to cross such infor-
mation to obtain conclusions. In turn, Grounded Theory (GT)
was used as the qualitative analysis procedure (Corbin, 2015).
GT aims to create a theory from the collected data and it is
composed of three phases: (1) open coding, (2) axial coding
and (3) selective coding. In the open coding, break, analysis,
comparison, conceptualization and categorization of the data
are performed (?). A meticulous reading of the collected data
is performed and each text fragment receives an expression,
sentence or word forming a code or category in the first steps
of this phase. In the axial coding, relationships among cate-
gories and subcategories are established to form dense, re-
lated categories. Finally, the selective coding originates the
category or central idea of the study. Two researchers ex-
tracted the codes and established the relationships among
them while two other researchers validated the coding pro-
cess.
The coding process is finished when no new data adds

new knowledge to the categorization process. Despite the
GT purpose for creating theories, Cobin ? explain that a re-
searcher can use only a few steps to reach their research goals,
e.g. when researchers only need to understand a specific phe-
nomenon or situation. In our study, we applied only phases
1 and 2 of coding to analyze the data aiming to identify the
emergent topics, strengths, weaknesses, difficulties, and im-
provements. This type of analysis involves creativity, expe-
rience and bias from the researcher. Due to those factors, the
conduction was performed together with a professional with
10 years of experience in ExM while the verification of the
applied methodology was conducted by another researcher
with 10 years of experience in qualitative studies.

13https://news.ycombinator.com
14https://www.whatsapp.com
15http://telegram.org
16linkedin.com
17https://dblp.org/db/conf/sbes/index.html
18https://dblp.org/db/conf/icse/index.html

3.4 Results
3.4.1 Quantitative Analysis

The first part of the survey comprises demographic questions.
Results are communicated based on the whole set of par-
ticipants. A remarkable portion (20 out of 58 participants)
holds a PhD degree (corresponding to 34.48%). However,
other categories were also represented, such as undergradu-
ate students with 12 participants (20.69%), Master’s students
(seven, 12.06%) and PhD students with 7 participants each
(12.07%). Professionals with bachelor degree’s and lastly
Master’s degree are 5 participants (8.62%), each. Another
aspect identified was the professional practice area. We ver-
ified that 27 participants (51.72%) work only in academia
while 21 participants (43.10%) work only in the industry (i.e.
non-academic). Seven participants were only students (i.e.
not working in the industry or academia) and three partici-
pants are working in both industry and academia. These re-
sults show that the provided insights came from the academia
and industry and from several knowledge degrees. We col-
lected answers of participants studying or working from 38
different educational institutions and 12 different companies.
Participants that identified themselves as female were 11
(18.97%) and 47 (81.03%) identified themselves as male.
Next, we aimed to identify the participants experience

with static models and ExM. We asked participants to clas-
sify their experience in a scale of “I have never used them
before” to “I use them in every project”. Figure 3 shows that
30 participants (51.72%) reported that they have never used
ExM before, although 28 participants (48.28%) reported a
certain level of experience, which reveals a balanced result.
About static models, we observed that only four participants
(6.90%) have never used them before and 93.10% of the par-
ticipants have used them to some degree. Regarding the na-
tionality, we obtained 14 answers from abroad (24.14%) and
44 answers from Brazilians (75.86%). The average age was
32 years, which means that most participants were young.
The mean experience in academia was 5 to 10 years whereas
in the industry was 1 to 5 years. Therefore, the participants
hadmore experience in the academic environment than in the
industry. We had several participants initiating their careers
in industry, with 2 to 4 years of experience.

Figure 3. Adoption of static models vs executable models.

Despite the fact that the study was not focused on analyz-
ing the responses of the SQ but rather offering the oppor-
tunity of using ExM as previously reported, many partici-
pants informed that it was their first experience with ExM.
However, we also analyzed the score achieved by the partic-
ipants, i.e. the percentage of correct answers when s/he was

Lebtag et al. 2022

requested to solve a problem using an ExMas a source (RQ1).
Figure 4 shows the results obtained by the participants.We of-
fered two videos with two different scenarios, each one with
two related questions. The results we obtained are inconclu-
sive. Participants scored better results in the second scenario,
first question.
On the other hand, the results were similar for the other

questions. We cannot claim for sure the reason behind this
result, but a possible explanation might be the lack of experi-
ence with ExM. We also analyzed the results based on three
demographic segments: (i) education level, (ii) previous ex-
perience with ExM, and (iii) origin (academia or industry).
We counted the number of individuals that achieved the high-
est score (four questions) in the survey and identified within
each demographic segment, the group that achieved the best
results. In the education level segment the groupswere: (PhD,
PhDStudent andMaster’s (High education level) versusMas-
ter’s student, Undergraduate and Undergraduate student (ini-
tial education level). In the previous experience with ExM,
the groups were: Participants that had any experience with
ExM versus Participants with no experience. In the occu-
pation segment, the groups were: academia participants ver-
sus industry participants (excluding students and participants
that work in both industry and academia). Concerning to edu-
cation levels, we observe that, proportionally, the group with
participants with higher education levels (PhD, PhD Student
and Master’s) achieved higher scores (10/32 — 31.25%, i.e.,
ten out of the 32 participants considered scored the four ques-
tions) than participants with lower education levels (6/26 —
23.07%). When we look into experience with ExM, we ob-
serve that, again proportionally, the group with experience
scored slightly better (8/28 — 28.57%) than the group with
no experience (8/30 — 26.66%). When we look into occu-
pation, the group with participants from industry (exclud-
ing the three participants from both) scored higher (8/21 —
38.09%) than participants from academia (6/27 — 22.22%).
Then, in summary, among the academic participants, we had
18 PhD, 6 Phd students, 1 Master’s degree and 2 master stu-
dent; among the industry participants, we had 1 PhD, 4 Mas-
ter’s degree, 5 Master student, 7 Undergraduate, 10 Under-
graduate students. We also had 2 PhD that acted in both the
industry and academia and so we did not count in any group.

Figure 4. Score per scenarios and questions.

3.4.2 Qualitative Analysis.

The qualitative analysis was performed using questions
OEQ5 to OEQ11. To do so, we applied open coding and ax-
ial coding, as mentioned in Subsection 3.3. In the open cod-

ing, the data was analyzed thoroughly to create the codes re-
lated to the participants answers. After the open coding phase,
we identified the categories and established the relationships
among codes, generating interrelationships. The open coding
was performed in a collaborative way using the online tool
Taguette19 whilst the graphical representation for coding was
created using Cmap20 (Figure 5).

Figure 5. Exemplifying open coding phase using Taguette.

In the qualitative analysis, we identified six categories di-
rectly related to the proposed research questions: (i) advan-
tages perceived due to the use of ExM, (ii) requirements for
new technologies provided by participants during the survey,
(iii) perceptions or personal opinions from the study’s experi-
ence on ExM, (iv) improvements envisioned by participants
regarding ExM, (v) difficulties experienced by professionals
during the survey, and (vi) disadvantages identified due to
the use of ExM.

Figure 6. Some Advantages related to ExM.

Figure 6 presents the codes extracted from participants an-
swers that correspond to the identified Advantages (A) cate-
gory (RQ2). Several codes express advantages on ExM. Af-
ter extracting the codes, we could split this category into
four subcategories, which are advantages obtained from (i)
ExM impact on the entire software engineering life cycle
(A1), (ii) visual representation (A2), (iii) ExM impact on
software development (A3), and (iv) documentation (A4).
In regards to the impact on software development, partic-
ipants reported that ExM offers advantages related to in-
creasing reuse degree in the software development via
model reuse. ExM could potentially improve the software
understanding with the use of abstraction (A3.2). More-
over, several participants highlighted ExM potential to help
on understanding scenarios (A2.1) and to help on
debugging activities (A3.3).
Participants also reinforced that ExM cannot

only offer benefits for coding but also support
different activities during the entire software

19https://www.taguette.org
20https://cmap.ihmc.us

Lebtag et al. 2022

development process (A3.1). Participants glimpsed the adop-
tion of ExM for software architecture evaluation
(A1.2), quality attributes analysis (A1.3), and
understanding the systems behaviors. They also
reported strengths for systems verification and validation
(A1.1), besides the potential of ExM to serve as a bridge be-
tween the architectural process and design/implementation
process. Regarding ExM visual appeal, participants reported
benefits related to its dynamic nature. Some participants
reported on its potential to provide a broad view of the
problem (A2.2).
Some participants reported that ExM are similar to

sequence diagrams (A4.2) and then it can be easy to un-
derstand, reducing cognitive stress of learning new tech-
nology. Participants also pointed out ExM advantages to
integrating software documentation as it can increase
traceability, help manage organizational knowl-
edge and work as a communication document among
developers and other stakeholders (A4.3). The fol-
lowing excerpts express the potential of ExM for documen-
tation and its potential for improving the understanding of
the problem being solved:

(A2.1)

“The understanding of the model becomes clearer and more
didactic.” [Participant 43]

(A4.3)

“This can be useful in a team meeting to show what the
software should do, so that the whole team can better
understand what needs to be done.” [Participant 37]

Figure 7. Some requirements related to ExM.

In Figure 7, the Requirements (R) (i.e. opportunities
envisioned by professionals) category (RQ3), participants
reported what was possible to envision as applications
for ExM, according to their own opinions. We split
this category into three subcategories: (i) future investi-
gation branches (R1), (ii) applications for software engi-
neering (R2), and (iii) envisioned applications (R3). In
applications for software engineering, participants pointed
out possibilities of use, such as using ExM to optimize
software development (R2.2) by increasing the reuse of
models and bringing value together with static
models (R2.3). They also reported the use in complex and
critical systems (R2.1).

In future investigation branches, participants reported
that new technologies must deal with the problems of
scalability in large applications (R1.2) and ex-
ploring other notations for ExM (not only SysML and
UML) (R1.1). For envisioned applications, participants high-
lighted opportunities to use ExM on teaching (R3.3) and
distributed systems development (R3.2). Some par-
ticipants envisioned its usage with component design and
for building a walking skeleton (R3.1), i.e. a prototype
implementing the bare-minimum functionalities required by
a company to validate the idea in the market. The following
fragments exemplify this category:

(R2.1)

“You see... as we start to consider the complexity of real
world software, the models should become very complex but

it should also retain easiness to understand all their
scenarios.” [Participant 37]

(R2.2)

“With executable models we can optimize the entire
software process, obtaining satisfactory results.”

[Participant 44]

(R3.1)

“Design of new components, mainly using Domain-Driven
Development and walking skeleton.” [Participant 8]

(R3.3)

“Executable models could be used for teaching.”
[Participant 15]

Figure 8. Some Perceptions related to ExM.

In the Perceptions (P) category, we separated the codes
into two subcategories: (i) practical usability (P1), and (ii)
visual expressiveness (P2). Figure 8 presents the perceptions
mapped onto codes. Regarding visual expressiveness, par-
ticipants informed that ExM have low expressiveness
(P2.1) and visualizing the execution is limited
functionality. Other participants reported that static
diagrams are easier (P2.3) and that they prefer UML
(P2.2). The following citation exemplifies this point:

(P2.3)

“In these cases, a good modeling of states representing the
life cycle of the manipulated entities would solve the

problem.” [Participant 36]

Lebtag et al. 2022

Considering practical usability, participants expressed
their concerns with: the models maintainability
(P1.2), its applicability in the real world in
an agile methodology scenario, and whether it
could represent a barrier to new software en
-gineers (P1.1). Some participants were partially suscep-
tible to ExM, as they reported that ExM and model-driven
approaches could be adopted if they could offer lower
development time, cost and effort (P1.3). In turn, some par-
ticipants pointed out that ExM do not bring advantage
in small scenarios (P1.4) and therefore it can only
reveal its value in more complex scenarios. The following
fragments express those perceptions:

(P1.3)

“I would use a model-driven approach only if it could allow
delivering value to the customer with the least amount of

cost, time and effort possible.” [Participant 30]

(P1.4)

“The scenarios given as examples are rather simple. I am
not sure executable models bring that much in this case.”

[Participant 54]

On the Improvement suggestions (S) category (RQ4), we
also divided it into three subcategories: (i) visual representa-
tion (S1), (ii) disposition (of elements) (S2), and (iii) notation
(S3). Figure 9 presents the suggested improvements for ExM.

Figure 9. Some Improvement suggestions related to ExM.

Some participants suggested that adding a stack
call (S2.3) and improving components hierarchy
and events sequence (S2.2) were needed. For conduct-
ing the study, despite the tool support for representing links
between elements, we suppressed them to reduce visual pol-
lution while we were recording the video. However, some
participants missed the display of relationships
among elements without polluting the screen
(S2.1). Some generic suggestions for improving the ExM
notation were: use known notations such as UML
(S3.2), and add symbols to improve expressiveness.
Participants also suggested improvements on the visual rep-
resentation by improving the animation (S1.2) and
adding color to signal the states change (S1.1).
The following fragments endorse it:

(S1.1)

“Show in red when the first error was triggered and
propagate it back as red.” [Participant 19]

(S1.2)

“The animation is as bad as it could be, I suppose. So,
definitely, the animation should be improved.” [Participant

18]

(S3.2)

“Why not using known notation such as sequence diagram
(UML)?” [Participant 8]

(S2.2)

“It should be included hierarchy and alignment of models.”
[Participant 1]

(S2.1)

“...however, (the relationships) should be displayed in a
way that do not pollute thescreen.” [Participant 9]

(S2.2)

“Lines for communication paths.” [Participant 48]

Still, regarding the Improvement suggestions category
(RQ4), participants reported on the disposition of elements,
their visual representations and notation. Disposition plays
an important role to visual perceptions. In a static diagram,
the information is usually displayed following some order.
In ExM, the user can freely position the elements. However,
this has caused a side effect: reducing visibility. Some par-
ticipants suggested the creation of a hierarchy to present the
elements on the screen (S2.2).
Another important aspect reported was the lack of

visualization cues, such as colors to represent state changes
(S1.1). Because users depend on the visual aspects to follow
the execution process, colors could serve as a visual guide
to different elements and states on the screen. Participants
also highlighted that the visual notation should be improved
(S3.3). A possible solution is to use well-established notation
(e.g. UML) (S3.2) as a reference to improve ExM visualiza-
tion techniques. It can be important to increase ExM accep-
tance in the software engineering practice.
In the Difficulties (F) category (RQ5), we were able to

further split the codes into two subcategories: (i) difficulties
due to the respondent the first interaction with ExM (F1), and
(ii) difficulties considered inherent with the adoption of ExM
(F2), as shown in Figure 10. In first interaction with ExM
subcategory, participants reported on problems such as
to understand the presented problem, inexperi-
ence wth ExM (F1.2) because s/he is not currently
working on programming, and the presented model
is complex (F1.1). Our approach consisted of presenting
the same conditions a respondent is usually exposed to when
they use static models. Therefore, participants had access
only to a short video. Some participants felt difficulties with
the chosen approach and perceived the survey as missing
information to comprehend what was presented to them.
However, we aimed at reducing as much bias as possible

Lebtag et al. 2022

Figure 10. Some Difficulties related to ExM.

related to static models. Therefore, it is reflected in some
answers.
The second subcategory refers to the

difficulties participants perceived as inherent to the adoption
of ExM. Some participants reported difficulties to
comprehend the execution flow (F2.1) and the
large number of steps to observe (F2.2). The
following citation exposes these problems:

(F1.1)

“I could not follow some inputs and outputs.” [Participant
58]

(F2.1)

“I had difficulty to infer which function was executed by
each component.” [Participant 1]

(F2.2)

“In case of referring to the algorithm steps, it is easy.
Otherwise, it is hard to understand. I think this is due to the

number of steps - it is too many to handle in mind.”
[Participant 18]

Figure 11. Some Disadvantages related to ExM.

In Figure 11, the Disadvantage (D) category (RQ6),
we separated the codes into three subcategories: (i) dis-
advantages compared to static models(D1), (ii) related
to ExM (D2), and (iii) related to MDE (D3). Regarding
the comparison to static models subcategory, participants
reported that their team is already trained with
static models and therefore it would be one more
new technology to learn (D1.1). Participants were
also informed that static models are easier to
understand (D1.2).
Related to ExM, some participants reported that

following many steps is a complex task (D2.2)
and someone cannot skip steps (D2.4). They also re-
ported that DEVS expressiveness in the MS4ME tool

is low (D2.1) and thus it offers low traceability
of the messages (D2.3). Finally, related to MDE, par-
ticipants informed that it is not easy to create models
and someone has an extra effort to conceive the
models (D3.1). Participants reported that MDE often
imposes a limited specification, since it is not always
possible to specify everything (D3.3). They also showed
concerns related to the model dimensions as if the
model gets excessively large it will be hard
to understand (D3.4), execute and process mentally the
software (D3.2). The following citations exemplify the
findings:

(D1.1)

“Thinking about the way I currently work with my team, I
think it would be an additional “problem” to think about.”

[Participant 23]

(D1.3)

“A well-made static model can be more easily understood.”
[Participant 11]

(D3.1)

“The extra effort required to generate the models. The
cost-benefit of such a technique should be assessed.”

[Participant 32]

In summary, we were able to observe that participants had
a bias towards the use of static models. Due to their experi-
ence with such models, they focused on difficulties to adapt
themselves to use ExM. Therefore, ExM training and educa-
tion can play an important role in transitioning from static
models to ExM. Table 5 summarizes the findings obtained
from answers for each RQ.

3.5 Discussion
The results obtained in this survey allowed us to identify: 4
difficulties associated with ExM, 9 suggestions of improve-
ments, 11 perceived advantages, and 10 perceived disadvan-
tages. Participants were also able to present their perceptions
and envisioned opportunities. We collected 8 envisioned op-
portunities and 7 perceptions about ExM. As a result, we ob-
tained 49 codes in total. In this study, we presented partici-
pants with two small scenarios. For many participants, it was
their first experience with ExM. This reinforces a bleak sit-
uation currently affecting the industry, the absence of using
the good practice of the software development by profession-
als in the industry (Torchiano et al., 2011; Agner et al., 2013;
Whittle et al., 2017). This directly affects the quality of the
final software. Participants also pointed out the need for spe-
cial training in order to start using ExM. Modeling and Sim-
ulation (M&S) courses are rare in academic environments,
mostly reserved for graduate programs. Hence, only partici-
pants with high education levels had any previous experience
with M&S.
However, the industry can obtain benefits from those prac-

tices. Architectural evaluation can help prevent and reduc-
tion of defects in the software, which leads to improved qual-
ity and user satisfaction (Bass et al., 2012) and ExM can also

Lebtag et al. 2022

Table 5. RQ summarization.
RQ Summarization

RQ1

Although participants achieved better results in
the second scenario, first question, in general,
the obtained results were inconclusive. Thus, we
can neither confirm nor deny the degree which
ExM helped participants to answer the question-
naire.

RQ2

Strenghts of ExM envisioned by participants in-
clude: (i) improving reuse in software engineer-
ing, (ii) raising the abstraction level, (iii) serv-
ing as a communication document to collaborate
with all involved stakeholders; and (iv) bring-
ing benefits to all software engineering activities
ranging from verification & validation, architec-
ture, design, and implementation.

RQ3

Participants raised as opportunities for ExM: (i)
optimizing the software development, (ii) in-
creasing value by associating it with static mod-
els, and (iii) being used in distributed system de-
velopment. Research opportunities include the
need for professional training with ExM.

RQ4

Participants suggested to enrich ExM visual per-
ceptions adding stack call to improve the hier-
archy of components and the display of the se-
quence of events by highlighting different event
with different colors.

RQ5

Participants reported they face difficulties due
to its first interactions with ExM. Other partici-
pants felt difficulties to understand the presented
problem and model. Participants also felt lost
while tracking the execution flow.

RQ6

Participants identified as weaknesses for ExM
the need for training their team for the use of
ExM as they have already used to static models
and the difficulty to have a broad view covering
the entire system using only ExM. They also re-
ported the low expressiveness and traceability
in MS4ME visual notation and the extra effort
to conceive the models.

be used to perform Verification and Validation (V&V), as
shown in some studies (Bogado et al., 2014; Hojaji et al.,
2019). Nevertheless, participants envisioned opportunities of
applications for ExM in software engineering. They realized
the aggregated value that ExM brings together with static
models such as UML to software development. They also re-
ported the application of ExM in distributed systems where
interactions among systems are hard to track and predict in
design time. Moreover, they made several suggestions to im-
prove expressiveness in order to assist software engineering
professionals in understanding ExM, such as improving com-
ponents hierarchy and event sequence. This particularly rep-
resented a difficulty for participants that reported problems
following the execution flow.
Regarding the obtained score as presented in Section 3.4.1,

we can conclude that there was some difference among dif-
ferent groups. Some possible explanations for such a result is
due to the fact that those groups were not disjoint. Some par-
ticipants worked both in the industry and academia as well

as some participants from the industry have higher education
levels. We can also argue that participants from the industry
have some ability to interpret the results of the ExM due to
their daily practice and the problem being solved, which is
similar to those they often face. Nevertheless, we believe that
previous knowledge with ExM can bring some benefits to the
correct interpretation of the models.
In respect to the adopted survey approach used in this

study, we argue that the specification of DEVS models (the
ExM formalism we adopted) is normally written in textual
format. Thus, it is really hard for someone to understand the
flow of information exchanged between the entities of sys-
tems observing only the textual part of the specification. We
argue that the visual representations of systems parts have the
potential to improve visibility. Consequently, this was fully
provided for participants through the simulation videos. In
addition, common functionalities associated with simulation
tools such as pausing the simulation or returning to a previous
state became possible via the video controllers. The experi-
ence provided by the videos were, to some extent, similar to
the one they would have if they had access to the simulation
tool. The only exception is that they would have access to the
source code which probably would not be very intuitive to
participants. Therefore, we argue that the adopted approach
probably did not impact the experience of participants.
Finally, this study contributes to paving important avenues

of research and advances that are still necessary to make the
ExM adoption by software engineers easier. Moreover, there
is still a concern regarding the cost of programming ExM
and/or model transformation. Therefore, we can conclude
that ExM technology has many avenues of improvements
yet to be explored in order to be fully prepared for software
engineering professionals. At the same time, we observed
that many professionals had never experienced ExM before.
Therefore we can conclude they are not prepared to use
them. It opens opportunities for further strategies for ExM
notation evolution, education and training in the field.

3.6 Related Work
Particularly, simulation models as illustrative examples of
ExM have certainly been adopted in software engineering re-
search (Bogado et al., 2014; Hojaji et al., 2019; de França and
Ali, 2020). Other studies on ExM in the software engineering
practice have also been conducted. Hlupic (2002) presents a
survey with academic and industrial users regarding the use
of ExM. The study reports on the adoption of simulation to
analyze application areas and user choices about the software
product being produced. However, while that study offers a
panorama of simulation models, our study presents percep-
tions of professionals extracted from an experience with a
simulation model used to solve problems. Such opinions are
analyzed to highlight opportunities and improvement sugges-
tions to cope with software engineering professionals’ needs.
Torchiano et al. (2011) and Agner et al. (2013) also con-

ducted surveys on models adoption. These studies report re-
sults on the use of MDE in the Brazilian and Italian indus-
tries, respectively. Agner et al. (2013) investigated the use
of UML models and MDE in the embedded software indus-

Lebtag et al. 2022

try. They investigate the level of usage of UML models and
MDE as well as maturity levels within companies (Agner
et al., 2013). On the other hand, Torchiano et al. (2011) report
on the results of a survey with Italian software engineering
professionals. The authors looked into the adoption of MDE
in Italian companies, differences according to the companies
sizes, used notations (e.g. UML or DSL), and the profile of
those who are developing models (Torchiano et al., 2011).
Those findings show differences between the two specific
countries. Both studies are geographically focused on par-
ticular countries, whilst ours comprises Brazilian and other
countries through the participation of international partici-
pants, besides particularly offering a panorama on the use
of ExM. In the next section, we present the methodology for
conducting our study as well as the conduction itself and the
obtained results.
Guessi et al. (2015) present an analysis of architectural de-

scription languages (ADL) for modeling system-of-systems
(SoS). They found that none of the most used ADL for mod-
eling SoS does not fully support it. They also found that basic
tool needs are still precarious. This result is related to some of
our findings regarding visual representation, expressiveness
power, and tool support. Some participants reported difficul-
ties related to the limitations in current visual representations’
expressiveness power. They also reported problems to under-
stand the visual representation and limitations in the ExM
tool in regards to the traceability of messages. Bork et al.
(2018) also found similar problems regarding those two top-
ics. In their study, they present a critical analysis and evalu-
ation of ten existing modeling standards such as UML and
BPMN. Bork et al. (2018) analyzed the visual expressive-
ness of the investigated languages and concluded that exist-
ing notations are still not very mature. Those notations still
rely on simple box-and-line diagrams. They also report prob-
lems related to colorization of visual elements. In our study,
participants of the survey also reported problems related to
colorization and the difficulties associated with interpreting
those results when the simulation is being executed.
Mincarone et al. (2018) present a systematic review and

a survey with one author of each study in their systematic
review. Each author evaluated the benefits of the graphical
modeling languages they explored in their study for the pa-
tient care process. The authors reported that the most used
notations in the studies (UML and BPMN) increased the clar-
ification of the presentation of information in medical con-
texts as they are capable of representing micro and macro
scenarios. Participants in our survey also represented similar
answers regarding the easiness of the view representation of
ExM notations to understand complex scenarios. Mendling
et al. (2010) perform a study to investigate the importance of
textual labels in process modeling while presenting recom-
mendations to improve this practice. This study also presents
a list of recommendations and strategies to be used in model-
ing as our study. Different from our study that takes a broad
view regarding the visual representation and tries to propose
recommendations to it, they focus on a specific part of the
modeling process. Mussbacher et al. (2015) describe the re-
sults of a week-long design thinking experiment with 15
MDE experts, where they were able to discuss the benefits al-
ready achieved byMDE approaches and possible hindrances

in the path of their adoption by the industry. Some obstacles
identified in their study were also perceived by software en-
gineering professionals that participated in our survey. Ob-
stacles were identified in the participants’ answers, such as:
tool support, limitations in MDE expressiveness power to ad-
dress increasing demands on software, and the fact that in-
dustry does not consider MDE “cool”. These results further
confirms what experts in MDE identified.

4 Strategies for Evolving a Simulation
ExM Notation

After obtaining the perceptions of professionals about ExM,
we also extracted codes to compile a list of strategies as rec-
ommendations for improving simulation ExM so that they
could be aligned with the professionals expectations. They
point to directions (and in some cases restrictions) that should
be followed to evolve simulation notations for encompassing
software engineering professionals needs.
The strategies were organized in four general cate-

gories of improvements suggestions: (i) notation, (ii) vi-
sual presentation, (iii) usage, and (iv) user support. We es-
tablished a standardized presentation for these strategies
structured, as follows: (i) strategy identifier, (ii) short ti-
tle summarizing the strategy, (iii) the traceability associ-
ated with the strategy, and (iv) a brief explanation of
the strategies. Each strategy identifier follows the format
“[Category_Character-Strategy_Number]”. The tuple
Category_Character represents each of the categories pre-
viously mentioned and Strategy_Number is an integer that
identifies the number of the strategy in each category. The
title synthesizes the core idea behind the strategy. The strate-
gies were created straightforward from the improvements
recommendations collected from the answers to the survey
form. The traceability of each strategy can be seen in the table
presenting the strategies and the associated code extracted
from the survey based on GT procedures. Lastly, the brief
explanation discusses the importance of the strategy and its
consequence for the development of an ExM notation.

4.1 Strategies for ExM Notations

The first category presented is notation improvements
(Table 6). In this category, the set of strategies recommend
generic improvements on the ExM notations. We identified
in the survey that participants felt the need to enhance ExM
notations expressiveness power and robustness, as explained
below.

[N1] Improve notation expressiveness power and robust-
ness

ExM notations should deal with two major challenges and
find a balance between: (i) the notation expressiveness power
and (ii) its formality level. The former represents how much
the notation can describe the real world (i.e. how much it can
represent from the real world and how much it abstracts out).
The latter prescribes how precise and formal the notation is,

Lebtag et al. 2022

Table 6. [N]otation Improvements.
ID Description Survey Code

N1

Improve notation
expressiveness
power and robust-
ness

(S3.1) Add symbols to
improve expressiveness
(S3.2) Use notations
known such as UML
(S3.3) Improve DEVS
graphical notation (ani-
mation representation)

but it can also hinder its understandability. ExM notation de-
signers should pay close attention to both aspects as they are
very important for the end-user. The former can impose lim-
its to its use and it may force the end-user to drop it in favor
of another notationmore capable of representing the problem
being modeled. The latter can create an unnecessary cogni-
tive burden, which is exactly the opposite goal aimed when
using an abstract notation.
In terms of complex systems, researchers tend to pre-

fer to use the most suitable domain-specific notation for
the problem-space (Wang and Dagli, 2011). As such, an
approach such as megamodel (Favre, 2005) (i.e. combine
different models and metamodels in a unified model) could
be adopted. Megamodels allow software engineering profes-
sionals to work with multiple static and executable notations.
The notations can be general-purpose and domain-specific
notations and they can use model transformation to convert
from one notation to the other whenever needed. One
possible alternative that ExM notation developers could
offer is the possibility for users to define their own language
constructors with their operational semantics (e.g. those
offered by IBM Rational Rhapsody21 or GEMOC22). Then,
users can adapt the language to the specific complex system
domain requirements, reducing the need to use another static
notation.

4.2 Strategies for ExM Visual Presentation
Table 7 contains improvement strategies for the visual
presentation of the ExM notations. The improvements are
focused around the problem of dealing with model traceabil-
ity, model scalability and model visual presentation. The
survey participants offered several suggestions to concretely
enhance the visual notation.

[V1] Improve execution flow

From the survey results, we concluded that the execution
flow could become hard to follow, mainly when there are
many state transitions and messages being triggered simulta-
neously. In fact, even in small-scale scenarios as those pre-
sented to participants during the survey, we observed the par-
ticipants faced difficulties in following the model execution.
Therefore, new strategiesmust be investigated to identify bet-
ter forms of presenting execution flows.
Thus, we can say that [V2] and [V3] (described below)

are important strategies to be achieved first. They will

21https://www.ibm.com/products/systems-design-rhapsody
22http://gemoc.org/

Table 7. [V]isual Presentation Improvements.
ID Description Survey Code

V1 Improve execution
flow

(F2.1) Difficulties to
understanding the execu-
tion flow
(D2.2) Following many
steps makes the task com-
plex

V2
Improve visualization
for a large number of
elements and actions

(F2.2) Difficulty to
understand due to large
number of steps

V3

Use different colors
to represent state
changes in simulation
elements

(S1.1) Use different
colors to signal state
changes, such as excep-
tion.

V4
Improve distribution
of elements to reduce
visual pollution

(D3.2) Mentally build
the model that represents
the software
(D3.4) If the model gets
excessively large, it can
become very complex to
understand

V5 Establish hierarchy
among components

(S2.2) Establish the hier-
archy of components and
sequence of steps

V6 Add call stack or state
transition stack

(S2.3) View the call stack
with nesting of calls

V7

Offer the possibility to
split the diagram into
entities and messages
exchange views

(S2.4) Split into two dia-
grams being one of them:
entity and their states,
and the other one the
exchange messages be-
tween entities

V8

Provide an intuitive
animation that illus-
trates data exchange
and other software
elements to enhance
the user experience

(F2.2) Difficulty to
understand due to large
number of steps
(S1.2) Improve the ani-
mation

V9

Display the lines of
message exchange be-
tween entities without
polluting the screen

(S2.1) Present relation-
ship of the elements with-
out polluting the screen

V10

Provide mechanisms
to visualize the mod-
els such as: zoom-in,
zoom-out and moving
around the entire
screen fluidly

(D1.3) Static models are
easier

V11
Use known visual rep-
resentations such as
UML or SysML

(P2.2) The respondent
prefers UML

V12

Add the possibility
for users to provide
his/her own symbols
to better adapt the
visual notation to the
domain problem

(S3.1) Add symbols to
improve expressiveness

Lebtag et al. 2022

increase visibility and improve the execution flow. Another
possible solution to this strategy is to use conditional
breakpoints (see Figure 12). Some Integrated Develop-
ment Environment (IDE) offers the possibility to set up
conditional breakpoints that will halt the execution when a
certain condition is satisfied, which allows developers to run
the software normally and only debug the exact segments
of the model or their states they desire to investigate. By
offering such functionality, users can investigate only the
segments of execution flow they require to better understand.

Figure 12. Conditional breakpoint offered by Visual Studio Code.

[V2] Improve visualization for a large number of ele-
ments and actions

Related to [V1], this strategy concerns the scalability of
the models visualization. Real world software is made of
thousands or more components/classes. If all those compo-
nents/classes are converted to models and run as models in-
stances using ExM, the model visibility can be dramatically
reduced. We identify problems such as: (i) disposition of the
models, (ii) visualization of the lines of message exchange
among models, and (iii) decrease in animation quality due to
many elements drawn on the screen.
ExM notation designers should find newways to deal with

this problem to prevent/hamper ExM adoption. Zoom-in and
Zoom-out (see [V10]) or grouping elements functionalities
are among participants suggestions that could help to im-
prove visibility. The game industry faces similar problems
due to a large number of elements to draw on the screen
Xavier et al. (2020). Professionals use different techniques
and design patterns that help deal within a large number
of elements such as double buffer, spatial partition and
flyweight (Nystrom, 2014). They also limit the number of
elements drawn at once.

[V3] Use different colors to represent state changes in
simulation elements

A feasible alternative to improve visibility is by making
use of colors to distinguish elements and state transitions. Hu-
man vision evolved to perceive different colors (Bowmaker,
1998). The average number of colors the human eyes can
distinguish is about 10 million different colors (Judd, 1975).
This technique is widely employed in visual arts such as pho-
tography, cinema, and arts. User experience and user inter-
face also heavily explore the use of colors (Tidwell, 2020).
Some suggestions include: ExM could employ strong

colors (e.g. red or yellow) to indicate problems in the
model execution, or the model has transited to an error state.
Important elements could also be distinguished by colors,
which can help people to focus and identify them more
easily. Users could choose colors to highlight important
elements or even group elements by the same color to
perceive them as a unity (Figure 13).

Figure 13.CPNTools is an ExM simulation tool based on Colored Petri Nets
formalism that allow users to use different colors for each model, their rela-
tionships and messages exchanged (extracted from (Zaitsev et al., 2018)).

[V4] Improve distribution of elements to reduce visual
pollution

As the number of models increases and become larger,
their visibility decreases (Figure 14). Distributing the ele-
ments in the screen can ease visibility and improve percep-
tion. Proper size disposition and positioning of elements in
the screen can improve models visibility and then the under-
standing of the problem being analyzed.
The disposition of elements is a topic that is particularly

important within Graph Theory (Purchase et al., 1996).
This problem constitutes a graph drawing problem in which
the goal is to minimize the number of crossing lines to
improve visibility. Nevertheless, even the best disposition
algorithm from Graph Theory can fail to capture aesthetic
principles and therefore, it should always be possible for
humans to intervene or guide the process. We argue that
ExM solutions could offer a hybrid approach to this problem
using both automatic and manual alternatives to provide a
viable solution for users.

Figure 14. Disposition of elements can become difficult to understand as
the number increases (extracted from MS4ME official website23).

[V5] Establish hierarchy among components

Following [V4], another related aspect to be improved is
hierarchy among components. Hierarchy and organization
are common properties of systems (Bertalanffy, 2015). As
such, ExM solutions should provide, natively in their nota-
tion, alternatives to mimic this behavior. DEVS, for instance,
offers the possibility to group elements in a single entity
named coupled models. However, in the survey, we did not

Lebtag et al. 2022

use this functionality; thus, some participants suggested the
option to group elements together.
Therefore, we claim that ExM notations should offer the

possibility to organize elements hierarchically and stacking
them up to form hierarchical structures. Many complex
systems in the real world contain hierarchical structures, so
they require this capability from ExM in order to be properly
captured by a model. This is also an opportunity to reduce
the number of elements presented on the screen, which can
improve the scalability of the models and improve their
visibility.

[V6] Add call stack or state transition stack

Participants pointed out they had difficulties to keeping the
state transition sequence in their memories and this hindered
their reasoning. In the survey, they were exposed to videos
and were asked to answer questions regarding their obser-
vations. The large number of steps to follow and to reason
did not allow them to remember everything in order to an-
swer the questions properly and they had to watch the videos
many times to answer the questions. Therefore, a call stack
or state transition stack could help to solve this problem.
Providing a call stack or state transition stack similar

to those present in existing third-generation programming
language (such as C++) tools (see Figure 15) can help users
to explore the sequence of state transitions and support
their reasoning during development. The stack would store
the sequence of messages exchanged between components.
Together with other functionalities such as conditional
breakpoints already mentioned, it can reduce the need for
users to remember everything and concentrate only in the
required parts.

Figure 15. Stacktrace of a C++ code as depicted in Visual Studio Code.

[V7] Offer the possibility to split the diagram into entities
and messages exchange views

Some participants offer the insight of separating the en-
tities and their states from the messages being exchanged.
Usually, the models, their relationship and the message ex-
changed between models are presented in the same view.
Thus, participants have suggested providing a view with two
separate screens, in one of the screens, the user would be
able to see the models and their state transitions. On the other
screen, it would list a sequence of message being exchanged

between models. As such, users would be able to follow in
the same screen the messages being exchanged and see the
models transiting between states.
This functionality could come as an alternative view

from the traditional view (i.e. elements with their messages
being exchanged). This specialized view, which follows a
“separation of concerns” approach can help reduce the need
to draw many state transitions. This can also be used in
situations where offering fully animated ExM is not possible
or feasible but without decreasing the understandability of
the execution of the models.

[V8] Provide an intuitive animation that illustrates data
exchange and other software elements to enhance the
user experience

Animation is specially important for notations that offer
visual capabilities such as ExM. In the survey, some partic-
ipants complained that the animations were not good and
sometimes even confusing. We argue that this problem may
also be linked to strategies [V3], [V4] and [V5]. Selic (2008)
has already highlighted this problem arguing that researchers
andMDE developers tend to not pay enough attention to their
tool usability, which can hamper the adoption of MDE tech-
nologies.
Therefore, we argue that proper attention should be paid

to the animation of the models. This way, graph design
professionals can contribute to improving animation. User
interface and user experience, which are important research
areas in graph design, has already a great body of knowledge
in developing user interfaces that take into consideration
the expectations of the users and tries to improve their
experience while using the system. Thus, they could help
to shape the evolution of ExM. Another research area that
can contribute to ExM is games. For instance, we could use
gamification to improve the experience or 3D animations to
improve models simulation (when use is adequate).

[V9] Display the lines of message exchange between
entities without polluting the screen

In this particular survey research, we did not display the
lines of message exchanged between entities to reduce the
visual pollution generated by the ExM tool we used. How-
ever, this produced an unexpected side-effect and some par-
ticipants pointed out that they missed this functionality. Nev-
ertheless, that further highlights the importance of displaying
those lines so that users can understand the relationship be-
tween entities.
On the other hand, when the relationships are too dense,

the visibility is compromised and it can become really hard
to discern anything on the screen (which was the initial
reason we removed them in the first place) (Figure 16).
Offering the possibility to toggle the relationship of some
or all entities can help to solve this problem. Grouping
similar entities together allow the possibility of showing
their relationships without polluting the screen (which
could potentially violate [V4]. Thus, it may demand some
trade-off analysis).

Lebtag et al. 2022

Figure 16. Even displaying the relation of a relative small number of models
already hamper the visibility (extracted from (Guessi et al., 2019)).

[V10] Provide mechanisms to visualize the models such
as: zoom-in, zoom-out and moving around the entire
screen fluidly

Some participants in the survey mentioned that the benefit
of drawing a UML diagram in a sheet of paper is that one can
see all the models and all the information at once. In their
opinion, it is easier to look over the sheet of paper to find the
information someone needs rather than to look at the screen
of the monitor and searching for the information someone
needs. In fact, this is a common and known problem related
to usability and immersion on electronic devices (Mangen
et al., 2019).
Therefore, we argue that ExM tools should provide

a mechanism that tries to be as close as possible to the
behavior of seeing a model on a sheet of paper in order
to improve immersion in the models. ExM should avoid
usability problems in navigating through the models, which
is a common issue on electronic devices and MDE solutions
(Selic, 2008; Siegenthaler et al., 2010). ExM should provide
zoom-in and zoom-out mechanisms that allow users to fit all
the models on the screen at once the same way that would
happen on a sheet of paper. At the same time, they should
also provide mechanics to navigate through the models and
move fluidly around the screen.

[V11] Use known visual representations such as UML or
SysML

Participants were also concerned with the need to perform
new training sessions with their team to learn to use new tech-
nology. Therefore, the adoption of well-established notations
such as UML and SysML can help in reducing adoption resis-
tance and eliminating the need for further training. Despite
the fact these static notations are not suitable to all cases due
to their semi-formal nature, these notations are well-known
notations among developers. These notations have the poten-
tial to reduce the initial learning curve and accelerate ExM
adoption by the industry.
However, it is also important to point out the limitations

on their usage. In the context of complex systems, the need
for formality is also mandatory due to the usual domain ap-
plication being critical. Thus, we argue that ExM notations
should aim to appeal to both concerns: (i) the robustness of
formal notations, and (ii) easiness and similarity of known
and well-established notations, such as UML or SysML.
As previously mentioned in the strategy [S1], approaches

such as megamodels (Favre, 2005), which allows users to
combine multiples models and apply model transformation
between models, could help to solve this problem.

[V12] Add the possibility for users to provide his/her
own symbols to better adapt the visual notation to the
domain problem

This strategy complements [V3] and further improves
ExM visibility. Participants mentioned their interest in pro-
viding their own symbols to be used in the notations. Then,
offering the users the possibility to add his/her own symbols
could increase visual perception and improve identification
response-time. At the same time, it allows users to adapt
the notation to better accommodate the explored domain-
problem.
The human vision also evolved to perceive shapes

(Singh and Hoffman, 2013). It is easier to identify a model
representing a radar or sensor using the symbol or picture
of a radar or sensor than a simple text or a graphical square
box named “radar” and “sensor” on top of it (Figure 17).
The symbols also represent an opportunity to group similar
elements together and reduce visual pollution ([V9]).

Figure 17. Using user-defined symbols has the potential to improve visibil-
ity (extracted from (Dahmann et al., 2017b)).

4.3 Strategies for ExM Usage
Table 8 represents strategies with improvements for usage.

[U1] Improve models maintenance and management

Survey participants were very interested in models main-
tenance and management. They were concern with the in-
crease in size of the models as the development progress and
how to manage such growth. We believe this is a valid con-
cern. As the models become the main artifact in the software
development, special attention must be devoted to mainte-
nance and management of the models. Traditional program-
ming languages already deal with this type of problem. They
make use of versioning systems, most notably Git24. There
is also a well-established body of knowledge in software
design practices and a collection of design patterns to im-
prove management and maintenance. Because MDE usage
is not widespread yet, there is no robust set of known gen-
eral reusable solutions to this problem already validated and
adopted by the industry (except for a few industry sectors,

24https://git-scm.com/

Lebtag et al. 2022

Table 8. [U]sage Improvements.
ID Description Survey Code

U1
Improve maintenance
and management of
the models

(P1.3) I would use MDE
if the cost was low

U2

Add the possibility
for users to generate
static diagrams such
as UML or SysML
corresponding to a
“snapshot” of the exe-
cutable model state in
a given moment

(P2.3) Static diagrams
would be clearer/easier
to understand

U3

Increase level of au-
tomation in the pro-
cess of creating and
dealing with the mod-
els

(P1.3) I would use MDE
if the cost was low

U4

Provide a mechanism
in the notation to al-
low model reuse, such
as inheritance or the
possibility to build and
use a library of models

(P1.3) I would use MDE
if the cost was low

U5 Improve model scala-
bility

(R1.2) Dealing with
model scalability in large
applications

such as automobile25).
This strategy is also related to [U4]. Improving reuse can

help to reduce repetitive work, which increases maintainabil-
ity and improve management. When we consider complex
systems, this can become a critical problem. A complex
system can be composed of many models, state transitions
and relationships among models. In such scenario, mainte-
nance becomes complex and error-prone while management
becomes cumbersome. It is important to investigate new
solutions so we ended up not transferring complexity from
traditional programming to MDE.

[U2] Add the possibility for users to generate static
diagrams such as UML or SysML corresponding to a
“shot” of the executable model state in a given moment

Static models are unchangeable and plain representations
of the systems being modeled. They can be easier to rea-
son compared to a constantly changing entities on the screen.
Moreover, static models can be drawn or printed, which can
be useful in an architecture meeting or discussion session
(Siegenthaler et al., 2010; Mangen et al., 2019). This is the
same difference between an e-book versus a physical book.
Some people prefer one, others prefer the other.
Therefore, we argue that ExM tools could offer the

possibility to generate static diagrams so they could be
printed and used during discussion sessions. The digital
format, which represents the main artifact, would still be the
most important element in the software development, but it
could also be offered a static and printable version, which

25https://www.autosar.org/

can be carried and used during meetings. We could also
offer the possibility to convert the models from a different
ExM notation to UML or SysML only on demand, i.e. when
the user was to print the models (Figure 18).

Figure 18. UML diagram are well-established static notation. They could
be generated only when to be printed (extracted from (Teixeira et al., 2020)).

[U3] Increase level of automation in the process of
creating and dealing with the models

We can also improve model management ([U1]) by in-
creasing the automation in the process of creating models.
Automation is always necessary as it is a way to speed up
processes and reduce management costs. Computers can per-
form repetitive work better than humans and without errors
caused by distractions.
Throughout the life cycle of the models, there are a

number of activities that can also be automated. A common
practice that is already widely present in traditional program-
ming languages is macros. A macro is a native language
mechanism (e.g. C and C++ macros) or implemented by
third-party software that offers developers the possibility to
automate repetitive work. The same concept can be adopted
by ExM notations. Repetitive work such as establish rela-
tionship between groups of elements or message exchange
can be fully automated by macros.

[U4] Provide a mechanism in the notation to allow model
reuse, such as inheritance or the possibility to build and
use a library of models

Participants mentioned the importance of models reuse to
reduce cost. Although DEVS provides some reuse mecha-
nisms, due to the reduced scale of the presented problems, we
did not use them. However, participants pointed out the im-
portant of reuse, mainly in the context of agile development.
Traditional programming languages offer several mecha-
nism to increase reusability such as inheritance (for object-
oriented languages) and prototyping (as in Javascript).
There are some reuse alternatives for MDE, such as model

composition and algorithmic models (Keller et al., 2020).
Another solution to increase reuse and development speed
is for ExM solutions to offer model repository and research
mechanisms (Chreyh and Wainer, 2009). These mechanisms
are important because they allow fast prototyping and reuse
of the models and their experimental frame, i.e. the set
of experiments for which the models are valid to be used

Lebtag et al. 2022

(Vlahovic and Ceric, 2008).

[U5] Improve model scalability

This strategy is directed connected to [V2]. In [V2], we
have to deal with representing a large number of elements
visually. On the other hand, in this strategy, the problem is
to execute a large number of elements. Model execution en-
gines should be scalable to deal with many state transitions
and messages exchange. Since the model execution engines
are the powerhouse in ExM development, they should be pre-
pared to handle the enormous demand of real-world applica-
tions.
Again, when we analyze this problem from a complex sys-

tem perspective this problem becomes evident. A complex
software, which can be composed of many components/-
classes, when converted to an MDE approach, can generate
thousands of models. We can also see this problem in terms
of systems that are composed of many models such as a
military system, in which a simulation of the system would
require thousands of models ranging from radar, sensor,
aircraft and so on. This type of simulation involves complex
calculations that demand powerful computers to simulate
them. In such scenarios, scalability is mandatory. One solu-
tion to this problem is using parallelism with multi-thread
and multi-processor to speed up the calculations.

4.4 Strategies for ExM User Support
Table 9 presents the improvements regarding user support.

Table 9. User [S]upport Improvements.
ID Description Survey code

S1
Improve material and
content quality for
teaching

(D1.1) Another new tech-
nology to learn
(R3.3) Application for
teaching

[S1] Improve material and content quality for teaching

Any real ExM solution to work in the industry will be re-
quired to have a proper amount of high-quality material to
support its usage. Videos, tutorials and books are the most
common ones. Github allows the possibility to offer user sup-
port via issues and other means. By offering good content, it
can ease its adoption and it can later be used for teaching
applications as well.
Another alternative to this problem is to create a com-

munity around the ExM notation and increase a sense of
sharing and contribution among participants. This can help
and motivate newcomers to contribute with the evolution of
the ExM notation (Steinmacher et al., 2016; Steinmacher
et al., 2019). In order to motivate newcomers, it is important
to take measures to ease their entrance such as providing
a decent amount of initial material, create an environment
of receptivity for newcomers and to popularize the ExM
notation together with its key applications and benefits

(Steinmacher et al., 2019).

5 Strategies Assessment
The aforementioned strategies were extracted from the per-
ception of software engineering professionals. In order to as-
sess how suitable those strategies are regarding this percep-
tion, we decided to confront them from the perspective of
software engineering researchers. As such, we also selected
a survey as a method to assess how much software engineer-
ing researchers agree with the obtained strategies, what about
they disagree, and what software engineering professionals
missed in regards to software engineering researchers.We de-
veloped a Google forms questionnaire with all 19 strategies
presented using a five Likert-scale ranging from strongly dis-
agree to strongly agree, as it can be seen in Figure 19.
We sent out the questionnaire to researchers from Brazil

and abroad from February 20th, 2021 to March 08th, 2021
and we received 13 answers. 11 participants were Brazilians,
one from the United States and one from Australia. Ten par-
ticipants had PhD degree and three had Master’s degree. Ten
participants identified themselves as male and three identi-
fied themselves as female. Their ages ranged from 31 to 48.
The mean experience time in academia was 10 to 15 years
and the mean experience in the industry was 5 to 10 years.
The mean usage frequency of the participants with the static
model was “frequent” while the mean usage frequency with
ExM was “not so frequent”.

Figure 19. Likert-scale employed in the survey.

In Table 10, we observe that strategies [V4] and [V8] re-
ceived equally or more “Strongly Agree” votes, as they refer
to the importance of displaying elements correctly without
polluting the screen and the importance of having a better
animation of the entities represented in the simulation and
their messages being exchanged. On the other hand, [V1],
[V2], [V3], [V5], [V6], [V7], [V9], [V10], [V11], [U1], [U2],
[U3], [U4], [U5] and [S1] received more “Agree” votes than
“Strongly Agree” votes. Lastly, [V8] and [V12], in which
[V12] deals with the possibility of users extend the existing
notations to better represent the explored domain, received
one and three “Disagree” votes respectively. The strategy
[V8] received the worst result among the proposed strategies
with two “Strongly Agree”, five “Agree”, three “Neutral”,
and three ”Disagree”. Finally, the strategy [V12] received
the best result even though it received a negative vote with
nine “Strongly Agree”, five “Agree”, one “Neutral”, and one
“Disagree”.

At the end of the questionnaire, participants could also
state their divergent opinions or suggestions for improve-
ments. Only two participants offered suggestions. Partici-

Lebtag et al. 2022

Table 10. Agreement level of the strategies among ExM researchers.

Strategy Strongly
Agree Agree Neutral

agree Disagree

[N1] Improve notation expressiveness
power and robustness 3 8 2 0

[V1] Improve execution flow 4 8 1 0
[V2] Improve visualization for a large num-
ber of elements and actions 4 6 3 0

[V3] Use different colors to represent state
changes in simulation elements 3 6 4 0

[V4] Improve distribution of elements to re-
duce visual pollution 6 6 1 0

[V5] Establish hierarchy among compo-
nents 3 8 2 0

[V6] Add call stack or state transition stack 5 8 0 0
[V7] Offer the possibility to split the dia-
gram into entities and messages exchange
views

2 9 2 0

[V8] Provide an intuitive animation that il-
lustrates data exchange and other software
elements to enhance the user experience

9 5 1 1

[V9] Display the lines of message ex-
change between entities without polluting
the screen

6 7 0 0

[V10] Provide mechanisms to visualize the
models such as: zoom-in, zoom-out and
moving around the entire screen fluidly

4 7 2 0

[V11] Use known visual representations
such as UML or SysML 4 6 3 0

[V12] Add the possibility for users to pro-
vide his/her own symbols to better adapt
the visual notation to the domain problem

2 5 3 3

[U1] Improve maintenance and manage-
ment of the models 5 7 1 0

[U2] Add the possibility for users to gener-
ate static diagrams such as UML or SysML
corresponding to a ”shot” of the executable
model state in a given moment

4 6 3 0

[U3] Increase level of automation in the
process of creating the models 1 10 2 0

[U4] Provide a mechanism in the notation
to allow model reuse such as inheritance or
the possibility to build and use a library of
models

2 7 4 0

[U5] Improve model scalability 3 8 2 0
[S1] Improve material and content quality
for teaching 3 7 3 0

pant one mentioned that “the use of animations remove the
users attention from the models, which it is the most impor-
tant part in an MDE development”. The participant also dis-
agreed with the possibility of the end-user providing his/her
own symbols because it shifts the focus from modeling
the domain-problem to drawing the symbols of the domain-
problem. We argue that visual representation is important to
ExM as it is also important for a static notation to capture the
explored domain-problem. Therefore, we observe the need
for a visual representation with a proper user interface as re-

quired and as advocated in another study (Selic, 2008).

Participant eight suggested proposing strategies to analyze
the behavior of the models (such as their goals, missions,
or any other functional requirement) and the models perfor-
mance. Behavior analysis is specially important in the con-
text of complex systems due to their inherent complexity and
the possibility to arise emergent and unpredictable behaviors.
We can argue that models simulation already offers the possi-
bility of analyzing the behavior of the system being modeled
and their visual representation allow us to draw conclusions

Lebtag et al. 2022

and observe their behavior. Regarding the performance, we
partly covered this problem in [U5], which deals with model
scalability.
In the end, in this small sample, the obtained score of the

strategies was positive among respondents and only received
two disagreements. The disagreement is an important contri-
bution to the strategies, which could generate new research
opportunities but they do not represent a serious problem to
the obtained results.

6 Implications to Theory and Practice
The analysis of the results obtained with the survey with soft-
ware engineering professionals and later the assessment with
software engineering researchers allowed us to observe two
different point of view and concerns. On the one hand, we
were able to identify the aim for more practicality from engi-
neers in respect to ExM. For ExM to be usable from their
perspective, the models have to be more practical (in the
sense of being more agile), reusable and scalable. Being a
simplified or abstract representation is just one side of soft-
ware development. There are other equally important require-
ments that engineers need before they can decide to commit
to another technology different from current ones. This has
become even more evident after the agile movement. The ur-
gency to deliver fast and high-quality product is a reality that
engineers are constantly required by their employers to meet.
In that sense, these wishes were captured in the strategies
[V11], [U1], [U3], [U4], [U5], and [S1]. Therefore, further
research is required on the use of ExM to investigate new av-
enues andmaybe incorporate an agile mentality and practices
into ExM practice.
On the other hand, we were able to observe the impor-

tance of ExM notation expressiveness power from software
engineering researchers perspective. The researchers are par-
ticularly interested in modeling the domain problem as ac-
curately and representative as possible. This movement is
very important to software development. We can also ob-
serve such movement in the industry by practices such as
domain-driven design (DDD) that focuses on the use of
object-oriented programming to model and match the ex-
plored domain. DDD establishes a ubiquitous language be-
tween developers and domain experts. We claim both indus-
try and academia have the same goal in regards to model-
ing the domain as precisely as possible. Thus, engineers can
greatly benefit from the achievements of ExM studies. How-
ever, this can also cause tension between the two parties as
they prefer to approach this problem from two different per-
spectives.
From the perspective of engineers, they wish to reduce

their cognitive stress and reuse as much knowledge as pos-
sible. Therefore, the use of known and well-established no-
tation as UML and SysML [V11] that does not require
re-training their development team is important. From the
researchers perspective, the scenario is the opposite. Re-
searchers are interested in investigating the use of the nota-
tions at their disposal to model the studied domain and learn
from this experience what went well and what could be im-
proved. However, even from this conflict position, both par-

ties can mutually benefit. Researchers can contribute to im-
provement into existing notations for specific domains while
engineers can provide researchers with improvement feed-
backs and new opportunities for research.
Moreover, strategies to capture the visual representation

of ExM are highlighted [V1-V12]. Simulation is a signif-
icant part of ExM technology. M&S is especially impor-
tant for complex systems, which require mechanisms to ex-
plore possible emergent behaviors (i.e. unknown construc-
tive or destructive behavior). Traditional software develop-
ment does not usually require the use of simulation and it
is only restricted to some domains. However, Industry 4.0,
smart cities, IoT and digital twins impel the need for simula-
tion (Rasheed et al., 2020). Therefore, the use of simulation
and the importance of its graphical representation become
important. Providing an intuitive and good user experience
[V8] is necessary as it improves the understandability of the
explored problems and reduce cognitive stress. Also, when
the number of visual elements become a huddle, new strate-
gies to deal with this problem are needed [V2]. The use of
different colors [V3], hierarchy structures [V5], or symbols
[V12] can help with reducing the problem.
We conclude by saying that these strategies have the po-

tential to support the evolution of ExM notations, offering
development opportunities and fostering the investigation of
solutions to solve the problems raised and comply with the
suggestions brought by the discussed strategies. By address-
ing the strategies, we foresee a potential to deal with the prob-
lem of ExM adoption and usage from the perspective of soft-
ware engineering professionals and, at the same time, real-
izing and incorporating important adaptations to the better
suite to the next generation of systems.

7 Limitations
In this section, we discuss the main threats to validity of
steps involved in this study and how we mitigated them.

Limitations related to survey with software engineering
professionals:

Population. An expressive (but still small) sample of
58 software engineering professionals was involved in
the survey research. In order to maximize the number of
participants, we invited as many national and international
participants as we could, given a fixed time period. We
tried to obtain a diversified representation of realities across
different regions and countries. However, the study was
certainly limited to the number of answers. This is also a
difficulty in similar studies in software engineering (Smith
et al., 2013). We can also highlight the number and type of
the problems presented to participants as possible limitations
of the study.
GT. Another limitation of this work is related to the coding
phases in GT. Once the process is inherently related to
human interpretations and opinions, results could certainly
differ from those coded by a different team. In our study,
two researchers coded and two researchers revised in order
to reduce such issues.
Survey Execution. We also remark two important lim-

Lebtag et al. 2022

itations that shall be taken into account to evaluate the
extension of the validity and potential of generalization of
the findings communicated in this paper: (i) the portion of
ExM presented and how it was presented, and (ii) specific
type of ExM technology used in the study. Regarding the
former factor, we provided a video to expose the partici-
pants (particularly those with no experience on ExM) to
what could be considered the graphical part of an ExM
in order to provide subsidies to answer the questionnaire.
Moreover, we present only the graphical part (not the
underlying specification model), showing how a video
could also bring difficulties for the participants since they
could not control the model execution as they wished. In
addition, as an exploratory study, we believe the results
are valuable as perceptions for future studies. Regarding
the latter limitation, we only presented one specific type
of ExM (a simulation model). models@runtime and ExM
obtained via transformations were not in the scope of
this study. Hence, further studies are still required to
cope with other types of ExM. However, several findings
are generic enough to be adopted in all of those technologies.

Limitations related to the definition of the strategies and
their assessment:

Strategies Definition. The obtained strategies are also in-
herently subject to human interpretations and opinions. In
order to mitigate this threat, three software engineering and
ExM experts supported the elaboration and assessment of the
strategies.
Strategies Assessment. In order to mitigate the elaboration
of the strategies, we also assessed the obtained strategies with
13 software engineering researchers with varying experience
with software engineering, in academia and also in the indus-
try. As for the recruitment of evaluators of the strategies, in
fact, the time to conduct the assessment was limited. Thus,
some of the participants were partners of the research groups
involved in the production of the article. And then, this can
add the possibility of bias in the assessment. Another threat
to the validity of the assessment is that in both the survey
and the assessment of the strategies, we did not save any in-
formation regarding the identity of the respondents. Because
of that, we can not cross and compare the obtained results
and removed respondents that possibly participated in both
studies.

8 Final Remarks
The two main contributions of this study were to commu-
nicate findings of survey research conducted to answer the
research question What are the perceptions of software en-
gineering professionals about the expressiveness and under-
standability of DEVS executable simulation models? and to
develop a list of strategies to answer the research question
How to support the evolution of ExM notations to be aligned
with software engineering professionals’ needs?
The answers to the survey were quantitatively and quali-

tatively analyzed. From a set of 58 participants, more than
half (precisely 30 participants) did not have any contact with

ExM before. In addition, several participants (even the ex-
perienced ones) suggested improvements and opportunities
make ExM technology closer to their current practice, mak-
ing its adoption easier.
The performed analysis allowed us to identify that (i) pro-

fessionals envision several advantages and opportunities for
applying ExM in software engineering such as architectural
assessment and documentation, (ii) the research field should
provide an effective cost-benefit infrastructure for software
development before its larger adoption, and (iii) any success-
ful strategy for adoption should be integrated in the software
development process smoothly, reducing cognitive stress of
learning new technology.
Based on these results, we compiled a list of strategies

to answer our second research question, in which, we aim
to support the evolution of ExM notations elicited from the
needs raised by the respondents of the survey. The strategies
were organized into four categories of improvement: (i) nota-
tion, (ii) visual representation, (iii) usage, and (iv) user sup-
port. Some of the strategies aim to improve the animation
of the models by adding support for colors and the possibil-
ity to users add their own symbols to better represent the ex-
plored domain. The strategies also focus on improving the
scalability of the models (visual presentation and execution),
the management of the models and increase the reuse of mod-
els to use in fast prototyping.
The strategies were later assessed with 13 software engi-

neering researchers from Brazil, Australia and the United
Stated to identify their perceptions and to contribute with im-
provements. In this small sample, the strategies received a
positive score. Only two participants contributed with two
different opinions. One participant was positioned against
the importance of the visual presentation and another stated
the need for strategies to deal with behavior analysis and
performance. Simulating and observing the execution of the
models are means to achieve behavior analysis and, in a
sense, already justify the importance of having a good visual
representation. The strategies for scalability also cover part
of the requirement for performance. Future work includes
replicating the study in a controlled environment as soon as
the Covid-19 pandemic is surpassed.
In conclusion, we highlight the importance of ExM, such

as simulation and digital twins, mainly in the context of
Industry 4.0 and smart cities where systems simulation
have been applied and can bring high quality to the systems
being developed henceforth (Müller-Zhang et al., 2020). By
addressing the proposed strategies, we further prepare the
ExM notations to deal with the challenge involved in the
development of those complex systems.

Acknowledgements This article was financed in part
by the Coordenação de Aperfeiçoamento de Pessoal de
Nível Superior - Brasil (CAPES) - Finance Code 001.
The 3rd author thanks to UNIRIO and FAPERJ (Proc.
211.583/2019) for partial support. The 4th author thanks
to CAPES (PROCAD-Amazonia: 88887.200532/2018-0),
the INCT of the Future Internet for Smart Cities funded
by CNPq proc. 465446/2014-0; and the State of Maranhão
Research Funding Agency - FAPEMA (UNIVERSAL-
00745/19;BEPP-01608/21).

Lebtag et al. 2022

Data All the data collected during this survey can be found
in https://github.com/brlebtag/JSERD-Survey.

References
Agner, L. T. W., Soares, I. W., Stadzisz, P. C., and Simão,
J. M. (2013). A brazilian survey on UML and model-
driven practices for embedded software development.
Journal of Systems and Software, 86(4):997–1005.

Bass, L., Clements, P., and Kazman, R. (2012). Software Ar-
chitecture in Practice. Addison-Wesley Professional, 3rd
edition.

Bertalanffy, L. (2015). General system theory : foundations,
development, applications. George Braziller, Inc, New
York.

Boehm, B. (2006). A view of 20th and 21st century software
engineering. In 28th ICSE, page 12–29. ACM.

Bogado, V., Gonnet, S., and Leone, H. (2014). Modeling and
simulation of software architecture in discrete event sys-
tem specification for quality evaluation. SIMULATION,
90(3):290–319.

Bork, D., Karagiannis, D., and Pittl, B. (2018). Systematic
analysis and evaluation of visual conceptual modeling lan-
guage notations. In 2018 12th International Conference
on Research Challenges in Information Science (RCIS),
pages 1–11.

Bowmaker, J. K. (1998). Evolution of colour vision in verte-
brates. Eye, 12(3):541–547.

Chreyh, R. andWainer, G. (2009). Cd++ repository: An inter-
net based searchable database of devs models and their ex-
perimental frames. In Proceedings of the 2009 Spring Sim-
ulation Multiconference, SpringSim ’09, San Diego, CA,
USA. Society for Computer Simulation International.

Corbin, J. (2015). Basics of qualitative research : techniques
and procedures for developing grounded theory. SAGE.

da Costa Carvalho, E., Malcher, P. R. C., and dos Santos,
R. P. (2020). A survey research on the use of mobile appli-
cations in software project management. In 19th Brazilian
Symposium on Software Quality. ACM.

Dahmann, J., Markina-Khusid, A., Doren, A., Wheeler, T.,
Cotter, M., and Kelley, M. (2017a). Sysml executable sys-
tems of system architecture definition: A working exam-
ple. pages 1–6.

Dahmann, J., Markina-Khusid, A., Doren, A., Wheeler, T.,
Cotter, M., and Kelley, M. (2017b). Sysml executable
systems of system architecture definition: A working ex-
ample.

de França, B. B. N. and Ali, N. B. (2020). The role of
simulation-based studies in software engineering research.
In Contemporary Empirical Methods in Software Engi-
neering, pages 263–287. Springer.

Favre, J.-M. (2005). Megamodelling and etymology. In
Transformation Techniques in Software Engineering.

Fernandes, J., Graciano Neto, V. V., and Santos, R. P. d.
(2018). Interoperability in systems-of-information sys-
tems: A systematic mapping study. In 17th SBQS, page
131–140. ACM.

Ferreira, T., Viana, D., Fernandes, J., and Santos, R. (2018).
Identifying emerging topics and difficulties in software en-
gineering education in brazil. In 32nd SBES. ACM.

Gorschek, T., Tempero, E., and Angelis, L. (2014). On the
use of software design models in software development
practice: An empirical investigation. Journal of Systems
and Software, 95:176–193.

Gray, J. and Rumpe, B. (2016). Models in simulation. Soft-
ware & Systems Modeling, 15(3):605–607.

Guessi, M., Cavalcante, E., and Oliveira, L. B. (2015). Char-
acterizing architecture description languages for software-
intensive systems-of-systems. In 2015 IEEE/ACM 3rd
International Workshop on Software Engineering for
Systems-of-Systems, pages 12–18. IEEE.

Guessi, M., Graciano-Neto, V. V., and Nakagawa,
E. Y. (2019). Architectural description of systems-
of-information. In Tópicos em Sistemas de Informação:
Minicursos SBSI 2019, pages 29–52. SBC.

Hlupic, V. (2002). Simulation software: An operational re-
search society survey of academic and industrial users.
pages 1676–1683.

Hojaji, F., Mayerhofer, T., Zamani, B., Hamou-Lhadj, A.,
and Bousse, E. (2019). Model execution tracing: a sys-
tematic mapping study. Software and Systems Modeling,
18(6):3461–3485.

Hu, J., Huang, L., Cao, B., and Chang, X. (2014). Spdml:
Graphical modeling language for executable architecture
of systems. pages 248–255.

Judd, D. (1975). Color in business, science, and industry.
Wiley, New York.

Kasunic, M. (2005). Designing an effective survey. Tech-
nical Report CMU/SEI-2005-HB-004, Carnegie Mellon
Software Engineering Institute, Pittsburg, USA.

Keller, N., Zeigler, B., Kim, D., Anderson, C., and Ceney,
J. (2020). Supporting the reuse of algorithmic simulation
models. In Proceedings of the 2020 Summer Simulation
Conference, SummerSim ’20, San Diego, CA, USA. Soci-
ety for Computer Simulation International.

Kim, T. G. and Zeigler, B. P. (1987). The DEVS formalism:
hierarchical, modular systems specification in an object
oriented framework. In Thesen, A., Grant, H., and Kel-
ton, W. D., editors, Proceedings of the 19th conference on
Winter simulation, WSC 1987, Atlanta, GA, USA, Decem-
ber 14-16, 1987, pages 559–566. ACM.

Lebtag, B., Teixeira, P., Santos, R., Viana, D., and Graciano
Neto, V. (2020). Evaluating the understandability and ex-
pressiveness of simulation executable models with profes-
sionals – obtaining perceptions from researchers and prac-
titioners for improving quality of models. In Proceed-
ings of the 19th Brazilian Symposium on Software Quality,
SBQS’20, New York, NY, USA. Association for Comput-
ing Machinery.

Levis, A. H. and Wagenhals, L. W. (2000). C4isr architec-
tures: I. developing a process for c4isr architecture design.
Systems Engineering, 3(4):225–247.

Linåker, J., Sulaman, S., Host, M., and de Mello, R. (2015).
Guidelines for conducting surveys in software engineer-
ing. Technical report, Lund University, Sweden.

Mahmood, S., Ahmed, M., and Alshayeb, M. (2013). Reuse

Lebtag et al. 2022

environments for software artifacts: Analysis framework.
In 12th ICIS, pages 35–40.

Mangen, A., Olivier, G., and Velay, J.-L. (2019). Comparing
comprehension of a long text read in print book and on
kindle: Where in the text and when in the story? Frontiers
in Psychology, 10.

Manzano, W., Neto, V. V. G., and Nakagawa, E. Y. (2020).
Dynamic-sos: An approach for the simulation of systems-
of-systems dynamic architectures. Comput. J., 63(5):709–
731.

Mendling, J., Reijers, H., and Recker, J. (2010). Activity
labeling in process modeling: Empirical insights and rec-
ommendations. Information Systems, 35(4):467–482.

Michael, J. B., Drusinsky, D., Otani, T. W., and Shing, M.
(2011). Verification and validation for trustworthy soft-
ware systems. IEEE Software, 28(6):86–92.

Mincarone, P., Leo, C. G., Trujillo-Martín, M. D. M., Man-
son, J., Guarino, R., Ponzini, G., and Sabina, S. (2018).
Standardized languages and notations for graphical mod-
elling of patient care processes: a systematic review. Int J
Qual Health Care, 30(3):169–177.

Molléri, J. S., Petersen, K., and Mendes, E. (2016). Survey
guidelines in software engineering: An annotated review.
In Proceedings of the 10th ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measure-
ment, ESEM ’16, pages 58:1–58:6.

Mussbacher, G., Amyot, D., Breu, R., Bruel, J.-M., Cheng,
B., Collet, P., Combemale, B., France, R., Heldal, R., Hill,
J., Kienzle, J., Schöttle, M., Steimann, F., Stikkolorum, D.,
and Whittle, J. (2015). The relevance of model-driven en-
gineering thirty years from now. In Proceedings of the
International Conference on Model Driven Engineering
Languages and Systems, pages 1–12. Springer.

Müller-Zhang, Z., Antonino, P. O., and Kuhn, T. (2020). Dy-
namic process planning using digital twins and reinforce-
ment learning. In 25th IEEE ETFA, volume 1, pages 1757–
1764.

Neis, P., Wehrmeister, M. A., and Mendes, M. F. (2019).
Model driven software engineering of power systems ap-
plications: Literature review and trends. IEEE Access,
7:177761–177773.

Neto, V. V. G., Rodriguez, L. M. G., Guessi, M., de Bar-
ros Paes, C. E., Manzano, W., Oquendo, F., and Naka-
gawa, E. Y. (2018). ASAS: an approach to support simu-
lation of smart systems. In 51st HICSS, pages 1–10.

Nystrom, R. (2014). Game programming patterns. Genever
Benning, United States.

OMG Executable UML (2017). Action language for
alf. Standard, Object Management Group, Massachusetts,
USA.

OMGExecutable UML (2018). Semantics of fuml. Standard,
Object Management Group, Massachusetts, USA.

Prinz, N., Rentrop, C., and Huber, M. (2021). Low-code de-
velopment platforms–a literature review.

Purchase, H. C., Cohen, R. F., and James, M. (1996). Vali-
dating graph drawing aesthetics. InGraphDrawing, pages
435–446. Springer Berlin Heidelberg.

Rasheed, A., San, O., and Kvamsdal, T. (2020). Digital twin:
Values, challenges and enablers from a modeling perspec-

tive. IEEE Access, PP:1–1.
Sedano, T., Ralph, P., and Péraire, C. (2019). The product
backlog. In 2019 IEEE/ACM 41st International Confer-
ence on Software Engineering (ICSE), pages 200–211.

Selic, B. (2008). Personal reflections on automation, pro-
gramming culture, and model-based software engineering.
Automated Software Engineering, 15(3):379–391.

Siegenthaler, E., Wurtz, P., and Groner, R. (2010). Improv-
ing the usability of e-book readers. Journal of Usability
Studies archive, 6:25–38.

Singh, M. and Hoffman, D. D. (2013). Natural selection
and shape perception. In Shape Perception in Human and
Computer Vision, pages 171–185. Springer London.

Smith, E., Loftin, R., Murphy-Hill, E., and Zimmermann, T.
(2013). Improving developer participation rates in surveys.
pages 1–4.

Steinmacher, I., Conte, T. U., Treude, C., and Gerosa, M. A.
(2016). Overcoming open source project entry barriers
with a portal for newcomers. In 2016 IEEE/ACM 38th In-
ternational Conference on Software Engineering (ICSE),
pages 273–284.

Steinmacher, I., Treude, C., and Gerosa, M. A. (2019). Let
me in: Guidelines for the successful onboarding of new-
comers to open source projects. IEEE Software, 36(4):41–
49.

Teixeira, P., Lebtag, B., dos Santos, R., Costa Fernandes, J.,
Mohsin, A., Kassab, M., and Graciano Neto, V. (2020).
Constituent system design: A software architecture ap-
proach. pages 218–225.

Tidwell, J. (2020). Designing interfaces : patterns for effec-
tive interaction design. O’Reilly Media, Sebastopol, CA.

Torchiano, M., Ricca, F., Tiso, A., and Reggio, G. (2011).
Preliminary findings from a survey on the md state of the
practice. In 5th ESEM, pages 372–375, Banff, Canada.

Vlahovic, N. and Ceric, V. (2008). Multi-agent simulation
in organizations. In Encyclopedia of Information Science
and Technology, Second Edition, pages 2728–2733. IGI
Global.

Wang, R. and Dagli, C. (2011). Executable system architect-
ing using systems modeling language in conjunction with
colored petri nets in a model-driven systems development
process. Systems Engineering, 14(4):383–409.

Whittle, J., Hutchinson, J. E., Rouncefield, M., Burden, H.,
and Heldal, R. (2017). A taxonomy of tool-related issues
affecting the adoption of model-driven engineering. Soft-
ware and Systems Modeling, 16(2):313–331.

Wohlin, C., Runeson, P., Hst, M., Ohlsson, M. C., Reg-
nell, B., and Wessln, A. (2012). Experimentation in Soft-
ware Engineering. Springer Publishing Company, Incor-
porated.

Xavier, B. L., dos Santos, R. P., and dos Santos, D. V. (2020).
Software ecosystems and digital games: Understanding
the financial sustainability aspect. In Proceedings of the
22nd International Conference on Enterprise Information
Systems. SCITEPRESS - Science and Technology Publi-
cations.

Zaitsev, D. A., Shmeleva, T. R., and Sleptsov, A. I. (2018).
Reenterable colored petri net models of networks, grids,
and clouds: Case study for provider backbone bridge. In

Lebtag et al. 2022

2018 26th Telecommunications Forum (TELFOR). IEEE.
Zeigler, B., Sarjoughian, H. S., Duboz, R., and Soulie, J.-C.
(2016). Guide to Modeling and Simulation of Systems of
Systems. Springer Publishing Company, Incorporated, 1st
edition.

Zeigler, B. P., Muzy, A., and Kofman, E. (2018). Theory of
Modeling and Simulation: Discrete Event & Iterative Sys-
tem Computational Foundations. Academic Press, Inc.,
USA, 3rd edition.

A Acronyms

Table 11. Acronyms used throughout this article
Acronym Definition
A Advantages
ADL Architectural Description Language
ALF Action Language for Foundational UML
AQ Atitudinal Questions
BPMN Business Process Model and Notation
CEQ Closed-ended Question
CPN Colored Petri Nets
CQ Characterization Question
DEVS Discrete Event System Specifications
D Disadvantage
DSL Domain Specific Language
DQ Demographic Question
ExM Executable Model(s)
F Difficulties
fUML Foundational UML Subset
GT Grounded Theory
I Improvement Suggestions
IDE Integrated Development Environment
MDE Model-driven Engineering
MQ Main Question
N Notation
OEQ Open-ended Question
UML Unified Modeling Language
P Perceptions
R Requirements for new Technologies
RQ Research Question
SoS System of Systems
SQ Study Question
SySML Systems Modeling Language
V Visual Presentation
V&V Verification & Validation

	Introduction
	Background
	Survey on Executable Models
	Planning
	Execution
	Analysis Procedure
	Results
	Quantitative Analysis
	Qualitative Analysis.

	Discussion
	Related Work

	Strategies for Evolving a Simulation ExM Notation
	Strategies for ExM Notations
	Strategies for ExM Visual Presentation
	Strategies for ExM Usage
	Strategies for ExM User Support

	Strategies Assessment
	Implications to Theory and Practice
	Limitations
	Final Remarks
	Acronyms

