

Journal of Software Engineering Research and Development, 2021, 9:13, doi: 10.5753/jserd.2021.1942

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Towards to Transfer the Directives of Communica-

bility to Software Projects: Qualitative Studies

Adriana Lopes Damian [Federal University of Amazonas | adriana@icomp.ufam.edu.br]

Edna Dias Canedo [University of Brasília | ednacanedo@unb.br]

Clarisse Sieckenius de Souza [Pontifical Catholic University of Rio de Janeiro | clarisse@inf.puc-rio.br]

Tayana Conte [Federal University of Amazonas | tayana@icomp.ufam.edu.br]

Abstract

The software artifacts developed in the early stages of the development process describe the proposed solutions
for the software. For this reason, these artifacts are commonly used to support communication among members of

the development team. Miscommunication through software artifacts occurs because practitioners typically focus

on their modeling, without reflecting on how other software development team members interpret them. In this

context, we proposed the Directives of Communicability (DCs) to support practitioners analyzing characteristics

that affect the artifact’s content on communication via artifact. We conducted preliminary studies in a controlled
environment with our proposal. However, we noticed that new studies are necessary to evaluate the DCs concern-

ing practitioners’ perceptions before transferring them to the industry. In this paper, we present two studies per-

formed aiming to transfer the DCs to the software industry. In the first study, we evaluated the practitioners ’

perception about the DCs. In the second study, we evaluated the feasibility of the DCs in a software development

team. The studies’ results indicated that DCs have the potential to support improvements in artifacts’ content to
reduce miscommunication via artifact. To facilitate the use of our proposal in the software industry, we created

procedures that support the adoption of the DCs and checklists for the application of each directive in the software

artifacts. We noticed positive perceptions of practitioners about the application of DCs in software artifacts. We

hope that our contribution support software development teams that use artifacts in your projects.

Keywords: Communication via Software Artifacts, Human‑Centered Computing, Semiotic Engineering

1 Introduction

Artifacts developed in the early stages of the software devel-

opment process, such as the different diagrams of the Unified

Modeling Language (UML) (Freire et al., 2018; OMG,

2015), assist practitioners in understanding the problem for

which software was required. As proposed solutions for soft-

ware development are in artifacts, these artifacts also support

team communication (Petre, 2013).

Communication is considered an important factor in soft-

ware development, since miscommunication in software

teams causes low productivity and software failures (Käfer,

2017). Miscommunication via artifact occurs, for example,

when consumers (who take the information they see in the

models for the development of another artifact) have differ-

ent interpretations from the ones intended by the producers

(who conceive the modeling of the software). As much as

consumers know the modeling notation, the way the model-

ing has been expressed by their producer can affect these

practitioners’ mutual understanding.

In order to mitigate miscommunication via artifact, we

proposed the Directives of Communicability 1 (DCs), pre-

sented in Lopes et al. (2019a). The DCs can support reflec-

tions to producers about how they can create a software so-

lution via artifacts aimed to get a mutual understanding

among development team members.

1 Communicability in this context refers to the artifact’s ability

to convey to its consumers the solution conceived by its producers.

Practitioners can use our proposal mainly in the artifacts

developed in the initial stages of the development process,

such as UML diagrams, mockups and others. We conducted

preliminary studies to evaluate our proposal to reduce mis-

communication (Lopes et al., 2019a; Lopes et al., 2019b).

However, we noticed that new studies are necessary to eval-

uate the DCs concerning practitioners’ perceptions before

transferring them to the industry.

Given the context above, we conducted an exploratory

study (Lopes et al., 2020) to evaluate practitioners’ percep-

tions of the DCs. Fifteen practitioners participated in this

study by modeling UML use case (OMG, 2015) with the

support of DCs. The results demonstrated that the UML use

cases developed, with the support of DCs, had few risks of

miscommunication. Besides, participants’ perceptions

about the DCs indicate that such directives can support bet-

ter communication via artifact, contributing to software

quality. However, it is also important to evaluate how soft-

ware engineers apply the DCs in artifacts used in software

projects to identify their feasibility.

This paper extends our previous work (Lopes et al., 2020),

presenting a study carried out to analyze communication via

artifacts in a software development team. We conducted this

study in a software team with fourteen practitioners that

worked on a cooperation project between the University of

Brasilia (UnB) and the Brazilian Army. The results of this

study showed the potential of the DCs to indicate improve-

ments in the artifact’s content regards communication via

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

artifacts. In addition, we present proposals that facilitate

practitioners to adopt the DCs, such as procedures that direct

the adoption of the DCs in software artifacts and checklists

that support the employ of each directive in common sce-

narios of two specific artifacts.

Through both studies, we noticed the contribution of the

DCs for: (i) few risks of miscommunication via artifacts, al-

lowing better communication via artifact; and (ii) improve-

ments on the quality of artifacts, since miscommunication

caused incorrect information in software artifacts. We hope

that our contribution helps software development teams re-

duce miscommunication via artifacts.

2 Theoretical Foundations and Related

Works

This section begins by presenting both the Semiotic En-

gineering theory (de Souza, 2005; de Souza et al., 2016) and

the Grice Cooperation Principle (Grice, 1975), which we

used to understand communication via artifacts and to pro-

pose the DCs. Additionally, we present related works to this

type of communication.

2.1 Theoretical Foundations

Semiotic Engineering theory (de Souza, 2005; de Souza

et al., 2016) characterizes user-system interaction as a par-

ticular case of human-mediated systems communication.

Systems are considered metacommunication artifacts in Se-

miotic Engineering, i.e., artifa cts that communicate a mes-

sage from the designer to users about how they can or should

communicate with the system to do what they want. The con-

tent of the metacommunication message, or metamessage,

can be paraphrased in the following template:

 “Here is my understanding of who you are, what I’ve

learned you want or need to do, in which preferred ways,

and why. This is the system that I have therefore designed

for you, and this is the way you can or should use it in order

to fulfill a range of purposes that fall within this vision”.

Semiotic Engineering uses the communication space

model proposed by Jakobson (1960), that is structured in

terms of context, sender, receiver, message, code, and chan-

nel, where: “A sender transmits a message to a receiver

through a channel. The message is expressed in code and

refers to a context”. Based on the communication space

model proposed by Jakobson (1960), we can structure the

communication elements via artifact in terms of the problem

domain (context), how the artifact is available (channel), in-

formational artifact’s content (message) composed of the ar-

tifact’s notations (code) for the communication between the

producer (sender) and consumer (receiver) of a n artifact,

where: “A producer transmits the informational content of

the artifact to a consumer through a channel. Informational

content of the artifact is expressed by the artifact’s notations

and refers to the problem domain”. Figure 1 presents a char-

acterization of these elements.

Semiotic Engineering proposed evaluation methods to

support designer-user communication in order to understand

how the user is being receives the metamessage. The princi-

ple of categorization of communication failures presented by

Semiotic Engineering is related to three categories:

Figure 1. Communication space of Jakobson (1960).

• Complete failures - when the intention of the commu-

nication and its effect are inconsistent;

• Partial failures - when part of the intended effect of the

communication is not reached; and

• Temporary failures - when in the intention of a com-

municative act between user and system, the user has

momentary difficulty to continue talking with the sys-

tem.

Semiotic Engineering extended its original perspective to

a Human-Centered Computing perspective, a research field

that aims to understand human behavior by integrating tech-

nologies in social and cultural contexts (Sebe, 2010). This

contribution is related to the set of conceptual and methodo-

logical tools called SigniFYI (Signs For Your Interpretation)

(de Souza et al., 2016). The SigniFYI Suite helps investigate

meanings in software during the development process and

the communication between software producers and con-

sumers. Among them, the SigniFYI Message tool (SFYI

Message) is the operational version of the metacommunica-

tion template. This operational version proposes that it can

stand on its own as a powerful evaluation resource to identify

communicability issues (which refers to the quality of the

transmission of the solution designed by producers to con-

sumers).

De Souza et al. (2016) report the use of a principle of

reciprocal cooperation related to effective and efficient com-

munication, called Grice’s Cooperative Principle (Grice,

1975). This principle is expressed by four maxims. Breaking

one or more of these maxims may lead to a communication

failure. Grice’s four maxims are:

Quality - try to make your contribution a true one. Do

not say what you believe to be false and do not say something

without adequate evidence. In software development, for ex-

ample, the software engineer must communicate to the team

only information that is related to the problem domain.

Quantity - Make your contribution as informative as is

required. Do not make you contribution more informative

than is required. Following the previous example, when

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

communicating to the team, the software engineer must try

to use only sufficient content to clarify the information they

must develop.

Relation – Be relevant, that is, do not introduce points

that do not come under discussion. In the case of systems

developed in different cycles, each cycle must contain only

information relevant to such development.

Manner - be perspicuous, avoiding obscurity of expres-

sion and ambiguity, be brief and be orderly. The software

engineer must use descriptions that the team easily inter-

prets, avoiding ambiguity.

2.2 Related Works

For the communication to be efficient, the sender must care-

fully choose an expression for the content he wishes to com-

municate, using a code that the receiver is able to interpret

(de Souza, 2005; de Souza et al., 2016). In this sense, we

identified works related to artifacts’ comprehensibility,

which refers to the receiver’s interpretation of what the

sender said in his communicative act.

On communication via artifact, Bordin and De Angeli

(2016) point out that software engineers stated that docu-

mentation keeps a software development team aligned, espe-

cially in scenarios of distributed teams or with the introduc-

tion of new members in the team.

Schoonewille et al. (2011) present a contribution related

to cognitive aspects in the understanding of software design

documentation. They investigated, in one study, the partici-

pants' ability to extract information from diagrams and texts

(grammatically and syntactically correct). The authors no-

ticed that self-assessment could be problematic. They ob-

served that developers were satisfied to “fill in” information

missing from the documentation without the same under-

standing as the documentation producers. This can cause in-

correct interpretations regarding the software.

Nakamura et al. (2011) proposed three metrics related to

the comprehensibility of UML class diagrams in the follow-

ing aspects: (1) class structure, (2) package structure and (3)

attributes and operations. The authors claim that the metrics

help in estimating the cost of time for understanding a class

diagram.

Cruz-Lemus et al. (2010) present a predictive model of

comprehensibility for UML state machine diagrams, analyz-

ing its structural complexity. The authors’ goal was to reduce

the impact of understanding this diagram.

Tilley (2009) presents a work that summarizes 15 years

of research on the use of graphical notation as documentation

for understanding the system. According to the author, the

graphical notation can help to understand the system and

support communication. However, technical ‘communica-

tors’ are not usually involved in this process. Still, according

to the author, the result is that the engineers, who have the

best of intentions, do not have the necessary background to

explore the resources of the graphic notation to support end

users’ tasks. Therefore, the author reports a lesson learned:

“we need to know how to talk”. Therefore, this highlights the

importance of the producer thinking about the consumers.

Lange and Chaudron (2006) present a work that investi-

gated the effects of defects in UML diagrams in relation to

different interpretations. They conducted two controlled ex-

periments with a large group of students and practitioners.

The two main contributions of this work are investigations

on defect detection and different interpretations caused by

undetected defects. The authors state that the results are gen-

eralizable for modeling with UML diagrams.

These works deal with topics related to communication

with the support of artifacts developed in the early stages of

software development. Schoonewille et al. (2011) and Tilley

(2009) show the importance of artifact producers to reflect

on consumers. Thus, it is important to have a proposal for

artifacts producers to reflect on the consumers. The contri-

butions of the DCs can help with this, as their goal is to sup-

port communication via artifact. This can be achieved when

practitioners make improvements to the artifacts to obtain a

mutual understanding of team members.

3 Directives of Communicability

For the DCs proposal, we have appropriated the communi-

cation space of Jakobson (1960) to communication via arti-

fact, as follows: the artifact is made available with the sup-

port of a tool (the channel) with information from the prob-

lem domain (context) to support communication between ar-

tifacts producers (the emitters) and consumers (the receiv-

ers). The producer, in his message, must consider how the

content is expressed (the use of the code) in such artifacts.

Figure 2 shows such appropriation.

Figure 2. Appropriation of the communication space of Jakobson (1960)

for communication via artifact.

Besides, we have appropriated of Semiotic Engineering

to define the following concepts related to communication

via artifact:

• Communicability of software artifacts - refers to the

artifact’s ability to transmit to its consumers the proposed

solutions for software development.

• Communicability issues in software artifacts – refers

to the expressions or features of the artifact that can be

directly associated with an incompatibility between

meanings associated to them by their producers and

consumers.

• Risks of miscommunication via artifacts – the

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

likelihood of a communicability issue to cause

communication failures between producers and

consumers.

• Miscommunication via artifacts – incompatible

interpretations by artifacts consumers from the producer

perspective for software modeling.

3.1 Proposal of the DCs

We elaborated the DCs based on Semiotic Engineering (de

Souza, 2005; de Souza et al., 2016) and Grice’s Cooperative

Principle (Grice, 1975). We adapted the original Semiotic

Engineering metacommunication template as follows:

 “Here is my understanding as a producer of the model, of

who you are, as its consumer (to whom the producer is de-

signing the model), what I have learned about what you need

to do in system development (about what should be ad-

dressed in the model). This is the solution of the system that

I designed for you to carry out your activities”. Based on

this, we created the following questions to help producers

reflect on artifacts consumers:

(i) Can the consumer understand the artifacts’ content?

Can the consumer achieve its goals? – to support producers

to reflect on whether everyone involved can understand the

information in the model, such as developers and managers,

or only developers; and

(ii) What content should be addressed about the domain

of the problem/solution of the system in the artifact? - In or-

der to encourage the producer to reflect on the content that

she wishes to be comprehended from the model, such as the

tasks that a user can perform on the system. These questions

are used before the use of the DCs.

Regarding the information related to models’ content, the

DCs use the four maxims of Grice’s Cooperative Principle.

The directives will allow producers to reflect on the models’

content before they send it to the consumer, so that there is

mutual comprehension in software development teams. With

this, the DCs can improve the model’s ability to convey to

its consumers the solution conceived by its producers. Below

we present each DC, based on Grice’s maxims:

“Say the truth!” - DC1: Use true information. Do not

use information that affects the content quality in the model

(maxim of Quality). In the UML use case diagram, for in-

stance, do not insert use cases that are outside the problem

domain:

“Say what is needed and no more than necessary” -

DC2: Use the necessary content in the model. Do not use

unnecessary content in the model (maxim of Quantity). An-

alyze, for instance, the amount of information in the specifi-

cation of all use cases;

“Say it logically” - DC3: Organize the information in the

model consistently (maxim of Relation). For example, or-

ganize the use cases in the diagram so that they present a

logical sequence for the producers;

“Say it clearly” - DC4: Organize the information in the

model clearly (maxim of Manner). Describe the names of the

use cases so that they are easily understood and differenti-

ated from each other.

3.2 How can software engineers can apply the

DCs?

We designed the DCs to be employed by software engineers

in artifacts that represent aspects of the software developed

from their perspectives, such as UML diagrams, BPMN dia-

grams, and prototypes. In the study presented in Subsection

4.2, a team adopted UML use cases and prototypes to repre-

sent their software development decisions. The DCs can re-

duce the risks of miscommunication via these artifacts. Fig-

ure 3 presents a schematic of how software engineers can

apply the DCs into UML use cases.

Figure 3. Directives of Communicability for software artifacts.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

In step 1 of Figure 3, the producer begins his process of

reflection on the consumers of the artifact produced based on

the proposed questions. In step 2 of Figure 3, the producer is

able to obtain a better use of the directives in modeling, so

that mutual understanding occurs. For example, consider a

practitioner modeling a use case for a system that supports

users in the use of medicines. By using DC2, based on the

practitioner’s reflection, if the producer knows that the con-

sumer can recognize the difference between the ‘reminders’

and ‘notices’ elements that will be used in the system, there

is no need to detail the difference between them. If the con-

sumer does not know such a difference, it is important that

the producer describes this. DC2 will support this producer

in producing use case specifications with the amount of in-

formation needed for those elements.

Regarding the use of the DCs, producers can use them in

digital format, available in a technical report (Lopes et al.,

2021), or print them to put on their workstations. We just

emphasize that it would be interesting for the producers had

access to directives during the development of the artifacts.

In Section 5, we present proposals that can help software en-

gineers adopt the DCs in software projects.

About the users of our proposal, we created the DCs to

be used by both beginners and experienced software engi-

neers, since they know the modeling notation. We emphasize

that the DCs support producers reflect on the artifact’s con-

tent to achieve a mutual understanding among the members

of a software development team and not in modeling errors.

3.3 Preliminary studies with the DCs

In Lopes et al. (2019a), two software engineers, with the

same level of experience in modeling, produced artifacts.

One of them used the DCs and the other did not. Then, 30

participants were invited to create mockups based on the ar-

tifacts produced by the software engineers. We divided the

participants into two groups. The experimental group created

the mockups based on the artifacts produced with the DCs

and the control group used the mockups based on the arti-

facts developed without the DCs. We noticed that the exper-

imental group had a lower number of miscommunication.

In Lopes et al. (2019b), the DCs were also analyzed to

reduce the risk of miscommunication in software artifacts,

such as UML class diagrams, BPMN (Business Process

Modeling and Notation) diagrams (OMG, 2011) and IFML

(Interaction Flow Modeling Language) (Brambilla and Fra-

ternali, 2014). We choose these diagrams for different com-

munication purposes during software development. Twenty-

four participants, divided into two groups, based on a mod-

eling scenario, produced such diagrams. The experimental

group used the DCs and the control did not use the directives.

The experimental group created artifacts with a lower num-

ber of risks of miscommunication compared to the control

group.

In Lopes et al. (2019a) and Lopes et al. (2019b), we pre-

sented studies with quantitative analyzes. However, it is im-

portant to carry out qualitative studies on the DCs before

transferring them to the industry. For this reason, we planned

new studies that aim to analyze practitioners’ perceptions

about the directives. Figure 4 presents a timeline about the

studies carried out and our planning regards the new studies,

which to answer the research questions (RQ) below.

RQ1 - Do practitioners perceive the DCs as support in

improving the quality of artifacts?

RQ2 - Is the DC application by producers feasible in

development teams?

Figure 4. Timeline of preliminary studies with the DCs and planning of new studies in the software industry.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

4 Experimental Studies

This section presents the studies carried out with practition-

ers before transferring the DCs to the industry. In the first

study (Study 1), fifteen practitioners participated. They cre-

ated a UML use case with the support of the DCs. Our main

goal in this study was to analyze the communication inten-

tion by artifacts producers. After the study, the participants

provided their perceptions about the DCs through a question-

naire.

In the second study (Study 2), we carry out a study in the

context of a software project. We evaluate if the DCs can

provide supports to identify risks in software artifacts that

caused miscommunication. In addition, producers and con-

sumers provide their perceptions about communication via

artifacts through interviews and an online questionnaire.

4.1 Study 1: Evaluation of the DCs from the

practitioners’ perception

We conducted a first study that evaluates the practition-

ers’ perception of the DCs from 15 practitioners regarding

their support during artifacts development (Lopes et al.,

2020). In this study, the participants applied the DCs in UML

use cases, that is, in the use case diagram and specification.

After that, we sent questionnaires to collect the practitioners’

perceptions.

As in this study we evaluated the practitioners’ percep-

tion of the DCs during the modeling of use cases. We did not

investigate the communication between producers and con-

sumers. Therefore, the researchers analyzed only the possi-

bility of a risk of miscommunication in the use cases. In ad-

dition, we analyzed the impact on the quality caused by the

risks of miscommunication and qualitative data obtained

about the practitioners’ answers.

4.1.1 Study 1: Planning

We selected 15 practitioners to produce UML use cases with

the support of the DCs. All practitioners had a college degree

and they were taking the Fundamentals of Software Engi-

neering class in Software Engineering postgraduate course

at Northern University Center (UNINORTE). Table 1 pre-

sents a summary of the participants’ experience. Regarding

the participants, most of them did not work creating artifacts

in software projects related to our research. However, we

consider practitioners who are consumers in software pro-

jects able to participate in the study, because they can pro-

vide their perception into our proposal to communication via

artifacts. In this way, we planned training so that participants

execute the study activities.

We planned this study to take in a single day, during the

morning and afternoon. In the morning, before we carried

out the study, the participants received training of approxi-

mately two hours for exercising use case modeling. It is note-

worthy that all participants had prior knowledge of UML use

cases. In the afternoon, we reserved a laboratory for the ex-

ecution of this study, which had notebooks for the partici-

pants to use. We planned to run this study in approximately

three hours.

Table 1: Participants’ experience in software industry

EXPERIENCE IN THE

INDUSTRY
PARTICIPANTS

1 – 3 years

P1 (Developer)

P2 (Software Tester Developed)

P3 (Software Analyst)

P4 (Developer)

P6 (Process Engineer)

P7 (Developer)

P10 (Developer)

P12 (Developer)

P13 (Developer)

4 – 8 years

P8 (Software Tester Developed)

P9 (Developer)

P15 (Developer)

more than 9 years

P5 (Developer)

P11 (Developer)

P14 (Project Manager)

In order to observe the participants’ discussion regarding

the development of use cases in different modeling scenar-

ios, we randomly defined four groups. Each modeling sce-

nario had simple content, so that the participants complete

the study activities in the planned time. We present the de-

scription of the modeling scenarios for each group below:

Group 1 scenario – To support students who want pri-

vate lessons in basic classes such as Mathematics, a system

must be developed. The system should provide teachers with

private lessons. Additionally, evaluations of these teachers

by students/other teachers should be displayed. The system

should allow managing the teachers’ agendas on the classes,

so that students can enroll in them. Thus, it is possible to

include and cancel classes.

Group 2 scenario – To support the small events, a sys-

tem must be developed. In this system, the organizers will be

able to create their accounts and, from this, register events

such as birthday parties, guest lists, and gift lists. They will

also be able to send invitations via e-mail, control expenses,

and generate reports for both guests and expenses. The sys-

tem provides communication among organizers and guests.

Guests may or may not confirm their presence at the event

and consult the gift list.

Group 3 scenario – To support sales professionals in

their orders, such as delivery control, customer management

(retailers and wholesalers), a system must be developed. The

system will support professionals who want to computerize

and innovate the service, minimizing errors and constraints

from the lack of systematic control. The system should allow

users to register their customers and to manage the stock of

their products. After the payment record, the order is sent to

the customer with the delivery invoice.

Group 4 scenario – To support residents of the state of

Amazonas in Brazil, who have difficulty accessing the infor-

mation on river routes for purchasing tickets, a system must

be developed. The system will support passengers of differ-

ent vessels, embarking/disembarking times, the vessels’ ca-

pacity, number of available spaces, price, and information on

river routes. Concerning vessels’ owners, they will be able

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

to register the number of employees available for passenger

assistance.

Before the execution of the study, we planned training

with the DCs to be applied in use case modeling. Regarding

the study activities planned and Figure 5 summarizes them.

Figure 5. Study 1 activities planned.

To analyze the defects related to the risks of miscommu-

nication, we used the types of defects presented by Granda

et al. (2015). Table 2 shows these defects.

Table 2. Types of defects (adapted from Granda et al. (2015))

TYPE DESCRIPTION

Omission The required information has been omitted.

Incorrect Fact

Some information in the model contradicts the

list of requirements or general knowledge of

the system domain.

Inconsistency

Information in one part of the model is incon-

sistent with information in other parts in the

model.

Ambiguity

The information in the model is ambiguous.

This can lead to different interpretations of in-

formation.

Extraneous In-

formation

The information that is provided is not requi-

red in the model.

Redundant Information is repeated in the model.

4.1.2 Study 1: Execution

We asked the participants to position themselves according

to the groups defined to carry out the study activity. The par-

ticipants were in the same laboratory, but the groups were

far from each other. After that, we delivered to the groups

the modeling scenarios and the printed DCs.

The main researcher, the participants to draw up the use

case diagram together, discussing relevant aspects of the sys-

tem. After that, the researcher requested each participant to

specify only one use case. The participants created the use

cases from the modeling scenarios. Regarding the use of the

DCs, the participants should, for example, create use cases

in the context of the problem domain (use of DC1) and ana-

lyze the amount of information to understand these use cases

correctly (use of DC2). During the study, a researcher a re-

searcher took notes of the directives most used by the partic-

ipants.

2 https://astah.net/

The participants used the Astah21tool to model use cases.

Table 3 presents the four groups defined with the participants

and the objective of each system in the modeling scenarios.

Table 3. Groups defined in this study

GROUPS PARTICIPANTS

Group 1 P4, P5, P6 e P7

Group 2 P8, P9, P10 e P11

Group 3 P12, P13, P14 e P15

Group 4 P1, P2 e P3

Regarding the use of the DCs, the main researcher in-

formed the participants the directives can be applied accord-

ing to the most appropriate for them, such as by using the

directives during the modeling or after the participants made

a modeling proposal. The main researcher noticed that all

groups made a modeling proposal and then applied the DCs.

At the end of the study, all participants answered a post-

study questionnaire to provide their perceptions about the

DCs, including each participants’ experience in the industry.

Regarding the duration of the study, it was completed ahead

of our planning.

4.1.3 Study 1: Results

We analyzed the use cases produced by the groups regarding

the risks of miscommunication, which were discussed with

the other authors of this paper. The risks of miscommunica-

tion identified in the use cases of each group are shown in

Table 4, including their total number of occurrences and the

description of each risk.

Table 4: Risks of miscommunication in the use cases developed by the

groups

GROUPS DESCRIPTION OF THE RISKS OF MIS-

COMMUNICATION

Group 1 - Lack of relationship in the use case diagram

(1)

- Different standards in the organization of the

use case specification (3)

- Lack of information in business rules (5)

Group 2 - Use case specification inconsistent with the

use case diagram (1)

- Lack of relationship in the use case diagram

(1)

- Lack of information in business rules (4)

Group 3 - Lack of information in business rules (2)

- Lack of steps in the main flow of the use case

specification (2)

Group 4 - Lack of steps in the main flow of the use case

specification (2)

- Lack of information in business rules (5)

In this analysis, for example, we noticed that the partici-

pants in Group 1 did not provide all the necessary infor-

mation in the business rules, such as the fields in the system

for a student to evaluate the teachers. The evaluation of the

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

artifacts produced by the groups showed few risks of mis-

communication compared to the number of risks of miscom-

munication identified in other software artifacts in a prelim-

inary study (Lopes et al., 2019b). However, such risks can

cause possible miscommunication.

Regarding the application of the DCs by the participants,

based on the researcher’s notes during the study, the majority

of them used the following directives: DC2 to evaluate the

amount of information that should be represented, and DC3

for the organization of information logically in use cases.

Analysis of software defects related to risks of com-

munication failure. We grouped the risks of miscommuni-

cation in Table 5, which are related to the groups. Defects

related to risks have also been described in this table.

Regarding the risks of miscommunication, we noticed a

lack of information for the business rules in the four model-

ing groups. Besides, there was a lack of information for the

relationship between use cases in the diagrams produced by

the two groups. There was a lack of specification of steps in

the main flow of use cases of two groups. These risks would

be mitigated if the participants had reflected better on the

amount of information, related to DC2. Regarding the risks

related to the lack of standardization of use case specification

itself and inconsistency between the use case specifications

and the use case diagram, this would be mitigated with DC4

and DC1, respectively.

Table 5. Defects related to the risks of miscommunication in the use cases

developed by the groups

GROUPS
DESCRIPTION OF THE

RISKS
DEFECTS

Group 1

Group 2

Lack of relationship in the use

case diagram

Omission

Group 1 Different standards in the or-

ganization of the use case

specification

Ambiguity

Group 1

Group 2

Group 3

Group 4

Lack of information in busi-

ness rules

Omission

Group 2 Use case specification incon-

sistent with the use case dia-

gram

Inconsistency

Group 3

Group 4

Lack of steps in the main flow

of the use case specification

Omission

Regarding the risks related to the lack of information in:

(i) the business rules, (ii) main flow steps in the use case

specification, and (iii) relationships between use cases in the

diagram we considered them to be an ‘Omission’ defect. Dif-

ferent standards in the specification of use cases may allow

different interpretations by consumers, which we considered

an ‘Ambiguity’ defect. Finally, we considered inconsistent

information between the use case diagram and the use case

specification to be an ‘Inconsistency’ defect.

Analysis of the Participants’ Perception. Regarding the

post-study questionnaire, the participants answered the fol-

lowing question: “What is your perception of the directives

of communicability?” We defined this question in a general

way to collect different opinions of the participants on the

DCs.

To analyze the qualitative data obtained in the study ac-

cording to Strauss and Corbin (1998), researchers can use

coding procedures to achieve their research objectives. We

used open coding to understand participa nts’ perceptions.

With that, we observed the following codes:

DCs contribute to the quality of software artifacts

"The directives help to reflect on what should be developed,

avoiding inconsistencies" (P5)

"The directives help to understand the system, support to

identify possible errors" (P8)

"Facilitates the identification of problems in modeling"

(P13)

DCs promote the organization of information in artifacts

"The directives helps to organize and improve the infor-

mation required to create a system" (P3)

"DCs assist in organizing ideas together with the develop-

ment team" (P10)

"The directives help to organize thoughts when designing

the system" (P2)

DCs support the understanding of the system

"DCs assist to obtain relevant information for the project"

(P4)

"The directives provide great support for the production of

the software" (P7)

"Helps to considerably improve the general understanding

of a system" (P15)

DCs can promote effective communication via artifact

"DCs are a type of roadmap for organizing ideas in commu-

nication through a logical way" (P11)

"They help to think about how to communicate with col-

leagues" (P6)

"Help in communicating correctly in software development"

(P12)

DCs promote the reduction of different interpretations

"The directives help reduce the multiple interpretations of

the same idea, as the ideas must be conveyed so that every-

one understands" (P14)

Difficulties with the use of the DCs

"It is not easy to understand the directives; it required more

of my mental effort" (P2)

"It is not easy to apply the directives; I believe it depends on

the user's experience" (P5)

"Directives demand time for understanding" (P6)

Through the participants’ perceptions, we observed that

the DCs contribute to the improvement of the quality of the

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

artifacts. Such perceptions are represented by the codes ‘DCs

contribute to the quality of software artifacts’ and ‘DCs pro-

mote the organization of information in artifacts’. Most of

the participants’ responses showed that they perceived the

purpose of the DCs, as we noticed the codes ‘DCs can pro-

mote effective communication via artifact’ and ‘DCs pro-

mote the reduction of different interpretations’.

Some participants also reported ‘Difficulties with the use

of the DCs’, which may be related to their reflection on

whether or not they are correctly applying the main concept

of each directive for what each producer wants to communi-

cate. However, this is part of the reflection process by pro-

ducers regarding their communication through artifacts.

Analysis of acceptance. We applied the Technology Ac-

ceptance Model (TAM) to analyze the participants’ percep-

tion of the DCs in the post-study questionnaire (Venkatesh

and Bala, 2008). TAM is one of the most adopted models for

collecting information about the decision to accept or reject

technologies (Marangunić et al., 2013). This model is basi-

cally based on two constructs:

Perceived Ease of Use: degree to which a user believes

to use a specific technology with little effort.

Perceived Usefulness: the degree to which a user believes

that using a specific technology would improve their perfor-

mance at work.

The user’s behavioral intention to use a technology, the

Intention to Use, is determined by the perceived ease of use

and perceived usefulness. The statements contained in the

post-study questionnaire to assess the constructs of ease of

use, usefulness, and intention to use the DCs, adapted from

[25], are presented below:

PERCEIVED EASE OF USE

E1. My interaction with the Directives of Communicability is clear

and understandable.

E2. Interacting with the Directives of Communicability does not

require a lot of my mental effort.

E3. I find the Directives of Communicability easy to use.

E4. I find it easy to get the Directives of Communicability to do

what I want it to do.

PERCEIVED USEFULNESS

U1. Using the Directives of Communicability improves my

performance better for understanding aspects of the software.

U2. Using the Directives of Communicability in my job has

improved my productivity, since I will not have to correct

information that is not understood by colleagues.

U3. Using the Directives of Communicability enhances my

effectiveness on communication with the team based on the

artifacts.

U4. I consider the Directives of Communicability useful for

software design.

INTENTION TO USE

I1. Assuming I had enough time to design software, I intend to use

the Directives of Communicability.

I2. Considering that if I could choose any tool, I predict that I

would use the Directives of Communicability.

I3. I plan to use the Directives of Communicability in my next

project.

Regarding the adapted TAM statements, participants

provided their answers on a seven-point Likert scale (Likert,

1932). The possible answers were “Totally Agree, Strongly

Agree, Partially Agree, Neutral, Partially Disagree, Strongly

Disagree, and Totally Disagree”. The participants answered

their degree of agreement on the usefulness, ease of use, and

intention to use the DCs in the production of artifacts. Figure

6 summarizes the participants’ answers.

Figure 6. Degree of participants’ acceptance regarding the use of the DCs

in the production of artifacts

Regarding the disagreements related to E2, E3 and E4 for

ease of use, as shown in Figure 6, we noticed five partici-

pants answered that, including P2, P5 and P6 that cited it’s

not easy to employ DCs, represented by the ‘Difficulties

with the use of the DCs’ code in Subsection 5.2. The other

participants did not provide answers to explain why they dis-

agreed with E2. In summary, such answers may indicate that

it is important to provide material that helps in the producer's

reflection based on the DCs.

About the disagreement and neutral answers with the

statements that measure usefulness, we noticed that P3, P6,

and P11 answered this. However, all participants who con-

sume information from artifacts, i.e. developers, agree that

our proposal is useful to communication via artifact. Overall,

most of the participants’ answers showed agreement regard-

ing ease of use, usefulness, and intention to use the DCs.

With this research (Lopes et al., 2020), we observed that

the DCs promoted the participants’ reflection on their com-

munication to the others involved in the development of a

software. The DCs also made it possible to reduce the intro-

duction of defects, because we perceived consistent mapping

between the risks of miscommunication and software de-

fects. Additionally, most of the participants’ answers to the

DCs were positive about their use. With this, it is possible to

infer that the software industry considered the directives use-

ful.

Based on the results obtained in this study, we decided to

carry out a feasibility study in a software development team.

This study may increase the indications on the transfer of the

DCs to the industry.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

4.1.4 Threats to Validity of Study 1

In all experimental studies, there are threats that can affect

the validity of the results. The threats related to this study are

discussed below with the classification of threats to validity

presented by Wohlin et al. (2012):

Internal validity. Training effect - it would be interesting

if there was no need for training. However, the short training

time allowed the DCs to be used by practitioners during the

production of UML use cases. In addition, training on use

case modeling also enabled participants to execute the study

activities, as most of them did not work creating artifacts that

represent software decisions in projects. Time used for the

study - despite the time considered long for the use case

modeling, all participants completed the study activities be-

fore the expected time.

External validity. Validity of the artifacts – we carried

out only modeling of UML use cases in this study. It is not

possible to claim that UML use cases represent all the arti-

facts that support communication. Besides, the use cases

were modeled for four software projects. It is not possible to

claim that this artifact represents all types of software.

Construct validity. Indicators for miscommunication -

The measures adopted to analyze miscommunication were

based on the Semiotic Engineering theory (de Souza, 2005;

de Souza et al., 2016), which has different methods to assess

communication during the development process.

Conclusion validity. There is a limitation in the repre-

sentativeness of the results, a known problem in experi-

mental studies of Software Engineering (Fernandez et al.,

2012). The results obtained in this study may not be repro-

duced in other software artifacts that support the understand-

ing of members of a team. Analysis of Artifacts – about the

risks of miscommunication in use cases, there is a threat re-

garding the researcher who carried out such analysis. To mit-

igate this threat, we added another researcher to discuss this

analysis.

4.2 Study 2: Feasibility Study

In study 1, although we perceived positive answers about

the DCs, we did not carry out the study in the context of a

software project. We carried out another study, our second

study, in a software development team. We investigated the

use of the DCs in the artifacts used by the team to identify

risks that caused miscommunication in the development of

the Bulletin System (SISBOL).

SISBOL is a Web System, with client-server architec-

ture, following the standard Representational State Transfer

(REST) [1], with the purpose of automating the process of

generating newsletters (official) and managing the members'

personal historical (changes of the military) of the Brazilian

Army (EB). A bulletin represents an instrument by which the

commander, chief or director of the EB disseminates the or-

ders of the higher authorities and the facts that must be

known by the Military Organizations in which the members

participate. SISBOL is composed of entities associated with

military, such as qualification, graduation, subunit/divi-

sion/section, military organization, function and alteration,

associated with the bulletin structure (type of bulletin, sec-

tion, part, general subject, specific subject, note) and associ-

ated with system users. Notes are documents proposed by a

competent authority to be approved by the commander, chief

or director, for publication in its bulletin. The system has a

certain degree of configurability, allowing the approval pro-

cessing workflows for notes and bulletins to be customized

for each military organization.

4.2.1 Study 2: Planning

We initially designed the study to analyze how the team

conducted its activities and how software artifacts support

communication. Then, we planned the analysis of the arti-

facts with the support of the DCs to identify opportunities

for improvement to a better communication. Finally, we

planned a collection of the team members’ perception of the

support of the artifacts.

The team selected for the study was composed of 14

practitioners who developed the SISBOL. Table 6 shows the

characterization of the team.

Table 6. Characterization of the team

TEAM EXPERIENCE

Systems Analyst (Product Owner- PO) 20 years

Designer 9 years

Developer 1 7 years

Developer 2 20 years

Developer 3 5 years

Developer 4 16 years

Developer 5 4 years

Developer 6 4 years

Developer 7 19 years

Developer 8 12 years

Developer 9 12 years

Developer 10 3 years

Developer 11 10 years

Developer 12 3 years

The scope of the new SISBOL involves 30 functionali-

ties, which were divided into Legacy Features (23) and New

Features (07). The team used the agile development method-

ology. The development team used the agile Scrum method-

ology. The artifacts elaboration process was collaborative

and involved different project stakeholders.

The team used UML use cases and prototypes as artifacts

that contain the solution designed for software development.

Regarding the team selected, the practitioners did not create

a domain model, just the use cases and mockups. About the

experience of the producers, the system analyst had twenty

years of experience with UML and the designer had nine

years of experience with prototypes in projects. Regarding

the system developed by the team, it was already in its final

phase, as the team was only making corrections to some fea-

tures.

4.2.2 Study 2: Execution

We carried out the following steps in this study:

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

(i) a meeting between the PO and the main researcher

in order to obtain an overview of the activities and

the artifacts used as a mean of communication;

(ii) meeting among the main researcher with the teams’

producers to analyze the artifacts’ content based on

the DCs;

(iii) after that, we prepared an electronic questionnaire

for producers to answer their perceptions of the ar-

tifacts as a support for communication;

(iv) a meeting of the main researcher with an artifacts

consumer to understand how they used the artifacts;

(v) we also sent an electronic questionnaire for consum-

ers to answer their perceptions of the artifacts with

questions based on the DCs. Due to the unavailabil-

ity of some participants to participate in individual

meetings, this questionnaire facilitated the collec-

tion of team members’ perceptions.

In relation to step 2, the main researcher should be pre-

sent to support the producers and to collect their perception

about the artifacts based on the DCs. The material used in

these steps is available in a technical report (Lopes et al.,

2021). Regarding step 3, the participants answered the fol-

lowing questions on the electronic questionnaire:

1. What is your perception about this artifact as a means

of communication?

2. Tell us about your perception regarding the communi-

cation via artifact.

About the step 5, we used the following questions to col-

lect the consumer’s perceptions about the software artifacts:

1. During the software development, did you notice any

inconsistent information regards the team knowledge about

the software? – based on DC1;

2. About the quantity of information, is there the lack of

information or excessive information?- based on DC2;

3. Is all information in the artifacts relevant to software

development? Please, tell us your perception – based on

DC3;

4. It was difficult to understand any information in the

artifacts? – based on DC4;

With the execution of these steps, the DCs can help prac-

titioners to understand aspects that need improvements in the

informational content of the a rtifacts. These improvements

can lead a better communication via artifacts.

4.2.3 Study 2: Results

Firstly, the producers analyzed the artifacts with the support

of the DCs and we analyzed the types of defects related to

risks identified. After this, analyzed the participants’ an-

swers.

Analysis of Software Defects Related to Risks of Commu-

nication Failure. The main risks of miscommunication are

in the use cases. Such risks are related to the lack of updating

of some information, identified with the support of DC1, and

the excess of information, identified with DC2. Figure 7 pre-

sents a characterization of the identified risks.

Figure 7. Analysis of artifacts based on DCs

Regarding defects related to the risks of miscommunica-

tion, we have identified:

• lack of updating of some information in the use

cases – Inconsistence defect: the lack of updating led to

inconsistent information in the artifact; and Extraneous

Information defect: information not needed in the arti-

fact.

• excess of information - Ambiguity defect: the ex-

cess of information promotes different interpretations.

Analysis of Communication via Team Artifact. We used

open coding (Strauss and Corbin, 1998) to understand the

team’s communication via artifact and how the DCs can sup-

port the improvement of this type of communication. We ap-

plied the coding based on the answer of producers and con-

sumers about the artifacts’ content.

When analyzing the team’s communication through the

artifacts, we identified characteristics in the informational

content that affected the communication. We noted that con-

sumers had adopted mockups more to support their activities

compared to use cases. The team PO, one of the producers

of the artifacts, and the consumers mentioned:

 “Perhaps I put more information in the mockups than

necessary and it led the team to not consult the use cases

(Systems Analyst)”.

“There was an excess of information in the documenta-

tion. So many details generated several differences in the

documentation for implementation and other minimal de-

tails that did not affect the system's functionality itself...

With the use of the mockups, it was easier to understand the

user's needs, and so the doubts that I had about the func-

tioning of the system were resolved (Developer 11)”.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

“With the mockups, half of the system's functionalities

were well defined, with only the business rules missing,

which could not be modeled visually (Developer 12)”.

The DCs indicated that consumers adopted more

mockups as support in their activities than the use cases due

to the excess of information in the use cases (with the support

from DC2), also cited by Developer 11. Additionally, there

was an outdated use case (with the support from DC1), gen-

erating a negative impact on communication via artifact, as

observed by one of the consumers:

“Throughout the development, I believe that the artifacts

have become outdated in relation to the needs of users and

the implementation of the system (Developer 4)”.

Regarding the communication via this team's artifact,

one of the producers reflected on their communication based

on the DCs and he believes there was a lack of another arti-

fact that supports the understanding of the user’s interaction

with the system (DC 2):

“The artifacts contain the necessary information that the

team needs to understand the problem. However, there are

some limitations and information that cannot be transmitted

in the artifacts. For example, the 'disposable mockup' pre-

sents only an idea of what the interface with the possible

fields of the system will look like, but it does not present how

it will be done, or even the user's interaction with the system

(Designer)”.

With the results of this study, we noticed miscommuni-

cation via artifact identified with the support of the DCs. The

DCs were able to support the producers to make improve-

ments in the artifacts, enabling better communication via ar-

tifact.

4.2.4 Threats to Validity of Study 2

The threats related to this study are discussed below with the

classification of threats to validity presented by Wohlin et al.

(2012):

Internal validity. The main threat to internal validity was

the sharing of developers' perceptions of the artifacts. To

mitigate this threat, we sent an electronic questionnaire to

each participant to answer their perception individually.

However, this does not eliminate the possibility of

communication between the participants.

External validity. Regarding the artifacts evaluated in

this study, it is not possible to state that they represent all the

artifacts that support communication. Additionally, these ar-

tifacts were modeled for just one software project.

Construct validity. We identified the threat of the partic-

ipant providing answers that do not reflect reality but rather

personal expectations regarding the artifacts. To mitigate

this threat, we informed the participants that the experiment

did not provide any kind of personal or project assessment

but rather as an assessment of the use of artifacts in support

of communication.

Conclusion validity. There is a limitation in the repre-

sentativeness of the results, this being a known problem in

experimental studies of Software Engineering (Fernandez et

al., 2012). The results obtained in this study may not be re-

produced in other software artifacts that support the under-

standing of those involved in the production of the systems.

4.3 Lessons Learned

These studies helped us to understand different aspects of the

DCs from the practitioners’ perception. About study 1, we

described our lessons learned below.

• Disagreements about the ease of use of the DCs show

the need to create material that supports application of

each directive – although most participants agree that

DCs are easy to use, we noticed some disagreements

about this. The DCs are general instructions that sup-

ports the ‘reflection’ of producers about their commu-

nication via artifact and there are no specific steps for

that. However, to support producers employ the direc-

tives, a material that indicates some reflection points

would be interesting. Such material can be created

based on common scenarios noticed in both studies pre-

sented in our paper.

• Perceived usefulness by practitioners who act as con-

sumers indicate that our proposal can support the com-

munication of the artifact –the usefulness perceived by

practitioners who work as developers indicated that our

proposal supports mutual understanding between pro-

ducers and consumers, since such participants may had

experienced such a scenario.

About Study 2, we noticed that DCs supported practition-

ers in the evaluation of artifacts already used by a software

team. We had the following lessons learned from our pro-

posal in this study:

• Consumers’ perceptions during evaluation of artifacts

improve this type of communication – Regarding the

employ of DCs in the evaluation of artifacts already

used by software teams, both producers and consumers

can do that, providing a contrast about communication

via artifact in a team. Such practice supports continuous

improvements in this type of communication.

• Material that supports producers to adopt the DCs in

software projects – we designed the initial proposal of

the DCs to apply them in the production of artifacts, but

we noticed the potential of the directives evaluate arti-

facts already used by teams. Aims to help software en-

gineers to adopt the DCs in their projects, it would be

interesting the development of procedures that indicate

the main steps to apply the DCs.

The next section presents the proposal of the materials

prepared to support software engineers adopt the DCs in

their projects. We created such proposals based in our les-

sons learning.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

5 Proposal to Support the Application

of the DCs in Software Projects

Regarding the DCs, each directive aims to provide a general

indication of how artifacts can be expressed by their

producers about their communication, so the risks of

miscommunication are mitigated. Regarding the adoption of

the DCs to support improving the communicability of a

software artifact, we observed two contexts in which

artifacts are used: (1) when they are already being used by a

team during the execution of a project, and (2) before being

used by the team when the project is in its initial stages.

For the context above, we created procedures to facilitate

practitioners who wish to adopt the DCs in their projects.

Figure 8 presents a procedure to be followed by practitioners

who wish to adopt the DCs to identify opportunities for

improvements in the artifacts. This procedure is suggested

for teams that have started creating artifacts without the

support of our proposal, but they would like to adopt it in the

artifacts, as noted in the second study presented in this paper,

such as:

1. Communication intent - practitioners should reflect

on their communication intent based on the questions: “Can

the consumer understand the artifacts’ content? Can the

consumer achieve its goals?”, like developers and testers,

and “What content should be addressed about the domain of

the problem/solution of the system in the artifact?”, as the

tasks that a user can perform in the system.

2. Use of the DCs in the artifacts’ content - use of the

DCs to identify risks that caused miscommunication. To

facilitate the use of the DCs, we prepared a checklist,

presented later in the text. At this stage, producers and

consumers can carry out the evaluation for a better

understanding of the necessary improvements.

3. Availability of artifacts - with the improvements

made, producers make the artifacts available to consumers,

as this also affects communication via artifacts, such as e-

mail or repository used by the team.

Figure 8. Use of the DCs during execution of projects

For the second context, Figure 9 shows the procedure that

practitioners can adopt when using the DCs before the

production of the artifacts. Each step to be followed in the

procedure is described below. With the DCs applied to the

artifacts before their consumption, the risks that caused

miscommunication can be reduced.

Figure 9. Adoption of the DCs in project planning

1. Modeling notation - it is important for producers to

reflect on the notation that will be adopted when modeling

the artifacts to represent aspects of the software.

Additionally, it is important for producers to reflect on

whether such notation is known to consumers. This step was

not considered in the first context because the team already

has the artifacts established to represent the solutions

modeled for the software.

2. Communication intent - similarly to the first context,

practitioners must reflect on their intention to communicate

based on the questions proposed to use with the DCs.

3. Use of the DCs in the artifacts’ content - Use of the

DCs to reflect on producers' communication intent. The

checklist also supports this reflection.

4. Availability of artifacts - producers should reflect on

the best means of communication that artifacts should be

made available to consumers, as it can affect communication

via artifacts, such as e-mail or repository.

In addition to the procedures, we also developed

checklists that can facilitate the application of the DCs in the

artifacts investigated in our research, such as UML use case

and mockups. Table 7 presents the checklist for mockups

and Table 8 presents the checklist for UML use case.

Table 7. Checklist based on DCs for Mockups

DCs ITEM DESCRIPTION

DC1

Is there information in the mockups that are outside the problem

domain? If so, remove that information

Is there outdated information in the mockups? If so, update them

DC2

Are all requirements represented in the mockups? If not, design

mockups with such information

Are all alternative paths represented in the mockups? If not, enter

this information in the mockups

In general, is the amount of information in the mockups sufficient

for the team to understand the system? If not, enter the required

amount of information

Is there an excess of information? If so, if this excess is unneces-

sary for understanding the system, remove it from the mockups

DC3
Is the order of the screens organized in such a way that the team

better understands them? If not, arrange this sequence

DC4

Are the screen names clear in relation to their purpose? If not, clar-

ify the names of the screens

In mockups, are there any terms that are unknown to consumers? If

so, please clarify such terms

In mockups, is there any ambiguous information? If so, please

clarify this information

Is information used to obtain implicit interpretation by the team? If

so, reflect on whether such information should be expressed ex-

plicitly to avoid multiple interpretations

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

Table 8. Checklist based on DCs for Use Cases

DCs ITEM DESCRIPTION

DC1

Is there information in the use cases that are outside the problem

domain? If so, remove that information

Is there outdated information in the use cases? If so, update this

information

DC2

Are all relationships between use cases represented in the dia-

gram? If not, enter such relationships

Are all use cases represented in the diagram? If not, insert such

use cases

In use cases specification, are all actors involved represented? If

not, insert such actors

When specifying a use case, are all flows represented? If not,

enter the necessary flows

When specifying a use case, are all business rules represented?

If not, insert the necessary rules

Is there an excess of information? If so, if this excess is unnec-

essary for understanding the system, remove it from the

mockups

DC3

Are the use cases organized in the diagram logically? If not, or-

ganize the use cases

Are the actors organized concerning the use cases in the dia-

gram? If not, organize the actors in the diagram

Is the sequence of information in each use case specification

logically organized? If not, organize this information

DC4

Are the names of the use cases clear concerning their purpose?

If not, clarify the names of the use cases

Are the names of the actors clear concerning their purpose? If

not, clarify the actors

In the use case specification, are there any terms that are un-

known to consumers? If so, please clarify such terms

When specifying a use case, is there any ambiguous infor-

mation? If so, please clarify this information

These checklists contain questions based on common

artifact scenarios that have risks of miscommunication.

However, we emphasize that DCs help practitioners to

reflect on the artifacts and checklists support the

identification of specific risks. In this way, checklists should

be used together with the DCs.

6 Discussion

We carried out studies with the objective of transferring

the DCs to the software industry. In the first study, con-

ducted to answer RQ1 (Do practitioners perceive the DCs as

support in improving the quality of artifacts?), we noticed

that the directives supported the participants' reflection on

the communication via UML use cases. This allowed reduc-

ing possible inconsistencies in the development of the ex-

plored artifact. It was possible to obtain evidence that the

DCs can contribute to improving the artifacts’ quality, since

the DCs supported reducing incorrect information. This can

reduce costs during software development, as defects dis-

covered during the software development process increase

costs due to the correction of such defects.

The second study conducted aims to understanding the

feasibility of the DCs to support the improvements in the

communicability of software artifacts used by the team to

answer RQ2 (Is the DC application by producers feasible in

development teams?). The use of the DCs showed the main

aspects that need improvements, since they negatively af-

fected the communication between producers and consumers

of these artifacts. The results of this study demonstrated the

benefit of using the DCs, as the problems identified in the

informational content of the artifacts can be fixed.

Both studies showed evidence to transfer the DCs to the

industry. In addition, such studies help us to obtain insights

for the development of proposals that facilitate the adoption

of the DCs in software projects.

7 Final Considerations

This paper presented research carried out with the aim of

transferring the DCs to the software industry. We explored

the DCs concerning the practitioners’ perception about the

DCs as supports in the reflexion of them as producers, in a

first study, and a specific software development team about

the risks in software artifacts that caused miscommunication

with supports of the DCs, in the second study.

From the first study, the results showed that the DCs

supported participants to reflect on the system, reducing

possible inconsistencies in the development of the explored

artifact, a UML use case. The DCs also promoted the

participants’ reflection on their communication with the

others involved in the software development. The reduction

of miscommunication also reduces the introduction of

defects, as a consistent mapping between risks of

miscommunication and software defects has been perceived.

In the second study, from the risks identified in the

artifacts used by the software development team, producers

made improvements in the artifacts. With that, software

development teams will be able to adopt the DCs in their

projects to improve communication via artifact.

Additionally, most of the participants’ perception about the

DCs were positive.

From the studies results, we noticed the need to define

some artifacts so that practitioners can use our proposal in

their projects. We presented in this paper two procedures that

facilitate the use of the DCs in software projects. Besides,

for the better use of each directive, we have proposed

checklists. We believe that practitioners interested in

adopting our proposal can use them. Regarding the use of the

DCs in these studies, it is possible to infer that they were

considered feasible for the software industry. The new

studies in the context of software projects can provide more

evidence on the application of the DCs to support producers

about their communication, aiming to reduce the risks of

miscommunication.

As future work, we intend to carry out an observational

study in different software development teams using our

proposal. In this future study, the teams will use our artifacts,

process and checklists, proposed in this paper, including the

evaluation of artifacts developed in the early stages of the

software development process not explored in our studies. In

addition, we intend to investigate the software engineers

perceptions about to include the DCs as part of the

company’s culture related to creation of artifacts used as

means of communication.

Towards to Transfer the Directives of Communicability to Software Projects: Qualitative Studies Lopes et al. 2021

Acknowledgements

We are grateful for the financial support from CAPES (fi-

nancing code 001), CNPq (311494/2017-0 e 204081/2018-

1/PDE) and FAPEAM (062.00150/2020).

References

Brambilla, M., & Fraternali, P. (2014). Interaction flow

modeling language: Model-driven UI engineering of web

and mobile apps with IFML. Morgan Kaufmann.

Bordin, S., & De Angeli, A. (2016). Focal Points for a

more User-Centered Agile Development. International Con-

ference on Agile Software Development , 3-15.

Corbin, J., & Strauss, A. (2014). Basics of qualitative re-

search: Techniques and procedures for developing

grounded theory. Sage publications.

De Souza, C. S. (2005). The semiotic engineering of hu-

man-computer interaction. MIT press.

De Souza, C. S., Cerqueira, R. D. G., Afonso, L. M.,

Brandão, R. D. M., & Ferreira, J. S. J. (2016). Software De-

velopers as Users. Cham: Springer International Publishing.

Freire, E. S. S., Oliveira, G. C., & de Sousa Gomes, M.

E. (2018). Analysis of open-source CASE tools for support-

ing software modeling process with UML. In Proceedings of

the 17th Brazilian Symposium on Software Quality, 51-60.

Granda, M. F., Condori-Fernández, N., Vos, T. E., &

Pastor, O. (2015). What do we know about the defect types

detected in conceptual models? In 2015 IEEE 9th Interna-

tional Conference on Research Challenges in Information

Science (RCIS), 88-99.

Grice, Herbert P. Logic and conversation. Speech acts.

Brill, 1975. 41-58.

Jakobson, R. (1960). Linguistics and poetics. In Style in

language. MA: MIT Press, 350-377.

Käfer, V. (2017). Summarizing software engineering

communication artifacts from different sources. In Proceed-

ings of the 2017 11th Joint Meeting on Foundations of Soft-

ware Engineering, 1038-1041.

Likert, R. (1932). A Technique for the Measurement of

Attitudes. Archives of Psychology, 144 (55), 7-10.

Lopes, A., Oliveira, E., Conte, T., & de Souza, C. S.

(2019a). Directives of communicability: towards better com-

munication through software models. In 2019 IEEE/ACM

12th International Workshop on Cooperative and Human

Aspects of Software Engineering (CHASE), 45-48.

Lopes, A., Conte, T., & de Souza, C. S. (2019b). Reduc-

ing the risks of communication failures through software

models. In Proceedings of the 18th Brazilian Symposium on

Human Factors in Computing Systems, 1-10.

Lopes, A., Conte, T., & de Souza, C. S. (2020). Explor-

ing the Directives of Communicability for Improving the

Quality of Software Artifacts. In Proceedings of the XIX

Brazilian Symposium on Software Quality (SBQS’20), 10

pages.

Lopes, A., Conte, T., & de Souza, C. S. (2021). Direc-

tives of Communicability: Towards Software Development

Teams. USES Research Group Technical Report, TR-USES-

2021-01. https://doi.org/10.6084/m9.figshare.15057984.v2

Marangunić, N., & Granić, A. (2015). Technology ac-

ceptance model: a literature review from 1986 to 2013. Uni-

versal access in the information society, 14(1), 81-95.

OMG. (2011). Business process model and notation

(BPMN) version 2.0. Object Management Group, 1(4).

OMG. (2015). Unified Modeling Language TM (UML)

Version 2.5.

Petre, M. (2013). UML in practice. In Proceedings of the

2013 International Conference on Software Engineering

(ICSE 2013), 722-731.

Khare, R., & Taylor, R. N. (2004). Extending the repre-

sentational state transfer (rest) architectural style for decen-

tralized systems. In Proceedings of the 26th International

Conference on Software Engineering, 428-437.

Sebe, N. (2010). Human-centered computing. In Hand-

book of ambient intelligence and smart environments,

Springer, Boston, MA, 349-370.

Schoonewille, H. H., Heijstek, W., Chaudron, M. R., &

Kühne, T. (2011). A cognitive perspective on developer

comprehension of software design documentation. In Pro-

ceedings of the 29th ACM international conference on De-

sign of communication, 211-218.

Tilley, S. (2009). Documenting software systems with

views VI: lessons learned from 15 years of research & prac-

tice. In Proceedings of the 27th ACM international confer-

ence on Design of communication , 239-244.

Venkatesh, V., & Bala, H. (2008). Technology ac-

ceptance model 3 and a research agenda on interven-

tions. Decision sciences, 39(2), 273-315.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-

nell, B., & Wesslén, A. (2012). Experimentation in software

engineering. Springer Science & Business Media.

