

Journal of Software Engineering Research and Development, 2022, 10:5, doi: 10.5753/jserd.2021.1992

 This work is licensed under a Creative Commons Attribution 4.0 International License.

First step climbing the Stairway to Heaven Model -
Results from a Case Study in Industry
Paulo Sérgio dos Santos Júnior [Federal Institute of Education, Science and Technology of Espírito
Santo | paulo.junior@ifes.edu.br]

Monalessa Perini Barcellos [Federal University of Espírito Santo | monalessa@inf.ufes.br]

Rodrigo Fernandes Calhau [Federal Institute of Education, Science and Technology of Espírito
Santo | calhau@ifes.edu.br]

Abstract
Context: Nowadays, software development organizations have adopted agile practices and data-driven soft-

ware development aiming at a competitive advantage. Moving from traditional to agile and data-driven software
development requires changes in the organization´s culture and structure, which may not be easy. The Stairway to
Heaven Model (StH) describes this evolution path in five stages. Objective: We aimed to investigate how Systems
Theory tools, GUT Matrix, and reference ontologies can help organizations in the first transition of StH, i.e., mov-
ing from traditional to agile development. Method: We performed a participative case study in a Brazilian organi-
zation that develops software in partnership with a European organization. We applied Systems Theory tools (sys-
temic maps and archetypes) to understand the organization and identify undesirable behaviors and their causes.
Thus, we used GUT Matrices to decide which ones should be addressed first and we defined strategies to change
the undesirable behaviors by implementing agile practices. We also used the conceptualization provided by refer-
ence ontologies to share a common understanding of agile and help implement the strategies. Results: By under-
standing the organization, a decision was made to implement a combination of agile and traditional practices. The
implemented strategies improved software quality and project time, and cost. Problems due to misunderstanding
agile concepts were solved by using reference ontologies, process models, and other diagrams built based on the
ontologies conceptualization, allowing the organization to experience agile culture and foresee changes in its busi-
ness model. Conclusion: Systems Theory tools and GUT Matrix aid organizations to move from traditional to agile
development by supporting better understanding the organization, finding leverage points of change, and enabling
to define strategies aligned to the organization characteristics and priorities. Reference ontologies can be useful to
establish a common understanding about agile, enabling teams to be aware of and, thus, more committed to agile
practices and concepts. The use of process models and other diagrams can favor learning the conceptualization
provided by the ontologies.

Keywords: Stairway to Heaven, Agile, Systems Theory, GUT Matrix, Ontology

1 Introduction

Typically, fast-changing and unpredictable market needs,
complex and changing customer requirements, and pressures
of shorter time-to-market are challenges faced by organiza-
tions. To address these challenges, many organizations have
started adopting agile development methods with the inten-
tion to enhance the organization´s ability to respond to
change. In emphasizing flexibility, efficiency and speed, ag-
ile practices have led to a paradigm shift in how software is
developed (Williams and Cockburn 2003) (Olsson et al.
2012). Different flavors of the agile methods have become
the de facto way of working in the software industry
(Rodriguez et al. 2012). In allowing for more flexible ways
of working with an emphasis on customer collaboration and
speed of development, agile methods help organizations ad-
dress many of the problems associated with traditional devel-

opment (Dybå and Dingsøyr 2008).

The adoption of agile practices has enabled organizations
to shorten development cycles and increase customer collab-
oration. However, this has not been enough. There has
been a need to learn from customers also after deployment
of the software product. This requires practices that extend
agile practices, such as continuous deployment (i.e., the abil-
ity to deliver software more frequently to customers and
benefit from frequent customer feedback), which enables
shorter feedback loops, more frequent customer feedback,

and the ability to more accurately validate whether the de-
veloped functionalities correspond to customer needs and
behaviors (Olsson et al. 2012). Therefore, organizations
should evolve from traditional development towards data-
driven and continuous software development.

Continuous Software Engineering (CSE) aims to estab-
lish a continuous flow between software-related activities,
taking into consideration the entire software life cycle. It
seeks to transform discrete development practices into more
iterative, flexible, and continuous alternatives, keeping the
goal of building and delivering quality products according to
established time and costs (Fitzgerald and Stol 2017). There-
fore, a continuous software engineering approach is based on
agile and continuous practices driven by development and
customer data.

Considering that organizations struggle with the changes
to be made along the path and with the order in which to
implement them, Olsson et al. (2012) proposed the Stairway
to Heaven Model (StH), which describes the typical success-
ful evolution of an organization from traditional to continu-
ous and customer data-driven development. The model com-
prises five stages, where the first transition consists in mov-
ing from traditional to agile development. This transition re-
quires a careful introduction of agile practices, a shift to
small development teams, and a focus on features rather than

components.

In this paper, we report the experience of a Brazilian or-
ganization (here called Organization A for anonymity rea-

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

sons) which decided to evolve from traditional to agile, con-
tinuous, and data-driven software development. For that, we
have followed the StH model (Olsson et al. 2012). We se-
lected this model because it represents in a simple way the
main stages an organization should follow to move from a
traditional to a continuous software engineering approach
based on data-driven and agile development. Moreover, StH
does not prescribe the practices that should be performed at
each stage, thus, there is flexibility to define and implement
them according to the organization characteristics and pri-
orities. In this paper, our focus is on the first transition of
the StH model. Although there is an increasing number of
organizations moving from traditional to agile, implement-
ing the changes needed to the first transition prescribed in
StH is not trivial because it involves changes not only in the
development process, but also in the organization culture.
Moreover, there is no “one and right” way to implement ag-
ile practices in an organization because each agile practice
needs to be tailored to fit the business goals, culture, envi-
ronment, and other aspects of the organization. Therefore,
organizations should find their own way to go through the
path from traditional to agile (Karvonen et al. 2015).

Organization A has a particular characteristic that needs
to be considered when defining strategies to implement agile
practices: the software projects of Organization
A are built in partnership with a European organization (here
called Organization B). In this partnership, Organization B
is responsible for the software requirements specification
process, while Organization A is responsible for design, cod-
ing, testing, and deployment processes. Furthermore, Organ-
ization B is responsible for the communication between Or-
ganization A and the project client. Both organizations A and
B work in traditional but many times ad hoc manners. This
way of working has brought problems, such as budget over-
loading, teams divided into disciplines (testers, architects,
programmers, etc.) causing many intermediary delivery
points in the organization and increasing delays between
them, and large periods required to deploy new versions of
the software products (Williams and Cockburn 2003)

(Olsson et al. 2012)(Karvonen et al. 2015).

Organization A was in the first stage of StH and, in order
to evolve, the first step was to go towards becoming an agile
organization. Two main challenges were faced in this con-
text: (i) how to move from a traditional development culture
to an agile culture and (ii) how to implement agile practices
in an organization that shares requirement-related activities
with another organization and does not have direct access to
the project client.

To overcome these challenges, it would be necessary to
get to know the organization so that it would be possible
to define suitable strategies to implement agile practices.
Thus, we employed an approach that combined Systems
Theory tools (mainly systemic maps and archetypes)
(Meadows 2008) (Sterman 2010), GUT Matrix (Kepner and
Tregoe 1981) and reference ontologies (Guizzardi 2007) to
identify the path to implement agile practices and get into
agile culture based on the organizational characteristics and
context.

Systems Theory tools were chosen because they allow
understanding how different variables relate to each other in
an organizational environment. Thus, by using such tools, it
is possible to understand how processes, practices, culture
and other factors affect the software development process

and produced results. This helps identify aspects that should
be addressed in improvement actions. The first and third au-
thors have knowledge of and experience with System Theory
and saw an opportunity to apply it in Organization A. GUT
Matrix was selected because it helps prioritize actions and
was already known by Organization A. Finally, reference
ontologies were used because they have been recognized as
an important instrument to deal with knowledge-related
problems, supporting communication and learning
(Guizzardi 2007). The authors have successfully experi-
enced the use of ontologies as knowledge artifacts in differ-
ent contexts (e.g., (Ruy et al. 2017), (Santos et al. 2019),
(Fonseca et al. 2016)). They developed the Scrum Reference
Ontology (SRO) (Santos Jr et al. 2021a), which provides
knowledge that aids in the understanding of Scrum in a
broader Software Engineering context and is suitable for
meeting a learning need identified in the study addressed in
this paper.

As main results perceived from the experience reported
here, we highlight: (i) it was possible to understand the or-
ganization behavior, identify behavior patterns and leverage
points of change; (ii) strategies were defined to implement
agile practices by changing undesirable behaviors and focus-
ing on leverage points, taking the organization characteris-
tics into account; (iii) by implementing the strategies, Organ-
ization A improved software quality, project time and cost
and started to develop agile culture; (iv) by using the con-
ceptualization provided by reference ontologies, the team
learned agile concepts and practices, which is useful to im-
plement strategies aiming at the agile organization; and (v) a
process based on Systems Theory to aid organization define
strategies to implement agile practices arose from the study.

This work brings contributions to researchers and practi-
tioners. The study can serve as an example for other organi-
zations similar to Organization A and the process resulting
from the study can be used by other organizations. Moreo-
ver, the way ontologies were used to provide knowledge for
the team can inspire others to make the most of this powerful
instrument to knowledge structuring, representation and
sharing. Furthermore, researchers can reflect and provide ad-
vances on the use of Systems Theory to support the defini-
tion of strategies in the agile software development context.

This paper extends (Santos Jr et al. 2020) mainly by ex-
ploring how reference ontologies were used to help the team
learn about Scrum concepts and practices in the case re-
ported here. We also illustrate the roles of Systems Theory
tools, GUT Matrix, and reference ontologies in the study,
present additional information about organizations A and B
and a new systemic model produced during the study. The
paper is organized as follows: Section 2 presents the theoret-
ical background; Section 3 discusses related work; Section 4
presents the study planning, execution, and results; Section
5 discusses threats to validity and Section 6 presents our final

considerations and future works.

2 Background

2.1 Stairway to Heaven

Traditional software development is organized sequentially,
handing over intermediate artifacts (e.g., requirements, de-
signs, code) between different functional groups in the or-
ganization. This causes many handover points that lead to

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

problems such as time delays between handovers of different
groups and amounts of resources are applied to creating these
intermediate artifacts that, to a large extent, are replacements
of human-to-human communication (Bosch 2014). In agile
software development, the notion of cross-functional, multi-
disciplinary teams plays a central role. These teams have the
different roles necessary to take a customer´s need all the
way to a delivered solution. Moreover, the notion of small,
empowered teams, the backlog, and daily stand-up meetings
and sprints guide software development through shorter cy-
cles and help bring the software development closer to the
client (Bosch 2014).

Moving from traditional to agile development is the first
transition prescribed in Stairway to Heaven Model (StH)
(Olsson et al. 2012). StH describes the evolution path organ-
izations follow to successfully move from traditional to data-
driven software development. It comprises five stages: tradi-
tional development, agile organization, continuous integra-
tion, continuous deployment, and R&D as an innovation sys-
tem. In a nutshell, organizations evolving from traditional
development start by experimenting with one or a few agile
teams. Once these teams are successful, agile practices are
adopted by the organization. As the organization starts show-
ing the benefits of working agile, system integration and ver-
ification become involved, and the organization adopts con-
tinuous integration. Once it runs internally, lead customers
often express an interest to receive software functionality
earlier than through the normal release cycle. They want
continuous deployment of software. The final stage is where
the organization collects data from its customers and uses a
customer base to run frequent feature experiments to support
customer data-driven software development (Olsson et al.

2012).

Many organizations have moved from traditional to ag-
ile. There are many ways of doing that and each organization
should consider its business goals, culture, environment and
other aspects to find the best way to go through the path. In
the experience reported in this paper we have used Systems
Theory tools, GUT Matrix and reference ontologies, which

are briefly introduced in the following.

2.2 System Theory

It has been used in industry and academy to support
(re)design of organizations (Sterman 1994) (Meadows 2008)
(Sterman 2010). It sees an organization as a system, consist-
ing of elements (e.g., teams, artifacts, policies) and intercon-
nections (e.g., the relation between the development team,
the software artifacts it produces and the policies that influ-
ence their production) coherently organized in a structure
that produces a characteristic set of behaviors, often classi-
fied as its function or purpose (e.g., the development team
produces a software product aiming to accomplish its func-
tion in the organization)(Meadows 2008).

In the Systems Theory literature, there are several tools
that support understanding the different elements and behav-
iors of a system, such as systemic maps and archetypes
(Meadows 2008)(Sterman 2010). A systemic map (also
known as causal loop diagram) allows representing the dy-
namics of a system by means of the system borders, relevant
variables, their causal relationships, and feedback loops. A
positive causal relationship means that two variables change

1 SEON specification is available at http://nemo.inf.ufes.br/en/projects/seon/

in the same direction (e.g., increasing the number of bad de-
sign decisions causes increasing in software defects), while
a negative causal relationship means that two variables
change in opposite directions (e.g., increase test efficacy
causes decreasing in software defects). Feedback loops are
mechanisms that change variables of the system. There are
two main types: balancing and reinforcing feedback loops.
The former is an equilibrant structure in the system and is a
source of stability and resistance to change. The latter com-

pounds change in one direction with even more change.

One beneficial effect of using systemic maps is that they
help identify archetypes. An archetype is a common struc-
ture of the system that produces a characteristic pattern of
behavior. For example, the archetype Shifting the Burden oc-
curs when a problem symptom is “solved” by applying a
symptomatic solution, which diverts attention away from a
more fundamental solution (Kim 1994). The archetype Fix
that Fail, in turn, occurs when an effective fix in the short-
term creates side effects, a “fail”, for the long-term behavior
in the system (Kim 1994). Usually, Fix that fail appears in-
side of another complex archetype as Shifting the Burden.
Each archetype has a corresponding modeling pattern.
Therefore, by analyzing a systemic map is possible to iden-
tify archetypes by looking for their modeling patterns. Ar-
chetypes and systemic maps can be useful to identify prob-
lems and possible leverage points to solve them. Leverage
points are points in the system where a small change can lead
to a large shift in behavior (Meadows 2008).

2.3 GUT Matrix

It allows to prioritize the resolution of problems, considering
that resources are limited to solve them (Kepner and Tregoe
1981). The prioritization is based on: Gravity (G), which de-
scribes the impact of the problem on the organization; Ur-
gency (U); referring to how much time is available to address
the problem; and Tendency (T), which measures the predis-
position of a problem getting worse over time.

2.4 Reference Ontology

Ontologies have been recognized as important instruments
to solve knowledge-related problems. An ontology is a for-
mal, explicit specification of a shared conceptualization
(Studer et al. 1998). Ontologies can be developed for com-
munication purposes (reference ontologies) or for computa-
tional solutions (operational ontologies). A reference ontol-
ogy is a special kind of conceptual model representing a
model of consensus within a community. It is a solution-in-
dependent specification with the aim of making a clear and
precise description of the domain in reality for the purposes
of communication, learning and problem-solving
(Baskerville 1997).

In the work described in this paper, we used the Scrum
Reference Ontology (SRO) (Santos Jr et al. 2021a), which
addresses the main aspects of Scrum, such as, ceremonies,
activities, roles, artifacts, and so on. The first and second au-
thors of this paper are also authors of SRO. It is a reference
ontology of the Software Engineering Ontology Network
(SEON)1 (Ruy et al. 2016). SEON is an ontology network
that contains several integrated ontologies describing vari-
ous subdomains of the Software Engineering domain (e.g.,

http://nemo.inf.ufes.br/en/projects/seon

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

Software Requirements, Software Process, Software Meas-
urement, Software Quality Assurance, Software Project
Management, etc.). By providing a comprehensive and con-
sistent conceptualization of the Software Engineering do-
main, SEON has been successfully used to solve knowledge-
related and interoperability problems in that domain (e.g.,
(Fonseca et al. 2017)(Ruy et al. 2017)(Bastos et al. 2018)
(Santos Jr et al. 2021a)). SRO reuses concepts of other
SEON ontologies, namely: Software Process Ontology
(SPO) (Briguente et al. 2011), Enterprise Ontology (EO)
(Ruy et al. 2014) and Reference Software Requirements On-
tology (RSRO) (Duarte et al. 2018). By doing that, SRO con-
nects Scrum concepts to more general Software Engineering
concepts, enabling it to better understand Scrum in a broader
software development context.

SRO was developed by following the SABiO method

(Falbo 2014) and it was evaluated through verification and

validation activities. Detailed information about SRO, in-

cluding its conceptual models, descriptions and a study in

which we used SRO for semantic interoperability purposes

can be found in (Santos Jr et al. 2021a).

3 Related Work

Some works have reported the use of Systems Theory
in the agile development context. For example, Vidgen and
Wang (2009) proposed a framework based on the Systems
Theory that identifies enablers and inhibitors of agility and
discusses capabilities that should be present in an agile team.
Gregory et al. (2016) discuss challenges to implementing ag-
ile and suggest some organizational elements that could be
used to do that. Considering the StH context, Karvonen et al.
(2015) used BAPO categories (business, architecture, pro-
cess, and organization) to identify some practices to each
StH step. However, they do not discuss how to understand
the organization to establish proper strategies to implement
them.

Considering scenarios involving more than one organi-
zation to produce software, De Sousa et al. (2016) discuss
agile transformation in Brazilian public institutions. Differ-
ent from Organizations A and B, which work together to pro-
duce software for the client, Brazilian public institutions hire
software organizations to develop software (i.e., the public
institution is a client of the hired organization). Moreover,
different from the scenario discussed in (De Sousa et al.
2016), in our study, Organization A needed to develop skills,
processes, and culture that enabled it to work with multicul-
tural issues, because Organization A, Organization B and cli-
ents are in different countries, and have different cultures.
None of the aforementioned works use Systems Theory
tools, GUT Matrix, and reference ontologies to help organi-
zations to define strategies to agile practices, as we did in our
study.

Some works address aspects related to developing soft-
ware with distributed teams (Jim et al. 2009)(Prikladnicki
and Audy 2010). They show that there are many challenges
related to communication, knowledge management, coordi-
nation and requirement management caused by different lo-
cation, time and culture. Aiming to address these issues,
L’Erario et al. (2020) propose a framework that provides
some concepts, a structure and a flow of communication in
distributed software projects. Ali and Lai (2018), in turn, fo-

cus on requirements communication and propose to use a re-
quirements graph combined with a software requirement
specification document to help the stakeholders in the estab-
lishment of a better understating of software requirements.
Similar to our work, the aforementioned works aim to sup-
port organizations in which the software development pro-
cess is distributed. However, differently from our work,
those works consider software development geographically
distributed among several development teams of the same

organization.

As we previously discussed, our work considered two or-
ganizations working as one in the projects, with two teams
in different countries, and each team controlling part of the
software development process. We propose to use System
Theory tools, GUT Matrix and reference ontologies to create
strategies that minimize the impact caused by culture, time,
and distance and, sometimes, use them as a competitive ad-
vantage. We believe that our work can contribute to organi-
zations that work with geographically distributed teams by
providing useful knowledge to create tailored strategies. For
example, they can be inspired by our strategy to communi-
cate requirements, which uses BDD (Behavior Driven De-
velopment) (Wynne et al. 2017) as a protocol to specify,
communicate and validate requirements.

4 Case Study, Planning, Execution, and
Results

Participative case study was selected as the research method
in this study because two researchers acted as consultants in
Organization A and ,thus, were participants in the process
being observed (Baskerville 1997). Together with other par-
ticipants, they gathered information to understand the organ-
ization and defined strategies to implement agile practices.
Thus, the researchers had some control over some interven-
ing variables.

4.1 Study Design

4.1.1 Diagnosis
Organization A is a Brazilian software development organi-
zation that works together with a European organization
(Organization B) to develop software products for European
clients. It has 30 developers organized in teams managed by
tech leaders. Organization B elicits requirements with clients
and Organization A is in charge of developing the corre-
sponding software. As a consequence of the increasing num-
ber of projects and team members, added to the lack of flex-
ible processes, some problems emerged, such as projects late
and over budget, increasing in software defects, overloading
of the teams due to rework on software artifacts, and com-
munication issues among client, Organization A, and Organ-

ization B.

Aiming to minimize these problems, in the first semester
of 2019, Organization A decided to implement Scrum prac-
tices, but without success. According to the directors, the
main difficulties were due to non-direct communication with
the client and included: difficulty to define product backlog,
select a product owner and carry out Scrum ceremonies that
need the client’s feedback. Furthermore, they pointed out
that agile culture demands knowledge and its clients, busi-
ness partners and developers were not prepared for it.

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

Other factors that harmed Scrum implementation were:
(i) teams without self-management characteristics, (ii) diffi-
culties in internal communication, (iii) lack of feedback cul-
ture, (iv) lack of openness and other Scrum’s values. More-
over, Organization A has had a lot of systemic issues, such
as: (a) directors have been much focused on operational and
technological issues, (b) lack of management professionals,
(c) focus on short-term issues instead of long-term ones and,
(d) lack of focus on applying strategic and systemic thinking.
In addition, the first and third authors noticed that Organiza-
tion B has had a traditional culture based on linear and non-
adaptative processes and methods.

This scenario indicated to us that a particular character-
istic and context of the organization had not been considered
in the first try to implement agile practices. Therefore, at the
beginning of 2020, we proposed to use StH as a reference
model to evolve Organization A from traditional to data-
driven software development, in a long-term process im-
provement program. The first step: move from traditional to
agile. Considering the peculiar scenario of Organization A,
we decided to use Systems Theory to understand the organ-
ization in a systemic way. Then, we used GUT Matrix to
support prioritization of problems resolution, and reference
ontologies to provide common knowledge about agile devel-
opment.

4.1.2 Planning

The study goal was to analyze the use of Systems Theory
tools (particularly systemic maps and archetypes), GUT Ma-
trix, and reference ontologies to help define strategies to im-
plement agile practices when the organization is moving
from traditional to agile development. By strategies, we
mean actions or plans established to implement agile devel-
opment. Aligned to this goal, the following research question
was defined: are Systems Theory, GUT Matrix, and reference
ontologies useful to define suitable strategies for an organi-
zation to move from traditional to agile development?

The expected outcomes were: (i) a view of important as-
pects of the organization by means of systemic maps; (ii) pri-
oritization of problems and causes to be addressed; (iii) strat-
egies to address problems and implement agile practices;(iv)
artifacts built based on reference ontologies and that help the
team to learn agile concepts and practices; (v) a Systems
Theory based process to define strategies to move from tra-

ditional to agile.

Figure 1 illustrates how Systems Theory tools (particu-
larly systemic maps and archetypes), GUT Matrix, and ref-
erence ontologies (blue circles in Figure 1) were used in the
study. Reference ontologies and Systems Theory tools were
used in the Problem Domain (represented in the yellow re-
gion in Figure 1). Ontologies provide the conceptual per-
spective, while systemic maps and archetypes afford a dy-
namic perspective. In other words, the former supports un-
derstanding the domain itself (agile) by providing structural
knowledge, while the latter helps understand the organiza-
tion in which the problems manifest and how they manifest.
GUT Matrix, in turn, was used in the Solution Domain (rep-
resented in the green region in Figure 1) as a means to prior-
itize the problems to be addressed, providing, this way, a
problem-solving perspective.

Figure 1. Overview of the approach used in this work.

To be more specific, ontologies were used to provide a
common conceptualization to support communication
among the organizations and their employees in the software
development context. Systemic maps, in turn, aimed to make
explicit the variables and relations present in the dynamic of
the system between the organizations. Finally, GUT Matrix
was used to support the decision-making process that guided
the solution process.

The study participants who directly participated in inter-
views to data collection and results in the evaluation were the
two directors (software development director and sales direc-
tor), one tech leader, and two developers. The first and third
authors worked as consultants in Organization A and, thus,
also participated in the study. Working together with the
other participants, they were responsible for creating sys-
temic maps, GUT matrices, as well as for defining the strat-
egies to be implemented to move from traditional to agile
software development. Once these artifacts were created,
they were validated with the team. For example, systematic
maps were created based on information provided by the
team. Then, the team evaluated them in meetings and pro-
vided feedback so that we reached the maps shown in the
next section. The second author did not interact directly with
Organization A. She worked as an external reviewer, evalu-
ating the produced artifacts and helping other authors im-
prove such artifacts.

4.2 Study Execution and Data Collection

4.2.1 Data Collection
Data collection involved interviews, development of sys-
temic maps and GUT Matrix, and definition of strategies to

implement agile practices.

A. Initial Interviews
Data collection started with interviews to gather general in-
formation about the organization. Six interviews were con-
ducted, four with the directors and two with the developers,
and the tech leader. Participants were told to feel free to talk
as much as they wanted to. Each interview lasted about 90
minutes. The funnel questions technique was used, i.e., the

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

interview started with general questions (e.g., “What kind of
software does the organization develop?”, “How is the soft-
ware development process?”), and then went deeper into
more specific points of each one (e.g., “Tell me more about
the software test activity”). The interviews were recorded,
transcribed, and validated with each participant.

The interviews with the directors aimed to get infor-
mation about the following aspects: organizational environ-
ment, culture, rules of relationship with partners, future
plans, software development process, software development
issues, and agile knowledge. Among the information pro-
vided by the directors, they pointed out that some problems
were caused by misunderstood software requirements or pro-
ject scope not clearly defined. According to them, Organiza-
tion B did not describe requirements in a consistent and clear
way.

The interviews with the tech leader and developers aimed
at understanding software development problems under their
perspective and how familiar they were with agile methods
and practices. The problems mentioned by the directors were
also reported by the tech leader and developers. When asked
about team organization, they pointed out that the teams
were not self-organized. Contrariwise, tech leaders were re-
sponsible for allocating tasks, coordinating team
members, establishing deadlines, and monitoring projects.
Moreover, the team knowledge of agile was limited.

B. Systemic Maps
Information obtained in the interviews was used to build sys-
temic maps. Figure 2 shows a fragment of one of the devel-
oped systemic maps. The elements in blue in the figure form
a modeling pattern that reveals the presence of the archetype

Shifting the Burden.

Figure 2. Fragment of systemic map (1).

As previously said, Organization B is responsible for
eliciting requirements with the client, specifying and sending
them for Organization A to develop the software. The devel-
opment teams of Organization A often misunderstand re-
quirements that describe the software, component, or func-
tionality to be developed, since Organization B produces Re-
quirements poorly specified, neither adopting a technique
nor following a pattern to describe them. Misunderstood re-
quirements contribute to increasing the number of Defects in
software artifacts, since design, code, and test are produced

based on the requirements informed by Organization B. De-
fects in software artifacts make Organization A mobilize
(and often overload) the development team to fix defects by
performing New urgent development activities, which de-
crease the number of Defects in software artifacts. These ur-
gent activities are performed as fast as possible, aiming not
to delay other activities. Thus, they do not properly follow
software quality good practices. Moreover, they contribute
to increasing the project cost and time (Late and over-budget
project). Defects in software artifacts increase the need of
using Software quality techniques that, when used, lead to
fewer Defects in software artifacts. This causal relationship
has a delay since the effect of using Software quality tech-
niques can take a while to be perceived.

As shown in Figure 2, the archetype Shifting the Burden
is composed of two balancing feedback loops and one rein-
forcing feedback loop. The balancing feedback loops (be-
tween New urgent development activities and Defects in soft-
ware artifacts, and between Defects in software artifacts and
Software quality techniques) mean that the involved varia-
bles influence each other in a balanced and stable way
(e.g., higher/lower the number of Defects in software arti-
facts, more/less New urgent development activities are per-
formed). In the reinforcing feedback loop, New urgent de-
velopment activities are a symptomatic solution that leads to
Defects fixed through rework, a side effect, because once ur-
gent development activities fix the defects in software arti-
facts, Organization A feels like the problem was solved.
This, in turn, decreases the need for using Software quality
techniques, which is a more fundamental solution. As a re-
sult, software artifacts continue to be produced with defects,
overloading the development team with new urgent develop-
ment activities. Shifting the Burden is a complex behavior
structure because the balancing and reinforcing loops move
the system (Organization A) in a direction (New urgent de-
velopment activities) usually other than the one desired
(Software quality techniques). New urgent development ac-
tivities contribute to increasing project cost and time (Pro-
ject is late and over-budget) because these activities were not

initially planned in the project.

When Organization B does not properly define the pro-
ject scope (Scope poorly defined), Organization A may allo-
cate a Team not suitable for the project, contributing to De-
fects in software artifacts and to Changes in the project team
during the project. Usually, when the team is changed, the
new members need to get knowledge about the project.
Moreover, often the new members are more experienced and
thus more expensive, which contributes to Late and over-
budget project. To change the project team, members can be
moved from one project to another, causing Deficit in other
project teams. Furthermore, there is a balancing loop be-
tween Changes in the project team and Defects in software
artifacts. The former may cause the latter due to instability
inserted into the team. The latter, in turn, contributes to the
former because Defects in software artifacts may lead to the
need to change the team. There is a delay in this relationship
because it can take a while to notice defects and the need to
change the team. Finally, Scope poorly defined causes Unre-
alistic deadlines, which contributes to Late and over-budget

projects.

Figure 3 illustrates another fragment of the developed
systemic maps, showing variables related to different organ-
izational levels. As observed in Figure 3, Organization B is

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

responsible for the Direct communication with the client,
i.e., Organization A depends on Organization B to obtain in-
formation from the client. This causes in Organization A
Lack of contact with the final client, which contributes to
Low commitment from the team with the project´s goals,
since the team is not empowered and loses motivation. This,
in turn, leads to Non-self-organized teams, because the team
members do not have the opportunity to implement values
and practices to become self-organized, which keeps the
team away from the final client. These three variables create
a reinforcing loop that prevents the organization from having
more proactive and committed teams.

Figure 3. Fragment of the systemic map (2).

Non-self-organized teams and Low commitment from the
team with the project´s goals contribute to a High involve-
ment of the directors at the operational level, because they
need to support the teams to solve problems (e.g., Scope
poorly defined, Unrealistic deadline and Late and over-
budget project, shown in Figure 2). As a consequence, they
do have Not enough time to concern with tactical and stra-
tegic levels, which causes Damage to organization growth,
because the directors do not have time to plan and implement

strategies that allow getting new clients, reducing costs, etc.

The previous paragraph describes an example of the ar-
chetype Fix that fails that impacted the operational, tactical,
and strategical level of Organization A. The archetype Fix
that fails is composed of a balancing feedback loop that is
intended to achieve a particular result or fix a problem, and
a reinforcing feedback loop of the unintended consequences.
The balancing feedback loop occurs when there is a High
involvement of directors at the operation level trying to re-
solve problems of projects because of the Low commitment
from the team with the project´s goals. The reinforcing feed-
back loop, in turn, occurs when the directors do have Not
enough time to concern with the tactical, and strategic level
because there is a High involvement of the directors at the
operational level, resulting in Damage to organization
growth. This loop affects different organizational levels,
from operational to strategic, and hampers organization
evolving and growing.

C. GUT Matrix
After getting a comprehensive view of the organization and
how it behaves, we reflected on the behaviors on which the
strategies should be focused. Thus, we created a GUT Matrix
to identify and prioritize behaviors of the system that are not
fruitful, i.e., undesirable behaviors. They were identified
mainly from the systemic maps. For
example, from the fragment depicted in Figure 2 based on
the positive causal relationship between Misunderstood re-
quirements and Defects in software artifacts, the following
undesirable behavior was identified: Software artifacts are
developed based on misunderstood requirements. From the
Shifting the Burden archetype, we identified: Software qual-
ity techniques are not often applied to build software arti-
facts. To complement the information provided by the sys-
temic maps, we used information from the interviews to look
for behaviors the literature points out as desirable in organi-
zations moving to agile (e.g., self-organized teams)
(Leffingwel 2016).

After identifying the undesirable behaviors, the study
participants validated and prioritized them considering the
GUT dimensions. Each dimension was evaluated consider-
ing values from 1 (very low) to 5 (very high). 13 undesirable
behaviors were identified. Table 1 shows a fragment of the
GUT Matrix.

Table 1. Fragment of GUT Matrix.

Undesirable Behaviors G U T GxUxT

UB1 Software artifacts are developed based
on misunderstood requirements

5 5 5 125

UB2 Software quality techniques are not of-
ten applied to build software artifacts

5 5 4 100

UB3 Projects are late and over budget 5 5 4 100

UB4 Organization has inconsistent
knowledge of agile methods

5 5 4 100

UB5 Teams are not self-organized 5 4 4 80

For each undesirable behavior, we analyzed the systemic
maps and the interviews and identified its causes. (UB1)
Software artifacts are developed based on misunderstood re-
quirements because (C1) Requirements are not satisfactorily
described and (C2) Poor communication between client and
development team. C1 was identified directly from the sys-
temic map. C2 was based on information about the proce-
dure followed by Organization A to communicate with the
client. When there is any doubt about requirements, the con-
tact was made mainly through email or comments on issues
in the project management system. Only Organization B has
direct contact with the client.

C1 and C2 are also causes of (UB2) Software quality
techniques are not often applied to build software artifacts,
since the lack of well-defined requirements and direct con-
tact with the client impact verification and validation activi-
ties. Moreover, there is a (C3) Lack of clear and objective
criteria to evaluate results and (C4) Large deliverables,
which make it difficult to evaluate results.

As it can be noticed in Figure 1, Projects are late and
over budget (UB3) mainly because C1 and (C5) Unstable
scope and deadline. Moreover (C6) Unsuitable team alloca-
tion and C4 also affect projects cost and time. The former
because low productivity impacts on project time and, thus,

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

cost. The latter is because it is difficult to estimate large pro-
jects.

Regarding (UB4) Organization has inconsistent
knowledge of agile methods, some members of the organiza-
tion had previous experience with agile methods in other
companies, others had a previous unsuccessful experience in
Organization A and others did not have experienced agile
methods. Most of the members were not sure about agile
concepts and practices. Therefore, this undesirable behavior
is caused by (C7) Organization’s members had different ex-
periences with agile and (C8) Agile concepts and practices
are not well-known by the organization. Finally, Teams are
not self-organized (UB5) due to the (C9) Traditional devel-
opment culture that produces functional and hierarchical
teams. After identifying the causes of undesirable behaviors,
the study participants validated them. Table 2 shows the

identified causes and respective undesirable behaviors.

Table 2. Causes of undesirable behaviors.

Causes UB1 UB2 UB3 UB4 UB5

C1 Requirements are not satis-
factorily described

X X X

C2 Poor communication be-
tween client and develop-
ment team

X X

C3 Lack of clear and objective
criteria to evaluate results

 X

C4 Large deliverables X X

C5 Unstable scope and dead-
line

 X X

C6 Unsuitable team allocation X

C7 Organization’s members
had different experiences
with agile

 X

C8 Agile concepts and prac-
tices are not well-known by
the organization

 X

C9 Traditional development
culture

 X

D. Strategies
The causes of undesirable behaviors and the
prioritization made in the GUT Matrix showed us leverage
points of the system, i.e., points that if changed could change
the system behavior. Therefore, we defined strategies to help
Organization A move towards the second stage of StH by
changing leverage points of the system and thus creating new
behaviors in the system in that direction. We started by de-
fining strategies to change undesirable behaviors at the top
of the GUT Matrix and causes related to more than one un-
desirable behavior. After we had defined the strategies, we
presented them to the team in a meeting and they provided
feedback that helped us to make the strategies more suitable
for the organization. Next, we present four strategies defined
to address the causes presented in Table 2.

Considering Organization A characteristics, mainly its
partnership with Organization B, the strategies combined
agile and traditional practices. Agile approaches bring the
culture of self-organized teams, shorter development cycles,
user stories, smaller deliverables, among other notions
(Karvonen et al. 2015)(Leffingwel 2016). Traditional ap-
proaches were used to complement agile practices. After all,
agile methods usually do not detail how to manage some as-

pects of a software project, such as costs and risks.

The first strategy, the New procedure to communicate re-
quirements (S1), consisted in establishing a new procedure
to be followed by organizations A and B regarding
requirements and communication, aiming to address C1 and
C2. Due to business agreements, a big change in Organiza-
tion B was not possible. For example, we could not change
the fact that only Organization B could directly contact the
project client. Hence, it was defined that requirements would
be sent from Organization B to the project tech leader, who
would rewrite the requirements as user stories and validate
them with Organization B. By representing requirements as
user stories, the project tech leader also needs to represent
their acceptance criteria, which aids to address C3. Moreo-
ver, to properly define the acceptance criteria, the tech leader
needs to obtain detailed information about the requirement,
stimulating Organization B to get such information from the
client, which indirectly improves communication with the
client. Only user stories defined according to the defined
template and validated with Organization B follow to the
next development activities. We also suggested the use of a
template based on BDD (Behavior Driven Development)
(Wynne et al. 2017) and Gherkin Syntax (Binamungu et al.
2020), describing business rules, acceptance criteria and sce-
narios to serve as a protocol to communicate requirements
among organizations A, B and the client. It is worth men-
tioning that we were not allowed to ask Organization B to
write the requirements itself by following the new guide-
lines, because this change was beyond the partnership agree-
ments. In this strategy, we designated Organization B to play
the Product Owner role. This way it is not only a business
partner, but it represents the client interests and has respon-
sibilities in this context. With this strategy, we also aimed to
minimize the symptomatic solution (New urgent develop-
ment activities) indicated in the Shift the Burden archetype
identified in the systemic map. According to Meadows
(2008), the most effective strategy for dealing with a Shifting
the Burden structure is to employ the symptomatic solution
and develop the fundamental solution. Thus, it is possible to
resolve the immediate problem, and also work to ensure that
it does not return. By improving requirements descriptions
and defining clear acceptance criteria, software quality tech-
niques (e.g., verification and validation), which are the fun-
damental solution identified in the Shifting the Burden, can

be properly applied.

Another strategy, Budget and time globally and locally
managed through short development cycles (S2), focused on
changing the undesirable behavior UB3 (Projects are late
and over budget). Again, to change that, Organization A de-
pended on changes in Organization B. Therefore, it was es-
tablished that at the beginning of a project, Organization A
and B should agree on the project scope, deadline, budget
and involved risks. The project characteristics (e.g., technol-
ogies, domain of interest, platform, etc.) should also be
clearly established. The project team would not be allocated
before this agreement. By properly aligning information
about the project between organizations A and B, it would
be possible to allocate a development team with skills and
maturity suitable for the project. By doing that, C5 and C6
would be minimized. Complementary, it was defined to
change the development process as a whole. In the Organi-
zation A business model, when a project is contracted by a
client, usually there is a cost and time associated to it. This
prevented us from using a pure agile development process,

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

where costs are dynamically established. As a strategy to im-
plement tailored agile practices, it was defined: after require-
ments are validated, the development team (tech leader and
developers) selects the requirements to be developed in a
short cycle of development (i.e., a sprint), defines tasks and
estimates the time and costs related to them. This infor-
mation is aligned between organizations A and B. This way,
Organization B manages time and budget at a project level,
while Organization A manages time and budget in the sprint
context. Once a week, monitoring meetings are performed to
check time and budget performance. During the sprint, meet-
ings based on the Scrum ceremonies are carried out in a flex-
ible way. For example, if the team informs that there is noth-
ing to report at the day, the daily meeting is not performed.
Meetings that depend on the client’s feedback should be car-
ried out with Organization B (in the Product Owner role). By
breaking the development process into shorter cycles, C4 is
addressed, since the product is also decomposed in smaller
deliverables. This strategy also contributes to treating C9, as

it changes the traditional development culture.

Aiming to change the way teams are organized in Organ-
ization A (UB5) and thus address C9, the strategy Self-orga-
nized teams (S3) was defined to implement Squad and Guild
concepts (Leffingwel 2016). A Squad is a team with all skills
and tools needed to develop and release a project. It is self--
organized and can make decisions about its way of working.
For example, a Squad can define the project development
timebox (sprint) and how to implement some practices of
strategies S1 and S2 (e.g., the use of BDD and how flexible
Scrum ceremonies can be in the project). The members are
responsible for creating and maintaining one or more pro-
jects. A Squad is composed of developers and a tech leader,
who is responsible for communicating with Organization B
mainly regarding aspects related to budget, time, and re-
quirements. A Guild is a team responsible for defining stand-
ards and good practices that will be used for all squads. A
Guild is composed of members with expertise in the subject
of interest (e.g., a senior programmer can define good pro-
gramming practices). Its purpose is to record and share good
practices among the squads in the organization, aiming at
achieving a homogeneous level of quality in the projects.

To address C7 and C8, which cause the organization to
have inconsistent knowledge of agile methods (UB4), we de-
fined Agile common conceptualization (S4) as a strategy to
use reference ontologies to provide a common conceptual-
ization about the Software Engineering domain as a whole,
and about the agile development process in particular. We
used ontologies from SEON (Ruy et al. 2016) to extract the
view relevant to understand agile development. It contains a
conceptual model fragment, axioms and textual descriptions
that provide an integrated view of agile and traditional de-
velopment, defining concepts in a clear, objective, and un-
ambiguous way. We suggested the use of SEON because its
ontologies have been developed based on the literature and
several standards, providing a consensual conceptualization.
Moreover, as we discussed in Section 2, we have success-
fully used it in several interoperability and knowledge-re-
lated initiatives. The SEON view used in the study focuses
on the Scrum Reference Ontology (SRO) and can be seen in
(Santos Jr et al. 2021a). To make it easier for the teams to
learn and apply the conceptualization provided by the ontol-

ogy, the authors created complementary artifacts that com-
bined graphical and textual elements. We show some of the

produced artifacts in Section 4.3.2.

Table 3 summarizes the defined strategies, the leverage
points (causes) addressed by them, and main agile concepts
involved. It is worth noticing that some agile concepts were
indirectly addressed. For example, although we did not di-
rectly use Product Backlog in S1, the set of requirements
agreed with Organization B works as such. Similarly, in S3,
when the team selects the requirements to be addressed in a
development cycle, we are applying the Sprint Backlog no-
tion. We decided not to use some of the original terms be-
cause Organization A had a previous bad experience trying
to implement agile practices by following Scrum “by the
book”, which did not work and provoked resistance to cer-
tain practices. Thus, we tried to give some flexibility even to
the practices’ names, to avoid bad links with the previous
experience.

Table 3. Strategies, Causes and Agile Concepts.

Strategies Agile Concepts Causes

S1 New procedure to com-
municate requirements

User Story, BDD,
Product Owner and

Product Backlog

C1, C2, C3

S2 Budget and time globally
and locally managed
through short develop-
ment cycles

Sprint, Sprint Backlog,
Scrum meetings

and Small deliverables

C4, C5, C6,
C9

S3 Self-organized teams Squad and Guild C9

S4 Agile common conceptu-
alization

Concepts related to ag-
ile software develop-

ment

C7, C8

After defining and validating the strategies with the team,
they were executed by the organization in two projects with
the supervision of the first and third authors. The first project
started and finished during this study. The second project
started before the study and was still ongoing at the time we
wrote this paper. The new practices started to be used in early
February 2020. About four months later, we conducted an
interview to obtain feedback. At that point, one of the pro-
jects had already been concluded and the other was ongoing.

4.3 Study Analysis, Interpretation and Lessons

Learned

In this section, we present results from the interviews that
helped us to answer the research question, the resulting Sys-
tems Theory-based process that arose from this study and

some lessons learned.

4.3.1 Results
To answer the research question, we carried out an interview
with the software development director and the tech leader
aiming to obtain their perception about the use of Systems
Theory tools, GUT Matrix and reference ontologies, as well
as to get information about results obtained from the use of

the defined strategies.

They were interviewed together in a single section. The
director said that, in his opinion, Systems Theory tools pro-
vided means to understand how different organizational as-
pects (e.g., business rules and quality software practices) are
interrelated and influence each other, and how these aspects

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

and interrelations produce desirable and undesirable behav-
iors. For example, he said that “the systemic maps allowed
me to understand how poorly specified requirements can
negatively impact different parts of the project and of the or-
ganization”.

Moreover, according to him, “Systems Theory helped
create strategies to change undesirable behaviors, since it
provided a comprehensive understanding of the organiza-
tion behavior and supported identifying causes of undesira-
ble behaviors”. For example, by knowing the impacts of
poorly specified requirements, “I perceived the need to im-
plement practices to guarantee the quality of the require-
ments and that development tasks should only start if the de-
veloper truly understood the requirement”. Regarding GUT
Matrix, the director stated that it found it easy to use, and
important to prioritize the undesirable behaviors to be
changed first. According to him, using these tools “was eas-
ier and clearer when compared to Ishikawa and Pareto dia-
grams, because systemic maps allow more comprehensive
and freer views and GUT Matrix has a simple way of prior-
itization.”

Concerning reference ontologies, he reported that they
were useful to create a common communication among
project stakeholders and business partners, eliminating some
misunderstandings not only about agile practices but also
about Software Engineering in general. For example, the di-
rector said that “by using the conceptualization provided by
the ontology, the team truly understood the “done” con-
cept”, commonly used in agile projects, in the sense that a
software item (e.g., a functionality, a component) is done
(i.e., ready to be delivered to the client) only if it met all the
acceptance criteria established to the user stories material-
ized in that software item. The tech leader commented that
“by using the ontology conceptualization, it was clearer the
necessary information a requirement description should
contain so that it can be properly understood.” An interest-
ing aspect pointed out by the interviewees was that the con-
ceptualization provided by the reference ontologies was used
by the development teams as a basis to quality rules in the
projects (e.g., when a software item is done) and, also to
business rules in new business contracts (e.g., acceptance
criteria need to be defined).

The director and tech leader informed that the first pro-
ject in which the strategies were implemented was consid-
ered a successful experience and served as a pilot. In similar
projects, Organization A used to be 30% to 50% over time
and budget due to spending extra resources on new urgent
development activities to fix defects. By adopting the de-
fined strategies, the project delivered a better product (at the
moment of the interview, the client did not have reported any
defect in the production environment). However, the project
was about 15% over budget and time due to changes in the
agreed requirements.

This may suggest that strategies S1 and S2 need adjust-
ments. Although they seek to give some agility features to
the development process, the project had its scope prede-
fined by Organization B, which established it together with
the client and set cost and time considering that scope. As
Organization A started to develop the agreed requirements,
Organization B noticed that some of them needed to change
to better satisfy the client needs. Although the project was
late and over budget, the deviation in relation to the agreed
cost and time was smaller than in similar projects that did

not follow the strategies. The director pointed out that being
able to show this difference to Organization B, indicating the
causes that contribute to increase or decrease it, was an im-
portant result and can even be used to motivate Organization
B to be more involved in the changes to improve the software
development process as a whole. This would make it possi-
ble, for example, to adjust strategies S1 and S2 to make re-
quirements elicitation, cost, and time estimation more flexi-
ble.

The tech leader reported that using the strategies reduced
misunderstandings in software requirements among
the stakeholders and enabled better managing budget and
time locally, in short development cycles. Moreover, accord-
ing to him, in the second project adopting the strategies (on-
going project), the development team spent only 45 hours in
new urgent development activities in a total of about 2000
hours of performed development activities. He also high-
lighted the use of user stories and BDD as an effective way
to communicate requirements in this project.

In addition, the interviewees said that the self-organiza-
tion culture has been developed in the teams and that the use
of Squads has been very helpful. The use of Guilds was still
in progress. Finally, they commented that, although the pro-
posed strategies were used to address some undesirable be-
haviors by applying agile practices and concepts, they felt
that “changing the entire traditional culture can be a com-
plex work”, mainly because it requires to change mental
models, processes and culture that also involve the organiza-
tion partners (particularly Organization B) and clients.

Aiming to obtain quantitative data to complement the
feedback provided by the software development director and
the tech leader and help us identify the effects of the adopted
strategies, we collected data from the two projects (one fin-
ished and another ongoing) where the strategies were imple-
mented and from other projects that did not use the strate-
gies. Data was extracted from Jira, which is used by Organ-
ization A to support part of the software development pro-
cess. Considering that the strategies were applied in the pro-
jects in different moments (the first project adopted the strat-
egies from its beginning to its end, while the second adopted
the strategies when it was already ongoing), we decided to
analyze them separately.

First, we collected data regarding the tasks performed in
the first project and in other 22 projects that did not adopt the
strategies and were carried out in the same time-box of our
study. The tasks were classified into development tasks,
which create new features, and bug-fixing tasks, which fix
problems (found by the quality assurance team or by the cli-
ent) in the developed features. For each project, we calcu-
lated the percentage of effort spent on tasks dedicated to de-
veloping new features and the percentage spent on tasks per-
formed to fix bugs. Thus, we calculated the median of the
obtained values for the 22 projects that did not use the strat-
egies, so that we could compare the resulting value with the
project where the strategies were adopted. Table 4 shows the
results.

Table 4. Effort spent on development and bug-fixing tasks in different

projects.

Task Project that adopted the
strategies

Projects that did not adopt
the strategies

Development 97,62% 81,07%

Bug-fixing 2,38% 18,93%

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

As it can be observed in Table 4, when compared with
the other projects developed in the same time-box, the devel-
opment team from the project that adopted the defined strat-
egies spent more effort on developing new features (97,62%)
than fixing problems (2,38%). This corroborates interview-
ees’ perception that the proposed strategies improved prod-

uct and process quality.

Aiming to verify changes caused by the strategies in the
same project, we also collected data from the beginning of
the second project (i.e., Jan/2019), until the last month of our
study. Our purpose was to compare the effort spent on each
type of task before and after applying the strategies. Table 5

presents the obtained values.

Table 5. Effort spent on development and bug-fixing tasks before and

after applying the strategies in the project.

Task Before the strategies After the strategies

Development 62,15% 88,21%

Bug-fixing 37,85% 11,79%

As it can be noticed, after applying the strategies, there
was an increase in the effort spent on developing new fea-
tures and a reduction in the effort to fix bugs, which is con-
sistent with the interviewees’ perception. It is worth noticing
that there was more time spent on the project before applying
the strategies (about one year) than after that (about four
months). This should be considered together with the ob-
tained data (e.g., we do not know if the amount of effort
spent on which type of tasks may significantly change over

time).

4.3.2 Using Reference Ontologies to learn Scrum
Although reference ontologies are a good way to structure
and represent knowledge, it may not be much easy for some
people to capture and internalize the conceptualization rep-
resented in the ontology. Thus, in the case reported in this
paper, we used some complementary artifacts to help in this
matter. First, we asked the team which artifacts they were
used to. Based on their answers, we decided to use mainly
textual descriptions and process models, since the team con-
sidered them user-friendly, and they were present in its daily
activities. We also used other diagrams to illustrate Scrum
concepts and a Kanban board to map Scrum concepts to con-
cepts already familiar to the team.

The SEON extract addressing agile aspects and connect-
ing them to traditional aspects provided the common con-
ceptualization and knowledge about the domain of interest.
For example, the ontology makes it explicit that only deliv-
erables (i.e., software items, such as a functionality or a com-
ponent) that met all the acceptance criteria established to the
user stories they materialize can be added to the sprint deliv-
erable (e.g., a software module) and, thus, to the project de-
liverable (e.g., a software product). The complementary ar-
tifacts, in turn, present the conceptualization to the team by
using alternative representations. As we previously said, the
SEON extract used in this study focuses mainly on the
Scrum Reference Ontology (SRO) and can be found in
(Santos Jr et al. 2021a)). Table 6 summarizes some concepts
from SRO used in this study.

Table 6. Some concepts from SRO.

Concept Description

Scrum Project Software Project that adopts Scrum in its
process.

Sprint Backlog Artifact that contains the Requirements of
the product to be developed in the Scrum
Project.

Planning Meeting Ceremony performed in a Sprint where
the Development Team plans it.

User Story Requirement Artifact (i.e., a requirement
recorded in some way) that describes Re-
quirements in a Scrum Project. It indi-
cates a goal that the user expects to
achieve by using the system and, thus,
represents value for the client. A User
Story can be an Atomic User Story, when
it is not decomposed into others, or an
Epic, when it is composed of other Use
Stories.

Acceptance Criteria Requirement established to a User Story
and that must be met when the User Story
is materialized. Thus, it is used to verify
if the User Story was developed correctly
and meets the client needs.

Intended Scrum Devel-
opment Task

Development Task planned to be per-
formed in a Sprint.

Performed Scrum Devel-
opment Task

Development Task performed in a Scrum
Project.

Deliverable Software Item that materializes User Sto-
ries.

Accepted Deliverable Deliverable that is in conformance to all
the Acceptance Criteria established to the
User Stories materialized by that Deliver-
able.

Not Accepted Delivera-
ble

Deliverable that is not in conformance to
at least one Acceptance Criteria estab-
lished to the User Stories materialized by
that Deliverable.

Sprint Deliverable Accepted Deliverable resulting of a
Sprint.

Figure 4 illustrates the relationship between the reference
ontologies and the complementary artifacts. As a result of
this approach, we shortened the distance between the team
and the conceptualization provided by the ontologies, im-
proving domain understanding and communication.

Figure 4. Reference ontologies and complementary representation arti-

facts.

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

To address behavioral aspects of Scrum (e.g., activities,
the flows between them and objects they manipulate), we
created process models. For that, we first mapped concepts
from SEON to constructs of BPMN (OMG 2013), which was
the modeling language used to represent the process models.
Put it simply, we identified which BPMN constructs should
be used to represent SEON concepts or their instances. For
example, the Activity BPMN construct should be used to rep-
resent Performed Scrum Development Task, Ceremony,
Planning Meeting and other SEON concepts referring to ac-
tivities, tasks or processes. The Actor BPMN construct, in
turn, should be used to represent SEON concepts referring to
people or roles, such as Developer and Product Owner.
Then, we represented and complemented knowledge pro-
vided by the reference ontologies by creating process models
like the one illustrated in Figure 6. In the process models, by
following the approach suggested in (Guizzardi et al. 2016),
we used the Event construct to represent the state of affairs

(i.e., a situation) caused by the execution of an Activity or
when a temporal constraint started or ended.

The process model shown in Figure 5 was used to illus-
trate the creation of the Sprint Backlog in the Planning
Meeting ceremony, the selection of User Stories to be im-
plemented in Performed Scrum Development Tasks and
materialized by Deliverables, and the validation of the de-
liverables that, if accepted (Accepted Deliverable), are in-
tegrated into the Sprint Deliverable. If not accepted (Not

Accepted Deliverable), they must be addressed in new
tasks. The bold terms aforementioned refer to the SEON
concepts addressed in the process model presented in Figure
5. The process complements the conceptualization provided
by the ontology by making explicit some activities, the flow
between them and the state of affairs resulting from the ac-
tivities execution.

Figure 5. Example of process model created based on SEON conceptualization.

In addition to process models, we also used some dia-
grams to better illustrate some concepts. For example, to
help the team visualize that (i) an Epic is a complex User

Story composed of others, (ii) User Stories must have Ac-
ceptance Criteria established to them, and (iii) in the Sprint
Backlog, tasks are planned (i.e., Intended Scrum Develop-

ment Tasks) to implement the User Stories, we used the
diagram shown in Figure 6.

Organization A did not have a clear semantic distinction
between epic, user story and task. Many times, these con-
cepts were treated in the same way, being considered as a
simple issue by the developers. This lack of conceptual dis-
tinction caused problems in project management, estimation,
requirements prioritization and communication with Organ-
ization B and the client. By using the conceptualization pro-
vided by SEON and a simple diagram (as the one shown in
Figure 6), the team better understood these concepts and was
able to properly use them in backlog management.

Figure 6. Diagram used to illustrate the relation among Sprint Back-
log, Epic, User Story and Intended Task.

We also used a Kanban board to illustrate some concepts.
For example, Figure 7 depicts a sketch where we explored
tasks and deliverables, showing that if a card is moved to the
“Done” column, that means that the deliverable produced by
the corresponding task must have been evaluated (consider-
ing acceptance criteria related to the respective user story)
and accepted.

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

Figure 7. Kanban board illustration used to explore task and delivera-

ble concepts.

To complement the created artifacts, we also created a dic-
tionary of terms (similar to Table 6) containing textual defi-
nitions of SEON concepts and some constraints. The ontol-
ogy and complementary artifacts were used in two work-
shops where the first and third authors presented the refer-
ence ontology and explained its conceptualization by using

its conceptual model and the complementary artifacts.

4.3.3 Systems Theory-based process
An important result that arose from this study is a process
that combines Systems Theory tools and GUT Matrix to aid
organizations to move from traditional to agile. Figure 8
shows the process, and we briefly explain it next.

Figure 8. Process to aid defining strategies and implementing agile practices.

Understand the Organization: it consists in obtaining in-
formation to understand the organization as a whole so that
it will be possible to define strategies to implement agile
practices in a suitable way for the organization, considering
its culture, environment, business rules, software processes,
agile experience and knowledge, people, and so on. Infor-
mation can be obtained by using techniques such as inter-
views, document analysis and observation, among others.

Build a Systemic View: this consists in using information
obtained in the previous step to build systemic maps to un-
derstand organization behaviors relevant in the agile devel-
opment context. Organization borders, relevant variables
that drive organization behavior, causal relationships be-
tween them and feedback loops must be represented. Arche-
types describing behavior patterns must also be identified
from the systemic maps.

Identify Leverage Points: this involves analyzing system-
atic maps and archetypes to identify undesirable behaviors
and their causes. At this point, desirable behaviors in agile
organizations suggested in the literature can also be used to
verify if the organization fits them. Undesirable behaviors
should be prioritized by using a GUT Matrix, so that it is
possible to identify which ones represent leverage points and
will be addressed in the strategies.

Establish Strategies: this consists in defining strategies
(i.e., plans and actions) to implement agile practices focus-
ing on the leverage points and considering the organization
culture, business, rules, environment, people, etc.

Implement Strategies: this involves implementing the de-
fined strategies. It is suggested to start with one or two pro-
jects. After that, if the strategies work, they can be extended
to other projects and then to the entire organization.

Monitor Strategies: this consists in evaluating if undesir-
able behaviors changed as expected after strategies execu-
tion. The new behaviors caused by the strategies need to be
evaluated and, depending on the results, strategies can be ex-
tended to other projects, aborted or adjusted.

4.3.4 Lesson Learned

In this section, we discuss some lessons we learned in the
study. In the lessons learned, we adopt terms such as should
and may instead of mandatory terms such as must because
we learned the lessons from a single case study. Thus, we
believe that other studies are needed to corroborate what we
have learned.

Systemic maps should be built with a goal in mind: since
systemic maps allow to represent a comprehensive view of
how the organization behaves and this may involve many as-
pects, it is important to focus on variables relevant to the goal
to be achieved from the use of the systemic maps. Otherwise,
the maps can be too complex and involve variables that do
not provide meaningful information for the desired purpose.

The boundaries of the system should be clearly identified:
to understand how external elements can influence organiza-
tion behaviors, it is important to identify the organization
boundaries as well the elements that the organization con-
trols and the ones controlled by external agents. This way, it
will be possible to create suitable strategies considering both
the organization and the external agents.

Changes in leverage points may change the system as a
whole: we noticed that when the changes are made in lever-
age points, particularly in the ones connected to undesirable
behaviors with higher priority, the changes tend to provoke
a meaningful shift in the organization behavior as a whole,

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

changing existing behaviors and creating others. For exam-
ple, by changing the way organizations A and B deal with
project scope, time and budget, there were also changes in
the way Organization A allocates teams and selects require-
ments to be implemented, and the need for changes in the
partnership rules with Organization B was perceived.

Strategies should be integrated into the software pro-
cesses: for strategies to be performed as part of the
organization daily activities, it is important that they are in-
corporated into the processes performed by the organization.
In the study, the strategies were incorporated into the organ-
ization software process, involving development, manage-

ment, and quality assurance activities.

Strategies should be gradually implemented and start in
relevant projects: implementing the changes gradually and
starting with one or two projects it was positive and the ob-
tained results contributed for the organization to keep the in-
tention of expanding the changes to other projects. We se-
lected projects in which the teams were interested in using
agile practices and that was important for the organization,
so that the commitment of the team would be higher. This
helped to minimize resistance to the new practices. Once
they experienced the benefits of following the strategies,
team members became disseminators of the new practices
and concepts, helping to extend agile culture to other team
members.

Strategies results should be measurable: when defining
the strategies, we did not define any indicator to measure its
effectiveness. However, the tech leaders used some metrics
in the projects (e.g., number of hours spent in new urgent
development activities, budget deviation, etc.) that helped us
to evaluate the strategies. Thus, when defining the strategies,
it is important to define the indicators to be used to evaluate
them.

Using System Theory tools may be costly and not trivial:
although System Theory tools were very useful to provide
an understanding of the organization, they may be a costly
choice, because they demand time, effort and knowledge of
the tools and organization. Hence, depending on the scope to
be considered, it may be difficult or unfeasible to use them.
Other methods can be helpful in this context. Considering
this learned lesson, we created Zeppelin (Santos Jr et al.
2021b), a diagnosis instrument that helps get a “big picture”
of the organization by identifying software practices per-
formed by it. Thus, Zeppelin can be used to provide initial
knowledge about the organization scenario, allowing to nar-
row the scope to be further investigated through System The-
ory tools.

Representing the ontology conceptualization using pro-
cess models, textual descriptions and simple diagrams can
be more palatable than conceptual (structural) models: the
reference ontologies of SEON are represented by means of
conceptual (structural) models, textual descriptions, and ax-
ioms. Although the conceptual model of the SEON view
used in the study provides an abstract view showing all the
relevant concepts and relations in a single model (Santos Jr
et al. 2021a), we noticed that the team preferred textual de-
scriptions and other representations to the SEON conceptual
model. Thus, we prepared a document containing the con-
cepts relevant to the study and their detailed description, also
including information about constraints and relationships.
We also prepared complementary artifacts using process
models and other diagrams to illustrate and complement

knowledge provided by SEON. This way, the conceptualiza-
tion provided by the ontologies was represented in a more

palatable way for the team.

A consolidated and accessible body of knowledge may
help achieve a common conceptualization: in the study, we
used ontologies as a reference to establish a common con-
ceptualization of agile development. We are very familiar
with ontologies and two of the authors are also authors of the
ontologies used in the study, which were established based
on the literature and standards and, thus, provide a consen-
sual view of the domain of interest. Considering Organiza-
tion A needs and the participation of the authors in the study,
the used ontologies perfectly fit. However, we are aware
that, for an organization not familiar with ontologies, using
an ontology as the starting point to establish a common con-
ceptualization can be challenging. We believe that organiza-
tions should use a body of knowledge suitable for its charac-
teristics to establish a common conceptualization about the
domain of interest. For example, some organizations may
prefer to use textual references, such as the Scrum Body of
Knowledge (Satpathy 2013).

Changes involving business partners can be hard to im-
plement and demand more flexibility and time: the way Or-
ganization B works directly affects Organization A. Due to
business arrangements, Organization A does not have
enough influence to make changes in Organization B. It can
suggest changes, but it cannot demand them. Thus, it was
necessary to define strategies that caused only small changes
in Organization B (e.g., help to better describe requirements,
allow shared control of time and cost). By noticing improve-
ments from the use of the proposed strategies, Organization
B may be more willing to further changes.

Squads should have autonomy to choose methods and
tools: the organization can have a set of tools, techniques and
methods to be adopted in the projects. Guilds can help define
that. According to the project team and characteristics, some
tools, methods and techniques can suit better. We noticed
that the squad became more self-organized when its mem-
bers could choose the techniques to solve the project prob-
lems. For example, in the study, a squad decided to adopt
user stories and BDD to describe requirements, while the
other used the complete user story template. In both cases,
information about requirements was clear and complete.
However, each squad chose the technique more suitable for
the project and team characteristics.

Agile-related human aspects need to be developed grad-
ually: agile culture demands some soft skills (e.g., self-orga-
nized teams, proactivity, empathy) (Lima and Porto 2019)
that not are much common in a traditional plan-driven envi-
ronment. We observed that some members had problems
materializing what it means to be self-organized, proactive
and empathetic, because they were used to command-control
from traditional culture. We noticed that by using short-, me-
dium- and long-term actions (what is short, medium and long
is established by the organization), it is possible to gradually
develop agile culture. Short-term actions should focus on un-
derstanding the needed skills (e.g., promoting debates about
soft skills in software development) and practicing them in
the projects. Medium-term actions should empower the use
of soft skills combined with hard skills (e.g., Human-Cen-
tered Design (Smith et al. 2012)). Finally, long-term actions
should institutionalize the soft and hard skills and truly
change the whole organization culture.

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

5 Threats to Validity to the Study Re-
sults

The validity of a study denotes the trustworthiness of the re-
sults. Every study has threats and limitations that should be
addressed as much as possible and considered together with
the results. In this section, we discuss some threats consider-
ing the classification proposed in (Runeson et al. 2012).

The main threat in this study is related to the researchers
who conducted the study. Participative case studies are bi-
ased and subjective as their results rely on the researchers
(Baskerville 1997). The first and third authors acted as con-
sultants in Organization A and were responsible for conduct-
ing the interviews, creating systemic maps and GUT Matrix,
and defining strategies. Moreover, the authors created the
complementary artifacts used to share knowledge of Scrum.
Since the authors were very familiar with SEON, they did
not have difficulties creating the artifacts. Other people, less
familiar with SEON, could have difficulties to create the ar-
tifacts or could have created different artifacts. Furthermore,
to create the artifacts, the authors took the team preferences
into account (the team told us that process models and dia-
grams were a good choice for it). The researchers participa-
tion affects Internal Validity, which is concerned with the
relationship between results and the applied treatment; Ex-
ternal Validity, which regards to what extent it is possible to
generalize the results from the case specific findings to dif-
ferent cases; and Reliability Validity, which refers to what
extent data and analysis depend on specific researchers.
Aiming to reduce researchers’ bias, the members of Organi-
zation A that participated in the study (i.e., two directors, one
tech leader and two developers) participated in the activities
and validated results. Moreover, another researcher (the sec-
ond author), external to the organization, evaluated data col-
lection and analysis and was involved in discussing and re-

flecting on the study and results.

Concerning Construct Validity, which is related to the
constructs involved in the study, the main threat is that we
did not define indicators to evaluate results. Data collection
was performed through interviews, which are subjective. To
minimize this threat, we used some measures collected in the
projects to evaluate the new behaviors caused by the pro-
posed strategies. However, since the measures were not pre-
viously defined, they are limited to enable a proper evalua-
tion of the strategies and the effects caused by them. Another
threat concerns the notations used to create the complemen-
tary artifacts, since the team could misunderstand the repre-
sented concepts due to different semantics assigned to the
constructs. To address this threat, the authors asked the team
to choose the notations to be used and types of artifacts to be
created, so that it was possible to produce artifacts consistent
with the team knowledge.

In case-based research, after getting results from specific
case studies, generalization can be established for similar
cases. However, the threats aforementioned constraint gen-
eralization. Moreover, the study involved only one organiza-
tion. Thus, it is not possible to generalize results for cases
without researcher intervention or for organizations not sim-
ilar to Organization A.

6 Conclusions, Future Work and Im-
plications

This paper presented a case study carried out in a Brazilian
organization towards the first transition in the path pre-
scribed by the Stairway to Heaven (StH) model (Olsson et
al. 2012). Organization A develops software in partnership
with a European organization (Organization B) and it does
not have direct contact with clients. After an unsuccessful
attempt to implement agile practices “by the book”, the or-
ganization started a long-term process improvement pro-
gram. To support it, we have used StH to describe the evo-
lution path to be followed by Organization A. To aid in the
first transition and move from traditional to agile, we com-
bined Systems Theory tools, GUT Matrix and reference on-

tologies.

In summary, Systems Theory tools and GUT Matrix
were helpful to better understand the organization, find lev-
erage points of change and define strategies aligned to the
organization characteristics and priorities. Reference ontol-
ogies were useful to establish a common understanding of
agile methods, enabling teams to be aware of and, thus, more
committed to agile practices and concepts. By using process
models, textual descriptions and other diagrams, the concep-
tualization provided by SEON, the Software Engineering
Ontology Network (Ruy et al. 2016), became more palatable
to the team, helping achieve a common understanding.

As a result of the initiative, the organization has imple-
mented agile practices in a flexible way and combined with
some traditional practices, which is more suitable for the or-
ganization characteristics. Due to the obtained results, the or-
ganization kept its intention to continue evolving by follow-
ing the StH stages. In the first transition, it was not possible
to propose big changes in the way Organization B works.
However, Organization A expects that considering the posi-
tive results, Organization B will be more willing to be in-
volved in the evolution path. This will be crucial in the more
advanced stage, where data from the clients are needed to
support decision-making and identify new opportunities.

Regarding human aspects, we focused mainly on soft
skills related to agile culture. Strategy S3 is directly related
to human aspects, being responsible for implementing
Squads and Guilds. Squads promoted self-organization,
trust, leadership, and other important skills in agile organi-
zations. Guilds promoted the creation of processes and or-
ganizational culture that enabled sharing and managing
knowledge at individual, team, and organizational levels.
This knowledge is valuable to the continuous improvement
of Organization A. By changing human aspects, S3 enabled
Organization A to create processes, vocabulary, and mind-
set, i.e., an organizational culture that supported the move-
ment from traditional to agile. Moreover, the soft skills de-
veloped by S3 supported other strategies. For example, S1
and S2 were possible because S3 developed some soft skills
(e.g., effective communication, self-organization and adapt-
ability) that supported S1 and S2.

As for the limitations of our approach, we highlight that
it involves a lot of tacit knowledge and judgment. Besides
knowledge about System Thinking tools and GUT Matrix, it
is necessary to have organizational knowledge to apply them
(e.g., one must be able to properly identify problems, inves-
tigate causes, define strategies etc.). Moreover, the evalua-
tion of our proposal was limited. We have used it only in the

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

study reported in this paper, which involved the participation
of the authors. Furthermore, the evaluation was mainly based
on qualitative data. Thus, new studies are necessary to eval-
uate the proposal in other organizations and quantitatively
evaluate the effects of using it.

As future work, we plan to add knowledge (e.g., by
means of guidelines) to help others to use our approach. We
also intend to explore other Systems Theory tools and com-
bine them with Enterprise Architecture Models to connect
system variables, undesirable behaviors and causes to ele-
ments of the organization architecture. Concerning Organi-
zation A, we plan to monitor the implemented strategies and
extend them to other projects. Once the new practices be-
come solid, we plan to aid Organization A in the next transi-
tions, where continuous integration and continuous deploy-
ment are performed.

Concerning the use of SEON, we must point out that the

authors were familiar with its conceptualization. In fact, as

we previously said, the first and third authors are also authors

of the Scrum Reference Ontology (Santos Jr et al. 2021a),

the SEON ontology concerning Scrum that provided the cen-

tral concepts explored in the study. This made it easier to

create the complementary artifacts and use them to share

knowledge with the team to achieve a common understand-

ing and conceptualization in Organization A. It is also wor-

thy highlighting that, although the complementary artifacts

are simple artifacts, the conceptualization behind them, pro-

vided by SEON is the key point to achieve a common con-

ceptualization and understanding. We have applied the por-

tion of SEON used in the case reported in this paper to inte-

grate data from different applications and provide consoli-

dated information to support decision making in agile organ-

izations, as we reported in (Santos Jr et al. 2021a). We intend

to use SEON with this purpose in Organization A. Since the

team has learned SEON conceptualization, we believe that

the first step towards this goal has already been given.

Finally, the contributions of this paper have implications
for practice and research. Regarding implication for practice,
this paper promotes the use of Systems Thinking tools as a
means to identify leverage points relevant to moving an or-
ganization from traditional to agile development. Further-
more, the proposed strategies can be used by practitioners
and organizations to address problems similar to the ones of
Organization A. In addition, we showed how ontologies
could be used to create artifacts and share a common con-
ceptualization and understanding of agile development.
Other people can be inspired by that to solve knowledge
problems in agile and other contexts. The Systems Theory-
based process also has implications for practice, since it can
be used by other organizations to help the transition from
traditional to agile development.

Concerning implications for research, this paper intro-
duces the combined use of Systems Theory tools, GUT Ma-
trix and reference ontologies to support the transition from
traditional and agile development. The combined use of
them and the proposed System Theory-based process can
bring new research questions to be explored in further re-
search. Moreover, the successful use of ontologies to create
more palatable artifacts to practitioners can be a starting
point to new research aiming to make the most of this pow-
erful instrument of knowledge structuring and representa-

tion. Using reference ontologies in the industry is still a chal-
lenge. The use of operational ontologies is more common in
this context, mainly due to the Semantic Web and also to
data and systems interoperability solutions. However, refer-
ence ontologies are also valuable artifacts and provide struc-
tured, common and well-founded knowledge useful to learn-
ing and communication. We believe that new research
should be conducted to investigate how to make reference
ontologies more palatable for the industry. In the study re-
ported in the paper, we gave the first step towards that. How-
ever, other advances are needed. In this sense, we believe
that new research aiming to overcome the challenges of us-

ing ontologies in industrial settings are necessary.

References

Ali N, Lai R (2018) Requirements Engineering in Global
Software Development: A Survey Study from the
Perspectives of Stakeholders. J Softw 13:520–532.

https://doi.org/10.17706/jsw.13.10.520-532

Baskerville R (1997) Distinguishing action research from
participative case studies. J Syst Inf Technol 1:24–43.

https://doi.org/10.1108/13287269780000733

Bastos EC, Barcellos MP, Falbo R (2018) Using semantic
documentation to support software project
management. J Data Semant 7:107–132.
https://doi.org/10.1007/s13740-018-0089-z

Binamungu LP, Embury SM, Konstantinou N (2020)
Characterising the Quality of Behaviour Driven
Development Specifications. Springer International
Publishing

Bosch J (2014) Continuous Software Engineering: An
Introduction. In: Continuous Software Engineering.
Springer International Publishing, Cham, pp 3–13

Bringuente AC, Falbo R, Guizzardi G (2011) Using a
Foundational Ontology for Reengineering a Software
Process Ontology.In: Journal of Information and Data
Management (JIDM), vol. 2, pp. 511–526

De Sousa TL, Venson E, Figueiredo RMDC, et al (2016)
Using scrum in outsourced government projects: An
action research. In: 2016 49th Hawaii International
Conference on System Sciences (HICSS). IEEE, pp

5447–5456

Duarte BB, Leal Castro AL, Falbo R, Guizzardi G, Guizzardi
RSS, Souza VS (2018) Ontological foundations for
software requirements with a focus on
requirements at runtime. In: Applied Ontology,
vol.13, pp. 73-105

Dybå T, Dingsøyr T (2008) Empirical studies of agile
software development: A systematic review. Inf Softw
Technol 50:833–859.
https://doi.org/https://doi.org/10.1016/j.infsof.2008.0

1.006

Falbo R (2014) SABiO: Systematic approach for building
ontologies. In: ONTO. COM/ODISE@ FOIS.

Falbo R, Ruy F, Guizzardi G, Barcellos MP, Almeida JPA
(2014) Towards an Enterprise Ontology Pattern
Language. In: Proceedings of the 29th ACM
Symposium on Applied Computing (ACM SAC 2014)

Fonseca V, Barcellos MP, Falbo R (2017) An ontology-
based approach for integrating tools supporting the
software measurement process. Sci Comput Program

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

135:20–44.
https://doi.org/10.1016/j.scico.2016.10.004

Fitzgerald B and Stol K. (2017). Continuous software
engineering: A roadmap and agenda. Journal of
Systems and Software, Volume 123, pp 176-189,
ISSN: 0164-1212,

https://doi.org/10.1016/j.jss.2015.06.063

Guizzardi G (2007) On Ontology, Ontologies,
Conceptualizations, Modeling Languages, and
(Meta)Models. In: Proceedings of the 2007
Conference on Databases and Information Systems
IV: Selected Papers from the Seventh International
Baltic Conference DB&;IS’2006. IOS Press,
NLD, pp 18–39

Guizzardi G, Guarino N, Almeida JPA (2016) Ontological
Considerations About the Representation of Events
and Endurants in Business Models. In: 14th
International Conference, BPM 2016. Rio de Janeiro,
pp 20–36

Jim M, Piattini M, Vizca A (2009) Challenges and
Improvements in Distributed Software Development :
A Systematic Review. 2009:.

https://doi.org/10.1155/2009/710971

Karvonen T, Lwakatare LE, Sauvola T, et al (2015) Hitting
the Target: Practices for Moving Toward Innovation
Experiment Systems. In: International Conference of
Software Business (ICSOB 2015). Springer, pp 117–
131

Kepner CH, Tregoe BB (1981) The new rational manager.

Princeton research press Princeton, NJ

Kim DH (1994) Systems archetypes I. Diagnosing systemic
issues and designing highleverage
interventions.(Toolbox Reprint Series) Cambridge
MA: Pegasus Communications

L’Erario A, Gonçalves JA, Fabri JA, et al (2020) CFDSD: a
Communication Framework for Distributed Software
Development. J Brazilian Comput Soc 26:.
https://doi.org/10.1186/s13173-020-00101-7

Leffingwel D (2016) SAFe® 4.0 Reference Guide: Scaled
Agile Framework® for Lean Software and Systems
Engineering.

Lima T, Porto J (2019) Análise de Soft Skills na Visão de
Profissionais da Engenharia de Software. In: Anais do
IV Workshop sobre Aspectos Sociais, Humanos e
Econômicos de Software. SBC, Porto Alegre, RS,
Brasil, pp 31–40

Meadows DH (2008) Thinking in systems: A primer. chelsea
green publishing

Olsson HH, Alahyari H, Bosch J (2012) Climbing the
Stairway to Heaven: A Mulitiple-Case Study
Exploring Barriers in the Transition from Agile
Development towards Continuous Deployment of
Software. In: 2012 38th euromicro conference on
software engineering and advanced applications.
IEEE, pp 392–399

OMG (2013) Business Process Model and Notation
(BPMN). Version 2.0.2, Object Management Group
(Technical report, Object Management Group)

Prikladnicki R, Audy JLN (2010) Process models in the
practice of distributed software development: A
systematic review of the literature. Inf Softw Technol
52:779–791.

https://doi.org/10.1016/j.infsof.2010.03.009

Rodriguez P, Markkula J, Oivo M, Turula K (2012) Survey
on Agile and Lean Usage in Finnish Software
Industry. In: Proceedings of the ACM-IEEE
International Symposium on Empirical Software
Engineering and Measurement. Association for
Computing Machinery, New York, NY, USA, pp 139–
148

Runeson P, Host M, Rainer A, Regnell B (2012) Case Study
Research in Software Engineering: Guidelines and
Examples, 1st edn. Wiley Publishing

Ruy F, Souza E, Falbo R, Barcellos M (2017) Software
Testing Processes in ISO Standards: How to
Harmonize Them? In: In Proceedings of the 16th
Brazilian Symposium on Software Quality (SBQS). pp
296–310

Ruy FB, Falbo R, Barcellos MP, et al (2016) SEON: A
software engineering ontology network. In: Lecture
Notes in Computer Science (including subseries
Lecture Notes in Artificial Intelligence and Lecture
Notes in Bioinformatics). pp 527–542

Santos LA, Barcelos MP, Falbo R, Reginaldo CC, Campos
PMC (2019) Measurement Task Ontology. In 12nd
Seminar on Ontology Research in Brazil (Ontobras
2019).

Santos Jr PS, Barcellos MP, Calhau RF (2020) Am I going
to Heaven? In: Proceedings of the 34th Brazilian
Symposium on Software Engineering. ACM, Natal,
Brazil, pp 309–318

Santos Jr PS, Barcellos MP, Falbo R de A, Almeida JPA
(2021a) From a Scrum Reference Ontology to the
Integration of Applications for Data-Driven Software
Development. Inf Softw Technol 136:106570.
https://doi.org/https://doi.org/10.1016/j.infsof.2021.1
06570

Santos Jr PS, Barcellos MP, Ruy FB (2021b) Tell me: Am I
going to Heaven? A Diagnosis Instrument
ofContinuous Software Engineering Practices
Adoption. In: Evaluation andAssessment in Software

Engineering (EASE 2021). ACM, Trond-heim

Satpathy T (ed) (2013) A Guide to the Scrum Body of
Knowledge : SBOK Guide. Scrumstudy a brand of
VMEdu, Inc

Schwaber, Ken; Sutherland J (2013) The scrum guide-the
definitive guide to scrum: The rules of the game

Smith PJ, Beatty R, Hayes CC, et al (2012) Human-Centered
Design of Decision-Support Systems. In: Jacko JA
(ed) The Human Computer Interaction Handbook, 3rd
edn. CRC Press, Boca Raton, FL, pp 589–622

Sterman J (2010) Business dynamics. Irwin/McGraw-Hill
c2000..

Sterman JD (1994) Learning in and about complex systems.
Syst Dyn Rev 10:291–330

Studer R, Benjamins VR, Fensel D (1998) Knowledge
engineering: principles and methods. Data Knowl Eng
25:161–197. https://doi.org/10.1016/S0169-

023X(97)00056-6

Williams L, Cockburn A (2003) Agile software
development: it’s about feedback and change. IEEE

Comput 36:39–43

Wynne M, Hellesoy A, Tooke S (2017) The cucumber book:
behaviour-driven development for testers and

First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry Santos Jr. et al. 2022

developers. Pragmatic Bookshelf

	First step climbing the Stairway to Heaven Model - Results from a Case Study in Industry
	1 Introduction
	2 Background
	2.1 Stairway to Heaven
	2.2 System Theory
	2.3 GUT Matrix
	2.4 Reference Ontology

	3 Related Work
	4 Case Study, Planning, Execution, and Results
	4.1 Study Design
	4.1.1 Diagnosis
	4.1.2 Planning

	4.2 Study Execution and Data Collection
	4.2.1 Data Collection
	A. Initial Interviews
	B. Systemic Maps
	C. GUT Matrix
	D. Strategies

	4.3 Study Analysis, Interpretation and Lessons Learned
	4.3.1 Results
	4.3.2 Using Reference Ontologies to learn Scrum
	4.3.3 Systems Theory-based process
	4.3.4 Lesson Learned

	5 Threats to Validity to the Study Results
	6 Conclusions, Future Work and Implications
	References

