
Journal of Software Engineering Research and Development, 2023, 11:4, doi: 10.5753/jserd.2023.2142
 This work is licensed under a Creative Commons Attribution 4.0 International License.

An Evaluation of Ranking-to-Learn Approaches for Test Case
Prioritization in Continuous Integration
Jackson Antonio do Prado Lima [Federal University of Paraná | jackson.lima@ufpr.br]
Silvia Regina Vergilio [Federal University of Paraná | silvia@inf.ufpr.br]

Abstract
Continuous Integration (CI) environments is a practice adopted by most organizations that allows

frequent integration of software changes, making software evolution more rapid and cost-effective. Such
environments require dynamic Test Case Prioritization (TCP) approaches that adapt better to the test
budgets and frequent addition/removal of test cases. In this sense, Ranking-to-Learn approaches have
been proposed and are more suitable for CI constraints. By observing past prioritizations and guided
by reward functions, they learn the best prioritization for a given commit. In order to contribute for
improvements and direct future research, this work evaluates how far the solutions produced by these
approaches are from optimal solutions produced by a deterministic approach (ground truth). To this
end, we consider two learning-based approaches i) RETECS, which is based on Reinforcement Learning;
and ii) COLEMAN, an approach based on Multi-Armed Bandit. The evaluation was conducted with
twelve systems, three test budgets, two reward functions, and six measures concerning fault detection
effectiveness, early fault detection, test time reduction in the CI cycles, prioritization time, and accu-
racy. Our findings have some implications for the approaches application and reward function choice.
The approaches are applicable in real scenarios and produce solutions very close to the optimal ones,
respectively, in 92% and 75% of the cases. Both approaches have some limitations to learn with few
historical test data (a small number of CI Cycles) and deal with a large test case set, in which many
failures are distributed over many test cases.

Keywords: Test Case Prioritization, Continuous Integration environments, Ranking-to-Learn

1 Introduction

Continuous Integration (CI) is a common practice
adopted by many organizations to make software evo-
lution more cost-effective and reliable (Fowler, 2006).
In a CI scenario, the software is changed, built, and
tested many times in a short period. This is usually
costly because a test suite often includes thousands of
test cases and requires several hours or even days to ex-
ecute (Haghighatkhah et al., 2018). In such a scenario,
the application of regression testing techniques is fun-
damental.

Regression testing techniques are classified into three
main categories (Yoo and Harman, 2012): minimization,
selection, and prioritization. Techniques based on Test
Case Minimization (TCM) usually remove redundant
test cases, minimizing the test set according to some
criterion. Test Case Selection (TCS) selects a subset of
test cases, the most important ones to test the software.
Test Case Prioritization (TCP) attempts to re-order a
test suite to identify an “ideal” order of test cases that
maximizes specific goals, such as early fault detection.
TCP techniques are very popular in the industry and
have some advantages because they do not discard any
test case. Moreover, the test cases that have a higher
probability of detecting a fault are executed first. This
allows interrupting the test activity early and reducing
costs and time between each CI cycle.

Existing TCP techniques use different kind of infor-
mation to prioritize the test cases: historical failure data,

test coverage, requirements, and system models (Yoo
and Harman, 2012). However, most techniques need
adaptations to be applied in CI environments. This
is because in CI there are limited resources and con-
straints that can make the application of a technique
infeasible, due to the time spent for the prioritization
or code analysis. The application of TCP techniques
that require extensive code analysis or coverage, such
as search-based ones, is not always possible due to the
test budget for a build. To deal with these constraints,
approaches have been proposed recently (Marijan et al.,
2013; Marijan, 2015; Marijan et al., 2017, 2019; Xiao
et al., 2018; Haghighatkhah et al., 2018; Busjaeger and
Xie, 2016). Most of them are history-based, that is, they
consider test cases that failed in the past are more likely
to fail in the future. This kind of TCP technique has
been acknowledged as one of the most suitable for the
CI environment characteristics (Haghighatkhah et al.,
2018).

Nevertheless, these approaches present some limita-
tions. Some of them require code analysis, which can
be costly. They do not consider test case volatility, a
characteristic associated with the fact that test cases
may be added and/or removed over the cycles. They
are not adaptive, that is, they do not learn with past
prioritizations. To overcome such limitations, learning
approaches based on historical failure data have been
proposed (Prado Lima and Vergilio, 2020a; Spieker
et al., 2017). These approaches observe previous cy-
cles and learn with past prioritizations guided by a re-

https://orcid.org/0000-0003-4993-777X
mailto:jackson.lima@ufpr.br
https://orcid.org/0000-0003-3139-6266
mailto:silvia@inf.ufpr.br

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

ward function (online learning). We can mention two
learning approaches that have produced promising re-
sults in TCP in CI environments (TCPCI) consider-
ing standard TCP metrics, such as Normalized Average
Percentage of Faults Detected (NAPFD) and Average
Percentage of Faults Detected with cost consideration
(APFDc) (Spieker et al., 2017; Prado Lima and Vergilio,
2020a): i) RETECS (Spieker et al., 2017) (Reinforced
Test Case Selection), which uses Reinforcement Learn-
ing (RL) to perform the prioritization; and ii) COLE-
MAN (Prado Lima and Vergilio, 2020a) (Combinatorial
VOlatiLE Multi-Armed BANdit), an approach that
uses a Multi-Armed Bandit (MAB) policy.

These two learning-based approaches are the focus of
our work. They deal properly with the test case volatil-
ity and CI constraints and spend a time to perform
the prioritization that is suitable for the CI budget.
In a previous work we compared COLEMAN against a
search-based approach. As a result, the learning-based
approach presented solutions for most systems that are
very near to the solutions produced by a Genetic Al-
gorithm, considering early fault detection. Moreover, in
return, there is a considerable gain in the time, mainly
for the hard cases.

However, there are many difficulties inherent to the
TCPCI problem, and we do not get there yet. Sure there
is room for improvement. With this in mind, and follow-
ing up our previous works, this paper aims to evaluate
how far the solutions produced by both learning-based
approaches are from optimal solutions. To answer this
question, we evaluate the approaches having a determin-
istic approach as a baseline (ground truth). We adopted
the same methodology of our previous work Prado Lima
and Vergilio (2020b) and report results from the use of
two reward functions: Reward Based on Failures and
Reward Based on Time-Rank, in the presence of three
different time constraints (budgets). But, differently, in
the present work, we use twelve large-scale real-world
software systems and six measures to evaluate: fault
detection effectiveness, early fault detection, test time
reduction in the CI cycles, prioritization time, and accu-
racy, regarding the distance from the optimal solution.

In this way, we evaluate both learning approach so-
lutions’ trade-offs regarding fault detection and priori-
tization time. This allows the assessment of lightweight
test case prioritization approaches in CI environments
by evaluating how far their solutions are from optimal
ones. As a consequence, we obtained new findings and
discuss some implications which were not presented in
the previous works, regarding: i) application of the ap-
proaches: we present guidelines that include the choice
of the reward function, cost consideration regarding test
case duration, and characteristics of the systems and
budgets; ii) identification of limitations and possible
improvements: we analyze some aspects regarding the
number of test cases, failures distribution over test cases
and CI cycles. Such aspects are drawbacks for the learn-
ing approaches and constitute gaps for directing future
research; and iii) benchmark construction: we identify
hard prioritization cases. In addition to this, we make

available a replication package containing supplemen-
tary material1.

The paper is structured as follows. Section 2 con-
tains background about CI environments, TCP works
for CI, and related work. Section 3.1 details evaluated
approaches. Section 4 describes how our evaluation was
conducted: objectives, Systems Under Test (SUT), eval-
uation measures and used parameters. Section 5 shows
and analyses the results. Section 6 presents the main
threats to the validity of our results. Section 7 contains
our final remarks and discusses future work.

2 Background and Related Work
Continuous Integration (CI) environments have been in-
creasingly adopted in the industry (Hilton, 2016). CI
environments automate the process of building and test-
ing software, and allow engineers to merge code that is
under development or maintenance with the mainline
codebase at frequent time intervals (Duvall et al., 2007;
Fowler, 2006). In CI development, teams work continu-
ously integrating code and make smaller code commits
every day, usually monitored by a CI server. When a
change occurs, the CI server clones this code, builds it,
and runs the testing processes. When the entire process
is finished, the CI server generates a report (feedback),
and the developers are informed. Figure 1 illustrates
this process.

2.1 TCP in CI environments
Given a test case set T , available for a build, the set
PT of all possible permutations of T , and a function f
that determines the performance of a given prioritiza-
tion T ′ from PT to real numbers, the TCPCI problem
aims at finding the best T ′ to achieve certain specific
criteria measured by f . In CI, the determination of T ′

may subject to a test budget that is the available time
to execute the CI cycle.

Many TCP approaches exist in the literature (Khati-
bsyarbini et al., 2018; Yoo and Harman, 2012). Among
them, we can mention approaches that use evolutionary
algorithms (Bajaj and Sangwan, 2019; Li et al., 2007;
Di Nucci et al., 2018; Epitropakis et al., 2015). How-
ever, such approaches usually are complex and take
much time to execute. In addition to this, most of
them require coverage and code changes analysis, and
do not consider the CI particularities such as volatil-
ity of test cases, multiple test requests, constraints and
test budget. Because of this, approaches specific for CI
have been proposed recently (Prado Lima and Vergilio,
2020c).

Marijan et al. (2013) introduce an approach named
ROCKET. Such an approach implements domain spe-
cific heuristics that consider the distance of the failure

1Our supplementary material is available online (Prado Lima
and Vergilio, 2021). After publication, we will use a DOI as a
reference for the material.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Continuous Integration

result

check-in fetch changes

Figure 1. Overview of a Continuous Integration environment (Prado Lima and Vergilio, 2020a).

status from a current execution of a test case to its exe-
cution time. However, ROCKET does not consider the
entire history of failures. An extension is proposed (Mar-
ijan, 2015) to consider, given a test budget, other fault
detection, business, performance, and technical perspec-
tives. Such an extension needs additional information
related to coverage and features.

The tool, called TITAN (Marijan et al., 2017), uses
constraint programming to minimize the number of test
cases that cover some requirements that the original
test cases cover. Then, the minimized set is prioritized
using ROCKET (Marijan et al., 2013). The problem
with these works is the cost because feature coverage or
other additional information is required.

In the context of Highly Configuration Systems, Mar-
ijan et al. (2019) use a based-tree learning algorithm to
classify test cases according to the feature coverage into
the following categories: unique, totally redundant, and
partially redundant. The main idea is to eliminate test
cases totally redundant. Partially redundant test cases
can also be included in the set according to its priority
and time budget. The priority is calculated based on its
historical fault detection effectiveness. Nevertheless, an
effort to calculate the coverage is also necessary.

The work of Xiao et al. (2018) determines a priority
for the test cases in the same commit and after, orders
them considering the failure history, test coverage, test
size, and execution time. The technique focuses only on
test cases that failed recently, not exploring new test
cases. Haghighatkhah et al. (2018) show the use of his-
torical failure knowledge is a strong predictor for TCP
in CI environments, and that it is effective to catch re-
gression faults earlier without requiring a large amount
of historical data. In addition to this, the effectiveness
can be improved by using such knowledge with a di-
versity measure, calculated by comparing the text from
test cases. The idea is not to calculate similarity based
on measures that rely on code such as coverage, call
methods, and so on.

Busjaeger and Xie (2016) use SV Mmap to create a
prediction model for the fault-proneness of test cases to
be used in the prioritization, taking into account five
attributes: test coverage of modified code, the textual
similarity between tests and changes, recent test-failure
or fault history, and test age. However, these attributes
need additional information and rely on code instrumen-
tation.

The works mentioned above present some limitations.

They require code analysis, which can be costly. They
do not address the main characteristics of CI environ-
ments. For instance, they do not consider test case
volatility, a characteristic associated with the fact that
test cases may be added and/or removed over the cy-
cles. They are not adaptive, that is, they do not learn
with past prioritizations.

To overcome such limitations, learning approaches
based on historical failure data have been proposed.
Bertolino et al. (2020) distinguish two kinds of
TCP learning-based strategies. The first one, named
Learning-to-Rank, uses supervised learning to train a
model based on some test features. The model is then
used to rank test sets in future commits. The problem
with these strategies is that the model may no longer be
representative when the commit context changes. The
second kind, named Ranking-to-Learn, is more suitable
to the dynamic CI context. This strategy learns based
on the rewards obtained from the feedback of previously
used ranks. The main idea is to maximize the rewards.

The work of Bertolino et al. (2020) presents results
comparing both kinds of approaches in CI and eval-
uates the performance of different Machine Learning
(ML) algorithms. They conclude that Ranking-to-Learn
strategies are more robust regarding test case volatility,
code changes, and number of failing tests. Because of
this, the focus of our work is on this kind of strategy,
evaluating two approaches that have presented promis-
ing results in TCPCI context: RETECS (Spieker et al.,
2017) (Reinforced Test Case Selection) and COLE-
MAN (Prado Lima and Vergilio, 2020a) (Combinatorial
VOlatiLE Multi-Armed BANdit).

In this sense, the work of Bertolino et al. has goals
similar to ours. However, the evaluation conducted by
that work uses a different approach, that is, in fact, a
test case selection and prioritization approach. It in-
cludes a step to first select a test case subset before
the prioritization through the learning strategies. In this
way, the Ranking-to-Learn approaches were not evalu-
ated as they were proposed in the literature. The work
does not evaluate a MAB strategy, as used by COLE-
MAN. The learning is based on different features related
to the test activity, which can be costly. We also used
another set of evaluation measures, adopted in the test
case prioritization context, leading to new findings and
insights about the learning approaches. The next sec-
tion describes both approaches RETECS and COLE-
MAN, in details.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

3 Learning-based Approaches
This work aims to evaluate Ranking-to-Learn ap-
proaches for TCPCI problem by comparing their solu-
tions with optimal solutions produced by a determinis-
tic approach. Figure 2 illustrates how such approaches
work in the CI environment. After a successful build,
the approaches are applied before the test execution and
perform the prioritization of a test case set (T) available
for the current commit (c). Thus, the test cases of the
prioritized test case set (T ′) are executed until the avail-
able test budget is reached. Feedback (reward) about T ′

execution is obtained and used the approaches to adapt
its experience for future actions (online learning). In
the end, a report is generated, and the developers are
informed.

Next, we present the two learning-based approaches
used in this work: RETECS and COLEMAN, as well
as the reward functions used by both approaches in our
evaluation, RNFail and TimeRank.

3.1 RETECS

RETECS (Reinforced Test Case Selection), introduced
by Spieker et al. (2017), is a Reinforcement Learning
(RL) based approach. It uses an agent, for instance, an
Artificial Neural Network (ANN) or a Tableau Repre-
sentation, to interact with the CI environment. Based
on the environment state, the agent defines an action
(prioritization) to be applied in such an environment.
The state is given by the information about a test case,
such as the test case duration, historical failure data,
and previous last execution. After, according to its pre-
vious action’s performance, the agent receives a reward
(feedback).

Based on rewards provided by a reward function, the
agent adapts its experience for future actions (online
learning). To avoid learning with irrelevant information
due to long history information (low reliability with the
actual behavior of the system under test), a memory
representation (sliding window) is used to delimit how
much past information is used to learn.

Spieker et al. compared different variants of RL
agents and evaluated the best variation against three ba-
sic TCP methods, a random prioritization and two de-
terministic methods: Sorting and Weighting. The Sort-
ing method prioritizes giving higher priority for the
test cases that failed recently, while Weighting is based
on the weighted sum given to the input information
used as state in the RL agent. According to the au-
thors, RETECS using the ANN variant presented the
best results. For this, we evaluated the performance of
RETECS using an ANN as an agent in our study.

3.2 COLEMAN

COLEMAN is a Multi-Armed Bandit (MAB) (Kuleshov
and Precup, 2014) based approach design to solve the
TCPCI problem dealing with the Exploration versus
Exploitation (EvE) dilemma (Robbins, 1985). In such

a dilemma, there is a balance in the search between
solutions with the best performance and dissimilar so-
lutions.

In the MAB scenario, a player plays on a set of slot
machines (or arms/actions) that even identical produce
different gains. After a player pulls one of the arms in a
turn (c), a reward is received drawn from some unknown
distribution, thus aiming to maximize the sum of the
rewards. Different strategies, called MAB policies, can
be used to choose the next arm by observing previous
rewards and decisions.

Similarly, COLEMAN considers that a test case is
an arm, but it encompasses the dynamic nature of the
TCPCI problem. For this, COLEMAN incorporates two
variants of MAB: volatile and combinatorial. In the first
variation, the approach selects multiple arms in each
turn (commit), rather than one, to produce an ordered
set. In the second one, only the test cases available in
each commit are considered for prioritization. The sec-
ond variation aims to deal with the test case volatility.
In the end, a reward function is used to obtain feed-
back (reward) from the prioritization proposed by the
approach. Based on such feedback, the approach aims
to incorporate the learning from the application of the
prioritized test case set.

COLEMAN is generic and lightweight. That is, it
does not require any further detail about the system
under tests such as code coverage or code instrumen-
tation, as well as it allows the use of any MAB policy
and requires only historical failure data. According to
the authors of COLEMAN, it is possible to use different
MAB policies. Among the policies evaluated in the ex-
periments performed, the Fitness-Rate-Rank based on
Multi-Armed Bandit (FRRMAB) policy (Li et al., 2014)
presented the best performance.

FRRMAB is a state policy that works with a sliding
window SW as a smoother way to consider dynamic
environments, allowing the observation of the changes
in the quality of the arms (test cases) along the search
process. The use of a SW allows evaluating a test case
without it being hampered by its performance at a very
early stage, which may be irrelevant to its current per-
formance.

The FRRMAB policy was used in a further study
that analyses the trade-offs of the COLEMAN solutions
in comparison with the near-optimal solutions gener-
ated by a Genetic Algorithm (GA) (Prado Lima and
Vergilio, 2020b). Such an study shows that, except for
one system, COLEMAN yields near-optimal solutions
with negligible time. The unique exception was under a
restrictive test budget associated with a few historical
data. Because of this, FRRMAB is also adopted in our
study that compares COLEMAN with a deterministic
approach.

3.3 Reward Functions

Reward functions are used to evaluate the performance
of a prioritization. In this work, we use the same func-
tions adopted in (Prado Lima and Vergilio, 2020a).

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Continuous Integration Server

Ra
nk

in
g-

to
-L

ea
rnDevelopers Source Control

Server

check-in fetch changes

Reward Function

Approach

Test Execution

result

Test Set T available
T’ prioritized

Feedback

Historical Data

Figure 2. Integration of the evaluated learning approaches in the CI environment.

They are adapted from the work of Spieker et al. (2017).
They are: Reward Based on Failures (RNFail) and Re-
ward based on Time-ranked (TimeRank), as follows.

Let t′
c to be a test case from a prioritized test case

set T ′
c at a commit (cycle) c. The first reward function

RNFail (Equation 1) is based on the number of fail-
ures associated with a test case t′

c ∈ T ′
t . This function

captures the ability of a test case to produce failures.

RNFail(t′
c) =

{
1 if t′

c failed
0 otherwise

(1)

The second function is TimeRank, defined in Equa-
tion 2. Let T ′fail is composed by the failing test cases
from T ′

c; The prec(t′
c1

, t′
c2

) function returns 1 if the po-
sition in T ′

c of t′
c1

is lower than the position of t′
c2

.

TimeRank(t′
c) = |T ′fail| − [¬(fails(t′

c))
|T ′fail| ×∑|T ′fail|

i=1 prec(t′
c, t′

ci
)]

|T ′fail|

(2)

The TimeRank function observes the rank of each
t′
c in T ′

c and considers the problem of early scheduling.
This function privileges the failing test cases ranked in
the first positions in T ′

c, and it penalizes those that do
not fail and precede failing ones. The reward value of
non-failed test case is decreased according to the num-
ber of failing test cases ranked after it.

4 Evaluation Methodology
This section describes how the evaluation was con-
ducted, by presenting objectives, used measures and sys-
tems, how the optimal solutions were obtained, and how
RETECS and COLEMAN were executed.

The evaluation was guided by the following general
research question: “How far are the solutions produced
by learning approaches from optimal solutions obtained
through a deterministic approach?” From this general
question, we derived five objective research questions.
Each one of these research questions evaluates the learn-
ing approaches considering a different perspective in

comparison with the deterministic approach by using
distinct measures as follows.

• RQ1: fault detection effectiveness.
• RQ2: fault detection effectiveness in the presence

of the factor cost.
• RQ3: early fault detection and time reduction con-

sidering the CI cycles.
• RQ4: time the learning approaches take to perform

the prioritization.
• RQ5: accuracy in the prediction considering the dif-

ference between the estimated values and the ones
obtained by the deterministic approach.

To answer our question, we adopted a methodology
following principles adopted by Wohlin et al. (2000). We
formulated our main objectives according to the Goal
Question Metric (GQM) method (Basili et al., 1994), as
described in Table 1.

Table 1. Goal Question Metric Formulation

Goal: to evaluate learning-based ap-
proaches

Purpose: by analyzing their solutions

With respect to: the optimal solutions gener-
ated by a deterministic ap-
proach

From the point of view: of the tester

In the context of: CI environments

Research Questions: Evaluation Measures:
RQ1 fault detection effectiveness

(NAPFD)
fault detection effective-
ness with cost consideration
(APFDc)

RQ2 early fault detection (RFTC)
test time reduction (NTR)

RQ3 prioritization time (PR)

RQ4 accuracy (RMSE)

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

4.1 Evaluation Measures
In our study, we used six measures. These metrics were
chosen because they are largely used in the TCP liter-
ature (Yoo and Harman, 2012). The first one, NAPFD
(Normalized APFD) metric (Qu et al., 2007) (Equa-
tion 3), evaluates fault detection effectiveness and is an
extension of the APFD Average Percentage of Faults De-
tected (APFD) (Rothermel et al., 1999) metric. APFD
indicates how quickly a set of prioritized test cases (T ′)
can detect faults present in the application being tested.
On the other hand, the NAPFD metric considers the
ratio between detected and detectable faults within T .
NAPFD fits the CI time constraints adequately, when
not all the test cases are executed due to a time budget,
and faults can be undetected. Higher NAPFD values
indicate that the faults are detected faster using fewer
test cases.

NAPFD(T ′) = p −
∑n

1 rank(T ′
i)

m × n
+ p

2n
(3)

where m denotes the number of faults detected by all
test cases; rank(T ′

i) is the position of T ′
i in T ′, if T ′

i did
not reveal a fault we set T ′

i = 0; n denotes the number
of test cases in T ′; and p denotes the number of faults
detected by T ′ divided by m. NAPFD is equal to APFD
metric if all faults are detected.

The second measure, named APFDc (APFD with
cost consideration) (Elbaum et al., 2001) (Equation 4),
is also an extension from APFD. This metric assumes
that the test cases do not have the same cost. Thus, we
can consider that a test case can be more costly to exe-
cute than others, concerning, for instance, to execution
time. The cost can be used as a limit, in which the test
cases are usually prioritized until a maximum cost is
reached. Besides that, APFDc can compute the APFD
value, whether both fault severity and test case costs
are identical. In this work, we consider that all faults
have the same severity.

APFDc(T ′
t) =

∑m
i=1(

∑n
j=T Fi

cj − 0.5cT Fi)∑n
j=1 cj × m

(4)

where cj is the cost of a test case Ti, and TFi is the first
test case from T ′ that reveals fault i.

The third measure Rank of the Failing Test Cases
(RFTC) evaluates the test suite efficiency concerning
early fault detection. In such a rank, the value repre-
sents the first failing test cases’ execution order in the
prioritized test suite.

We defined a fourth measure, Normalized Time Re-
duction (NTR) (Equation 5), to capture the difference
between the time spent until the first test case fails rt

and the total time spent to execute all tests r̂t. Only
the commits which failed CIfail are considered in the
calculation. In this way, we can evaluate the capability
of an algorithm to reduce the time spent in a CI cycle.

NTR(A) =
∑CIfail

t=1 (r̂t − rt)∑CIfail

t=1 (r̂t)
(5)

The fifth measure, Prioritization Time (PR), mea-
sures the time spent by an approach to perform the
prioritization. PR evaluates the applicability of an ap-
proach. Based on this value, we can observe whether an
approach spends much time, making it impracticable
for real scenarios.

The last measure, Root-Mean-Square-Error (RMSE),
measures the difference between the predicted and the
observed values of NAPFD (or APFDc). In our case,
RMSE (Equation 6) is the difference between the value
calculated for T ′ in a CI Cycle (commit) t, suggested
by the learning approaches (ŝt) and the optimal value
T ′ (st) found by the deterministic approach. For an al-
gorithm A, the RMSE is computed as follows:

RMSE(A) =

√∑CI
t=1(ŝt − st)2

CI
(6)

where CI is the amount of CI Cycles in a system. The
most accurate approach is the one with smallest RMSE.

We compared the results using Kruskal-
Wallis (Kruskal and Wallis, 1952) and Mann-
Whitney (Mann and Whitney, 1947) statistical
tests to determine the significance level, and Vargha
and Delaney’s Â12 (Vargha and Delaney, 2000) metric
as effect test. The statistical tests were applied with
95% of confidence. The Â12 metric calculates the effect
size magnitude of the difference between two groups,
which defines the probability of a value taken randomly
from the first sample is higher than a value taken
randomly from the second sample.

The magnitude can be: Negligible (Â12 < 0.56);
Small (0.56 ≤ Â12 < 0.64); Medium (0.64 ≤ Â12 <
0.71); and Large (0.71 ≤ Â12). A Negligible magnitude
represents a very small difference among the values and
usually does not yield statistical difference. The Small
and Medium magnitudes may yield statistical differ-
ences (or not). Finally, a Large magnitude represents a
significantly large difference that usually can be seen in
the numbers without much effort.

A Negligible magnitude represents a very small dif-
ference among the values and usually does not yield sta-
tistical difference. The Small and Medium magnitudes
represent small and medium differences among the val-
ues, and may or not yield statistical differences. Finally,
a Large magnitude represents a significantly large dif-
ference that usually can be seen in the numbers without
much effort.

4.2 Target Systems

The study was performed with twelve systems already
used in the literature (Prado Lima and Vergilio, 2020a;
Spieker et al., 2017; Yu et al., 2019). The target systems
are detailed in Table 2 that contains: the system name,
the period of build logs analyzed, the total of builds
identified, and in parentheses, the number of builds in-
cluded in the analysis. Build logs with some problems
were discarded, e.g., extracting information (non-valid
build log), and those the test cases did not execute.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

The fourth column shows the total of failures found; in
parentheses, the number of builds in which at least one
test failed. The fifth column shows the number of unique
test cases identified from build logs; in parenthesis, the
range of test cases executed in the builds. The sixth and
seventh columns present the average duration and stan-
dard deviation in minutes of the CI Cycles (commits),
and the interval between them.

Druid, developed by Alibaba, is a database connec-
tion pool written in Java. Fastjson, created by Al-
ibaba, is a Java library that can be used to a fast
JSON parser/generator for Java. Deeplearning4j is a
deep learning library for Java Virtual Machine. DSpace
is an open source software that provides facilities for
the management of digital collections, used for the im-
plementation of institutional repositories. GSDTSR is
The Google Dataset of Testing Results (Elbaum et al.,
2014) with a sample of 3.5 million test suite execu-
tion results from Google products. Guava, developed
by Google, is a set of core libraries for Java which in-
cludes new collection types, APIs/utilities for concur-
rency, I/O, and others. OkHttp, developed by Square, is
an HTTP and HTTP/2 client for Android and Java ap-
plications. Retrofit, also developed by Square, is a type-
safe HTTP client for Android and Java. ZXing (Zebra
Crossing) is a barcode scanning library for Java and
Android. The systems IOF/ROL and Paint Control are
industrial datasets for testing complex industrial robots
from ABB Robotic (Spieker et al., 2017). LexisNexis is
an industrial dataset for testing complex web-system at
LexisNexis company (Yu et al., 2019).

More details about these systems are available in our
replication package (Prado Lima and Vergilio, 2021).
This package contains some figures illustrating number
of failures per cycle for each SUT, which allows observ-
ing test case volatility.

4.3 Generating Optimal Solutions

The deterministic approach finds the optimal solution
for each commit associated with a SUT. The failure
results from the test case execution are known a priori
and used in the prioritization, according to Algorithm 1.

We identify the test set available Tc and the original
time Ac spent to run such set in each commit. After,
we define a time budget to run the tests. In this work,
we evaluated three time budgets (TBc) concerning, re-
spectively, 10%, 50%, and 80% of the execution time of
the overall test set Tc available. They were chosen to
observe the influence of the test budget in the results
and how it affects the learning process, as well as they
already were used in previous work (Prado Lima and
Vergilio, 2020a). In the end, we sort the test case by the
number of failures in descending order, and test case
duration in ascending order. This sorter allows evaluat-
ing the prioritized test set through different measures,
such as failure detection (NAPFD) and cost (APFDc).

Algorithm 1: Deterministic Algorithm to Find
Optimal Solutions for Test Case Prioritization in
Continuous Integration Environments Problem.
forall commit c in Target System do

Tc ← Test Case set available from system in the
current commit;

Ac ← Total time spent to run Tc;
T Bc ← Time Budget (10%, 50%, or 80% from
Ac);

T ′
c ← Tc ordered by number of failures
(descending) and duration (ascending);

Evaluate T ′
c considering T Bc (e.g. NAPFD and

APFDc);
end

4.4 Executing Learning-based approaches
We use the results from the execution of COLEMAN
and RETECS available in (Prado Lima and Vergilio,
2020a)2. They were obtained with 30 independent ex-
ecutions for each algorithm/configuration, using both
reward functions, RNFail and TimeRank. COLEMAN
was configured with FRRMAB policy, sliding window
size SW equals to 100, coefficient C to balance explo-
ration and exploitation equals to 0.3, and decayed factor
equals to 1. RETECS was executed with an Artificial
Neural Network (ANN), and the values used for Hid-
den Nodes, Replay Memory, and Replay Batch Size, are,
respectively, 12, 10000, and 1000. All the experiments
were performed on an Intel Xeon E5-2640 v3 with 2.60
GHz CPU, 94GB RAM, running Linux Ubuntu 18.04.1
LTS. The system LexisNexis was not used in previous
work (Prado Lima and Vergilio, 2020a). For this sys-
tem, we executed the experiments following the same
settings abovementioned. The deterministic algorithm
was executed in the same computational environment.

5 Results and Analysis
In this section, we analyze the results of the learning ap-
proaches, RETECS and COLEMAN, having as a base-
line the deterministic approach and our measures. Each
subsection evaluates a different perspective according
the research questions posed previously.

5.1 RQ1: Fault Detection Effectiveness
To evaluate the prioritization quality regarding fault de-
tection capacity, we compare NAPFD average values
presented in Table 3. This table presents average values
± standard deviation. The best values are highlighted
in bold. We applied the Kruskal-Wallis test to compare
the algorithms regarding each measure. Results that are
statistically equivalent to the best one are highlight in
gray. We also use different symbols to indicate the effect
size magnitude concerning the best values: “⋆” denotes
the best algorithm for a time budget in a SUT. “▼”

2Supplementary material available at https://doi.org/10.
17605/OSF.IO/WMCBT

https://doi.org/10.17605/OSF.IO/WMCBT
https://doi.org/10.17605/OSF.IO/WMCBT

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 2. Description of the Target Systems

Name Period Builds Failures Test Cases Duration (min) Interval (min)

Druid 2016/04/24-2016/11/08 286 (168) 270 (71) 2391 (1778-1910) 4.97 ± 10.66 384.76 ± 468.86
Fastjson 2016/04/15-2018/12/04 2710 (2371) 940 (323) 2416 (900-2102) 1.97 ± 0.89 233.22 ± 401.26
Deeplearning4j 2014/02/22-2016/01/01 3410 (483) 777 (323) 117 (1-52) 12.33 ± 14.91 306.05 ± 442.55
DSpace 2013/10/16-2019/01/08 6309 (5673) 13413 (387) 211 (16-136) 11.78 ± 7.03 291.29 ± 411.19
GSDTSR 2016/01/02-2016/02/01 259388 (259388) 3208 (2924) 5555 (1-390) 974.25 ± 4850.66 1439.91 ± 2.58
Guava 2014/11/06-2018/12/02 2011 (1689) 7659 (112) 568 (308-512) 62.53 ± 80.31 435.55 ± 464.52
IOF/ROL 2015/02/13-2016/10/25 2392 (2392) 9289 (1627) 1941 (1-707) 1537.27 ± 2018.73 1324.36 ± 291.78
LexisNexis 2018/09/27-2018/11/15 54 (54) 21189 (54) 2662 (2007-2377) 0.8668 ± 0.808 900.367 ± 305.125
OkHttp 2013/03/26-2018/05/30 9919 (6215) 9586 (1408) 289 (2-75) 7.64 ± 5.64 220.17 ± 405.93
Paint Control 2016/01/12-2016/12/20 20711 (20711) 4956 (1980) 1980 (1-74) 424.46 ± 275.90 1417.86 ± 144.97
Retrofit 2013/02/17-2018/11/26 3719 (2711) 611 (125) 206 (5-75) 2.40 ± 1.60 270.86 ± 449.41
ZXing 2014/01/17-2017/04/16 961 (605) 68 (11) 124 (81-123) 13.14 ± 12.37 411.10 ± 465.53

indicates a negligible effect size; “▽” denotes a small
magnitude, “△” a medium magnitude, and “▲” large.

As expected, the deterministic approach presents the
best values for all systems and budgets with statistical
difference, that has, in most cases, a large magnitude.

Although there are statistical differences, in some
cases, we observe statistical equivalence, mainly for
COLEMAN using TimeRank function, in the less re-
strictive scenarios (budgets of 50% and 80%). This
means the results are very close to optimal. Using
TimeRank, for all systems and budgets, COLEMAN
obtained equivalence to the optimal in 15 cases out of
36 (≈ 42%). Considering each budget 10%, 50%, and
80%, COLEMAN reaches equivalence in, respectively,
17%, 50%, and 58% of the cases. COLEMAN does not
reach such a good performance using RNFail function.
In contrast, RETECS reaches results equivalent to the
optimal using RNFail function, but only in 3 cases, out
of 36 (≈ 8%). Its performance seems not be impacted by
the test budget. In conclusion, COLEMAN outperforms
RETECS regarding early fault detection.

Finding 1. COLEMAN presents better perfor-
mance than RETECS. Using TimeRank, COLE-
MAN obtained results that are equivalent to op-
timal in 42% of the cases. This percentage in-
creases in the presence of less restrictive budgets,
reaching 58% of the cases in the time budget of
80%.

To a better visualization, Figure 3 illustrates radar
charts (or spider graphs) for each time budget. These
charts allow us to observe the variation of the algo-
rithms across the systems as well as the difference be-
tween them. Each angle represents the NAPFD value for
a system. The purple line represents the values found
by the Deterministic approach; blue and orange lines
obtained by RETECS using, respectively, RNFail and
TimeRank functions; and green and red lines obtained
by COLEMAN using RNFail and TimeRank functions.

As we can observe, increasing the time budget, the
learning-based approaches produce solutions closer to
optimal, mainly COLEMAN. In some systems, we ob-
serve that, even increasing the time budget, the differ-
ence keeps the same; for instance, Deeplearning4j and

OkHttp. To a deeper analysis, we refer to Figure 4. This
figure presents, in overall (in the same scale), different
information about each system: number of valid builds,
number of failures, number of failed builds, number of
test cases, mean number of failures by cycles, and mean
number of failing cycles. More information is found in
Table 2.

Regarding the Deeplearning4j system, it has a high
average of failing builds. However, as we observed, only
this does not help to provide good prioritization. On the
other hand, OkHttp has a small average of failing builds
but more failures and failed builds. This helped to pro-
vide better NAPFD values than in the Deepleaning4j
system. In both systems, COLEMAN obtained equiva-
lence to optimal in all time budgets evaluated.

We analyzed other characteristics of the systems that
may impact the prioritization, e.g., the test case volatil-
ity. We observe in the Deeplearning4j and OkHttp sys-
tems that the failures are frequent and well distributed
in some tests, even having peaks of failures and test case
volatility. This scenario endorses an approach based on
historical test data.

Among the systems, ZXing is the simplest one. In this
system, the values found by learning-based approaches
are the closest to the optimal, that is, close to 1 which
is the maximum value for NAPFD. There is low test
case volatility in this system, and there are peaks in the
failure detection in a few commits, with long periods
without failures. This situation can also be supported
by an approach based on historical test data.

Regarding the NAPFD results that are equivalent to
the optimal, we observe that RNFail fits better with
RETECS and TimeRank with COLEMAN. The worst
results were obtained by RETECS and COLEMAN in
the Druid and LexisNexis systems. The Druid system
presents the greatest difference between learning-based
approaches and Deterministic, mainly in the presence
of the most restrictive time budget (10%). These sys-
tems share some particularities: (i) a few number of CI
Cycles; and (ii) a large test case set, in which many
failures are distributed in many test cases. Apparently,
such characteristics are drawbacks for approaches based
on historical test data.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 3. NAPFD comparison.

RETECS Deterministic COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.6768 ± 0.129 ▲ 0.6488 ± 0.074 ▲ 0.9996 ± 0.000 ⋆ 0.6801 ± 0.052 ▲ 0.7137 ± 0.074 ▲
Fastjson 0.8713 ± 0.015 ▲ 0.8719 ± 0.005 ▲ 0.9988 ± 0.000 ⋆ 0.9030 ± 0.014 ▲ 0.8980 ± 0.018 ▲
Deeplearning4j 0.6615 ± 0.072 ▲ 0.6739 ± 0.016 ▲ 0.8137 ± 0.000 ⋆ 0.7533 ± 0.002 ▲ 0.7716 ± 0.000 ▲
DSpace 0.9437 ± 0.001 ▲ 0.9410 ± 0.001 ▲ 0.9739 ± 0.000 ⋆ 0.9489 ± 0.003 ▲ 0.9496 ± 0.004 ▲
GSDTSR 0.9893 ± 0.000 ▲ 0.9893 ± 0.000 ▲ 0.9898 ± 0.000 ⋆ 0.9894 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9676 ± 0.015 ▲ 0.9563 ± 0.004 ▲ 0.9978 ± 0.000 ⋆ 0.9554 ± 0.002 ▲ 0.9586 ± 0.001 ▲
IOF/ROL 0.3704 ± 0.005 ▲ 0.3779 ± 0.003 ▲ 0.4098 ± 0.000 ⋆ 0.3632 ± 0.001 ▲ 0.3670 ± 0.001 ▲
LexisNexis 0.0508 ± 0.018 ▲ 0.1004 ± 0.068 ▲ 0.7011 ± 0.000 ⋆ 0.1400 ± 0.001 ▲ 0.1440 ± 0.001 ▲
Paint Control 0.9078 ± 0.000 ▼ 0.9077 ± 0.000 ▲ 0.9078 ± 0.000 ⋆ 0.9076 ± 0.000 ▲ 0.9076 ± 0.000 ▲
OkHttp 0.8357 ± 0.002 ▲ 0.8095 ± 0.006 ▲ 0.8886 ± 0.000 ⋆ 0.8323 ± 0.000 ▲ 0.8407 ± 0.000 ▲
Retrofit 0.9641 ± 0.001 ▲ 0.9621 ± 0.001 ▲ 0.9712 ± 0.000 ⋆ 0.9639 ± 0.000 ▲ 0.9642 ± 0.000 ▲
ZXing 0.9854 ± 0.000 ▲ 0.9855 ± 0.000 ▲ 0.9998 ± 0.000 ⋆ 0.9826 ± 0.000 ▲ 0.9828 ± 0.000 ▲

Time Budget: 50%

Druid 0.6851 ± 0.134 ▲ 0.6323 ± 0.074 ▲ 0.9996 ± 0.000 ⋆ 0.9333 ± 0.013 ▲ 0.9710 ± 0.008 ▲
Fastjson 0.8714 ± 0.007 ▲ 0.8902 ± 0.013 ▲ 0.9993 ± 0.000 ⋆ 0.9174 ± 0.021 ▲ 0.9118 ± 0.028 ▲
Deeplearning4j 0.7049 ± 0.070 ▲ 0.6562 ± 0.018 ▲ 0.9025 ± 0.000 ⋆ 0.7890 ± 0.001 ▲ 0.8200 ± 0.000 ▲
DSpace 0.9568 ± 0.001 ▲ 0.9485 ± 0.001 ▲ 0.9921 ± 0.000 ⋆ 0.9724 ± 0.009 ▲ 0.9766 ± 0.008 ▲
GSDTSR 0.9911 ± 0.000 ▲ 0.9906 ± 0.000 ▲ 0.9921 ± 0.000 ⋆ 0.9893 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9502 ± 0.015 ▲ 0.9578 ± 0.004 ▲ 0.9997 ± 0.000 ⋆ 0.9653 ± 0.004 ▲ 0.9675 ± 0.007 ▲
IOF/ROL 0.5101 ± 0.007 ▲ 0.5025 ± 0.006 ▲ 0.5812 ± 0.000 ⋆ 0.5046 ± 0.002 ▲ 0.5189 ± 0.002 ▲
LexisNexis 0.1629 ± 0.026 ▲ 0.2335 ± 0.099 ▲ 0.9065 ± 0.000 ⋆ 0.5332 ± 0.007 ▲ 0.5625 ± 0.008 ▲
Paint Control 0.9150 ± 0.000 ▲ 0.9138 ± 0.000 ▲ 0.9153 ± 0.000 ⋆ 0.9150 ± 0.000 ▲ 0.9150 ± 0.000 ▲
OkHttp 0.8812 ± 0.010 ▲ 0.8446 ± 0.003 ▲ 0.9544 ± 0.000 ⋆ 0.9192 ± 0.000 ▲ 0.9317 ± 0.000 ▲
Retrofit 0.9706 ± 0.002 ▲ 0.9718 ± 0.002 ▲ 0.9946 ± 0.000 ⋆ 0.9853 ± 0.000 ▲ 0.9893 ± 0.000 ▲
ZXing 0.9878 ± 0.000 ▲ 0.9881 ± 0.001 ▲ 0.9998 ± 0.000 ⋆ 0.9846 ± 0.000 ▲ 0.9857 ± 0.000 ▲

Time Budget: 80%

Druid 0.6490 ± 0.113 ▲ 0.6551 ± 0.099 ▲ 0.9996 ± 0.000 ⋆ 0.938 ± 0.012 ▲ 0.9830 ± 0.003 ▲
Fastjson 0.8708 ± 0.007 ▲ 0.8925 ± 0.010 ▲ 0.9999 ± 0.000 ⋆ 0.9536 ± 0.010 ▲ 0.9242 ± 0.028 ▲
Deeplearning4j 0.7058 ± 0.091 ▲ 0.6640 ± 0.016 ▲ 0.9520 ± 0.000 ⋆ 0.8424 ± 0.001 ▲ 0.8641 ± 0.001 ▲
DSpace 0.9601 ± 0.001 ▲ 0.9508 ± 0.001 ▲ 0.9932 ± 0.000 ⋆ 0.9792 ± 0.006 ▲ 0.9825 ± 0.007 ▲
GSDTSR 0.9921 ± 0.000 ▲ 0.9914 ± 0.000 ▲ 0.9934 ± 0.000 ⋆ 0.9893 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9441 ± 0.012 ▲ 0.9581 ± 0.007 ▲ 0.9999 ± 0.000 ⋆ 0.9784 ± 0.012 ▲ 0.9841 ± 0.014 ▲
IOF/ROL 0.5495 ± 0.006 ▲ 0.5287 ± 0.007 ▲ 0.6115 ± 0.000 ⋆ 0.5569 ± 0.002 ▲ 0.5678 ± 0.001 ▲
LexisNexis 0.2496 ± 0.048 ▲ 0.3545 ± 0.131 ▲ 0.9152 ± 0.000 ⋆ 0.6442 ± 0.005 ▲ 0.7033 ± 0.004 ▲
Paint Control 0.9162 ± 0.000 ▲ 0.9160 ± 0.000 ▲ 0.9180 ± 0.000 ⋆ 0.9171 ± 0.000 ▲ 0.9171 ± 0.000 ▲
OkHttp 0.9027 ± 0.013 ▲ 0.8558 ± 0.004 ▲ 0.9607 ± 0.000 ⋆ 0.935 ± 0.000 ▲ 0.9478 ± 0.000 ▲
Retrofit 0.9724 ± 0.005 ▲ 0.9745 ± 0.003 ▲ 0.9972 ± 0.000 ⋆ 0.9881 ± 0.000 ▲ 0.9916 ± 0.000 ▲
ZXing 0.9878 ± 0.000 ▲ 0.9883 ± 0.001 ▲ 0.9998 ± 0.000 ⋆ 0.9972 ± 0.000 ▲ 0.9996 ± 0.000 ▲

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank) Deterministic

Figure 3. Radar charts - NAPFD values.

Finding 2. The learning-based approaches have
the worst performance in systems with a high
test case volatility and a few number of CI Cy-
cles.

Concerning the optimal results, some of them are far
from the maximum value for the metric, specifically
for the systems IOF/ROL and LexisNexis. About the
IOF/ROL system, we observe that the difficulty in ob-
taining better NAPFD values is related to the extremely
high test case volatility coupled with the high number

of failures, as well as the failure distribution over many
test cases. This hampers to find a reasonable prioritiza-
tion. On the other hand, in the LexisNexis system, we
do not observe high test case volatility but, similarly
to IOF/ROL, a high number of failures distributed in
many test cases. In this way, both systems are examples
of why it is hard to find reasonable solutions for TCP
in the CI environments.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

(a) Deeplearning4j

Valid Builds

Failures

Failed Builds

Test Cases

Failures by Cycles (AVG)

Failing Cycles (AVG)

20

40

60

80

100

(b) OkHttp

Figure 4. Radar charts - systems characteristics

Finding 3. A high number of failures distributed
over many test cases makes the TCP task
harder.

5.2 RQ2: Fault Detection Effectiveness with
Cost Consideration

To evaluate how good is the prioritization consider-
ing the cost associated for each test case, we calculate
APFDc values, presented in Table 4. We use the test
case duration as cost. If two test cases reveal the same
number of failures and have different execution times,
that one that takes less time needs to appear first in
the prioritization rank.

As it happens for NAPFD, COLEMAN performs bet-
ter in the less restrictive budget using TimeRank, reach-
ing results equivalent to the optimal in 50% of the
cases for the time budget of 80%. RETECS also per-
forms better using RNFail, but we observe a better per-
formance of RETECS, overcoming COLEMAN, in the
more restrictive budget of 10%. This is maybe due to
the RETECS formulation that considers test case dura-
tion during its prioritizations. Nevertheless, considering
a general case, COLEMAN outperforms RETECS, even
only focusing on historical failure data.

Finding 4. Regarding APFDc values COLE-
MAN outperforms RETECS in most cases. How-
ever, RETECS has a better performance in the
most restrictive budget of 10%.

Again, radar charts regarding APFDc values can pro-
vide a better analysis (Figure 5). We can see that it
is harder to obtain good prioritizations with less cost
for LexisNexis for both approaches. We observe a great
difference between COLEMAN and RETECS in the
Druid system and the time budgets of 50% and 80%.
As we observed in the NAPFD values, COLEMAN
also has better performance with TimeRank function,
whilst RETECS with RNFail. Besides that, NAPFD
and APFDc values are not so far from optimal solu-

tions, in which we can observe close values but with a
statistical difference.

Finding 5. The analysis of APFDc using test case
duration as cost leads to results similar to those
obtained in the NAFPD analysis. In general, the
APFDc values are close to the optimal, and the
more significant differences are obtained to the
same systems.

5.3 RQ3 Early Fault Detection and Test Time
Reduction

First of all, we calculate RFTC values (Table 5) that
takes into account the position of the first failing test
case in the prioritized test case set. We observed that
the NAPFD average values found and the early fault
detection (using RFTC) are correlated, that is, good
NAPFD values provide good RFTC values. However,
the opposite can not be true, once that the RFTC met-
ric does not evaluate the prioritization quality from the
entire prioritized test set but only the early fault detec-
tion.

As expected, the deterministic approach presents the
best results for all systems. Besides that, COLEMAN
using TimeRank obtained equivalent results in ≈ 70%
of the cases, whilst RETECS only in ≈ 3% (only one
case). In some cases, RETECS has a higher standard
deviation than COLEMAN.

Finding 6. Regarding RFTC, COLEMAN using
TimeRank obtained performance equivalent to
the optimal results in ≈ 70% of the cases. COLE-
MAN is better than RETECS in all cases.

Early fault detection contributes to reduce test exe-
cution cost because the test can be ended when a failure
occurs. Given this fact, we analyze NTR values (Table 6)
to evaluate the impact in the time reduction inside a CI
Cycle.

We can observe that in most cases, the greater the

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 4. APFDc comparison.

RETECS Deterministic COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.8067 ± 0.088 ▲ 0.7815 ± 0.051 ▲ 0.9998 ± 0.000 ⋆ 0.6964 ± 0.063 ▲ 0.7181 ± 0.076 ▲
Fastjson 0.8805 ± 0.014 ▲ 0.8810 ± 0.004 ▲ 0.9985 ± 0.000 ⋆ 0.9064 ± 0.013 ▲ 0.8974 ± 0.018 ▲
Deeplearning4j 0.8135 ± 0.023 ▲ 0.8185 ± 0.010 ▲ 0.8304 ± 0.000 ⋆ 0.7766 ± 0.001 ▲ 0.7773 ± 0.000 ▲
DSpace 0.9480 ± 0.001 ▲ 0.9458 ± 0.001 ▲ 0.9724 ± 0.000 ⋆ 0.9510 ± 0.002 ▲ 0.9513 ± 0.004 ▲
GSDTSR 0.9894 ± 0.000 ▲ 0.9894 ± 0.000 ▲ 0.9898 ± 0.000 ⋆ 0.9894 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9811 ± 0.007 ▲ 0.9761 ± 0.003 ▲ 0.9980 ± 0.000 ⋆ 0.9561 ± 0.001 ▲ 0.9582 ± 0.001 ▲
IOF/ROL 0.3746 ± 0.005 ▲ 0.3819 ± 0.003 ▲ 0.4138 ± 0.000 ⋆ 0.3661 ± 0.001 ▲ 0.3701 ± 0.001 ▲
LexisNexis 0.0541 ± 0.017 ▲ 0.1025 ± 0.066 ▲ 0.7076 ± 0.000 ⋆ 0.1394 ± 0.001 ▲ 0.1434 ± 0.001 ▲
Paint Control 0.9082 ± 0.000 ▲ 0.9081 ± 0.000 ▲ 0.9082 ± 0.000 ⋆ 0.9080 ± 0.000 ▲ 0.9080 ± 0.000 ▲
OkHttp 0.8484 ± 0.001 ▲ 0.8292 ± 0.006 ▲ 0.8870 ± 0.000 ⋆ 0.8378 ± 0.000 ▲ 0.8425 ± 0.000 ▲
Retrofit 0.9672 ± 0.001 ▲ 0.9655 ± 0.001 ▲ 0.9717 ± 0.000 ⋆ 0.9646 ± 0.000 ▲ 0.9648 ± 0.000 ▲
ZXing 0.9893 ± 0.000 ▲ 0.9893 ± 0.000 ▲ 0.9998 ± 0.000 ⋆ 0.9832 ± 0.000 ▲ 0.9835 ± 0.000 ▲

Time Budget: 50%

Druid 0.8147 ± 0.102 ▲ 0.7597 ± 0.051 ▲ 0.9998 ± 0.000 ⋆ 0.9486 ± 0.016 ▲ 0.9787 ± 0.009 ▲
Fastjson 0.9326 ± 0.005 ▲ 0.9392 ± 0.017 ▲ 0.9989 ± 0.000 ⋆ 0.9186 ± 0.021 ▲ 0.9140 ± 0.027 ▲
Deeplearning4j 0.8331 ± 0.041 ▲ 0.8379 ± 0.012 ▲ 0.9077 ± 0.000 ⋆ 0.8106 ± 0.001 ▲ 0.8134 ± 0.001 ▲
DSpace 0.9683 ± 0.001 ▲ 0.9615 ± 0.001 ▲ 0.9918 ± 0.000 ⋆ 0.9737 ± 0.009 ▲ 0.9767 ± 0.009 ▲
GSDTSR 0.9911 ± 0.000 ▲ 0.9910 ± 0.000 ▲ 0.9920 ± 0.000 ⋆ 0.9894 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9767 ± 0.008 ▲ 0.9806 ± 0.005 ▲ 0.9993 ± 0.000 ⋆ 0.9687 ± 0.003 ▲ 0.9672 ± 0.007 ▲
IOF/ROL 0.5175 ± 0.008 ▲ 0.5043 ± 0.006 ▲ 0.5905 ± 0.000 ⋆ 0.5081 ± 0.002 ▲ 0.5223 ± 0.002 ▲
LexisNexis 0.1891 ± 0.019 ▲ 0.2477 ± 0.093 ▲ 0.9035 ± 0.000 ⋆ 0.5227 ± 0.007 ▲ 0.5496 ± 0.007 ▲
Paint Control 0.9171 ± 0.000 ▲ 0.9140 ± 0.000 ▲ 0.9174 ± 0.000 ⋆ 0.9162 ± 0.000 ▲ 0.9162 ± 0.000 ▲
OkHttp 0.8878 ± 0.015 ▲ 0.8869 ± 0.002 ▲ 0.9477 ± 0.000 ⋆ 0.9177 ± 0.000 ▲ 0.9246 ± 0.000 ▲
Retrofit 0.9762 ± 0.002 ▲ 0.9778 ± 0.002 ▲ 0.9928 ± 0.000 ⋆ 0.9850 ± 0.000 ▲ 0.9885 ± 0.000 ▲
ZXing 0.9954 ± 0.000 ▲ 0.9956 ± 0.001 ▲ 0.9998 ± 0.000 ⋆ 0.9862 ± 0.000 ▲ 0.9869 ± 0.000 ▲

Time Budget: 80%

Druid 0.7142 ± 0.111 ▲ 0.6881 ± 0.090 ▲ 0.9998 ± 0.000 ⋆ 0.9469 ± 0.015 ▲ 0.9912 ± 0.004 ▲
Fastjson 0.9037 ± 0.008 ▲ 0.9133 ± 0.015 ▲ 0.9991 ± 0.000 ⋆ 0.9488 ± 0.012 ▲ 0.9270 ± 0.026 ▲
Deeplearning4j 0.8158 ± 0.064 ▲ 0.8522 ± 0.012 ▲ 0.9407 ± 0.000 ⋆ 0.8068 ± 0.002 ▲ 0.7989 ± 0.001 ▲
DSpace 0.9738 ± 0.001 ▲ 0.9639 ± 0.001 ▲ 0.9925 ± 0.000 ⋆ 0.9796 ± 0.006 ▲ 0.9810 ± 0.008 ▲
GSDTSR 0.9919 ± 0.000 ▲ 0.9917 ± 0.000 ▲ 0.9930 ± 0.000 ⋆ 0.9894 ± 0.000 ▲ 0.9894 ± 0.000 ▲
Guava 0.9627 ± 0.010 ▲ 0.9689 ± 0.009 ▲ 0.9994 ± 0.000 ⋆ 0.9780 ± 0.013 ▲ 0.9825 ± 0.015 ▲
IOF/ROL 0.5593 ± 0.006 ▲ 0.5311 ± 0.006 ▲ 0.6225 ± 0.000 ⋆ 0.5591 ± 0.002 ▲ 0.5699 ± 0.001 ▲
LexisNexis 0.2886 ± 0.039 ▲ 0.3569 ± 0.104 ▲ 0.9111 ± 0.000 ⋆ 0.6287 ± 0.005 ▲ 0.6791 ± 0.004 ▲
Paint Control 0.9187 ± 0.000 ▲ 0.9158 ± 0.000 ▲ 0.9204 ± 0.000 ⋆ 0.9176 ± 0.000 ▲ 0.9177 ± 0.000 ▲
OkHttp 0.8836 ± 0.020 ▲ 0.8974 ± 0.003 ▲ 0.9520 ± 0.000 ⋆ 0.9271 ± 0.000 ▲ 0.9362 ± 0.000 ▲
Retrofit 0.9785 ± 0.004 ▲ 0.9808 ± 0.003 ▲ 0.9946 ± 0.000 ⋆ 0.9873 ± 0.000 ▲ 0.9903 ± 0.000 ▲
ZXing 0.9953 ± 0.000 ▲ 0.9953 ± 0.001 ▲ 0.9998 ± 0.000 ⋆ 0.9975 ± 0.000 ▲ 0.9996 ± 0.000 ▲

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank) Deterministic

Figure 5. Radar charts - APFDc values.

time budget the greater the NTR values. The determin-
istic approach gets the best reduction values. However,
other approaches have close values for most systems.
The best percentages of time reduction for COLEMAN
considering TimeRank function are in the systems: Lex-
isNexis with 99.61% in all time budgets; and IOF/ROL
with 57.01%, 71.93%, and 73.94%, for the time budgets,
respectively of, 10%, 50%, and 80%. On the other hand,
RETECS presents the best values considering RNFail
function in Deeplearning4j, with 55.46%, 54.47%, and
54.75%, respectively for three budgets.

As mentioned before, for LexisNexis and IOF/ROL

the failures are distributed over many test cases. This
corroborates to the early fault detection once that there
is a high probability of prioritizing a failing test case in
the first positions.

The percentage found by the deterministic approach
is low for some systems, such as Guava, Retrofit, and
ZXing. In these systems, there is a low failure distribu-
tion across the test cases along with peaks of failures in
a few CI Cycles, and the failing test cases vary in each
CI Cycle. This shows that sometimes we face test cases
that fail but spend much time executing, and there is
not a pattern that hampers a reasonable prioritization

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 5. RFTC comparison.
RETECS Deterministic COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 1166.4411 ± 546.049 ▲ 1240.8713 ± 356.817 ▲ 1.0 ± 0.000 ⋆ 209.3289 ± 98.987 ▲ 56.1579 ± 31.056 ▲
Fastjson 1094.1147 ± 209.106 ▲ 998.7949 ± 177.738 ▲ 1.0 ± 0.000 ⋆ 184.9911 ± 65.066 ▲ 96.0378 ± 36.22 ▲
Deeplearning4j 5.3151 ± 2.456 ▲ 5.7919 ± 0.677 ▲ 1.0 ± 0.000 ⋆ 2.3049 ± 0.048 ▲ 2.0437 ± 0.007 ▲
DSpace 11.9561 ± 0.753 ▲ 13.6276 ± 0.754 ▲ 1.0 ± 0.000 ⋆ 3.024 ± 1.33 ▲ 2.1428 ± 0.67 ▲
GSDTSR 3.2553 ± 0.387 ▲ 3.8958 ± 0.18 ▲ 1.0 ± 0.000 ⋆ 2.1316 ± 0.1 ▲ 1.1482 ± 0.071 ▲
Guava 129.3477 ± 99.443 ▲ 191.1219 ± 29.545 ▲ 1.0 ± 0.000 ⋆ 31.8991 ± 20.546 ▲ 15.0977 ± 13.75 ▲
IOF/ROL 1.6445 ± 0.158 ▲ 1.5639 ± 0.108 ▲ 1.0 ± 0.000 ⋆ 1.2626 ± 0.064 ▲ 1.0992 ± 0.05 ▲
LexisNexis 73.097 ± 31.648 ▲ 53.1777 ± 38.754 ▲ 1.0 ± 0.000 ⋆ 9.1333 ± 0.188 ▲ 8.7611 ± 0.118 ▲
Paint Control 1.0 ± 0.000 ▼ 1.001 ± 0.002 ▽ 1.0 ± 0.000 ⋆ 1.0 ± 0.000 ▼ 1.0 ± 0.000 ▼
OkHttp 7.4112 ± 0.397 ▲ 15.8935 ± 1.951 ▲ 1.0 ± 0.000 ⋆ 4.3424 ± 0.000 ▲ 1.8039 ± 0.000 ▲
Retrofit 3.7352 ± 0.439 ▲ 4.7297 ± 0.772 ▲ 1.0 ± 0.000 ⋆ 1.5152 ± 0.000 ▲ 1.7941 ± 0.000 ▲
ZXing 39.7929 ± 0.643 ▲ 39.1204 ± 1.701 ▲ 1.0 ± 0.000 ⋆ 1.0 ± 0.000 ▼ 1.0 ± 0.000 ▼

Time Budget: 50%

Druid 1225.6197 ± 600.746 ▲ 1420.3143 ± 418.926 ▲ 1.0 ± 0.000 ⋆ 121.8396 ± 43.763 ▲ 51.2697 ± 11.926 ▲
Fastjson 1527.9434 ± 93.004 ▲ 1173.9871 ± 321.789 ▲ 1.0 ± 0.000 ⋆ 315.8923 ± 79.836 ▲ 335.9929 ± 125.629 ▲
Deeplearning4j 5.0267 ± 1.827 ▲ 7.3264 ± 0.53 ▲ 1.0 ± 0.000 ⋆ 2.5496 ± 0.011 ▲ 2.464 ± 0.005 ▲
DSpace 19.0354 ± 0.887 ▲ 27.6301 ± 0.921 ▲ 1.0 ± 0.000 ⋆ 5.5312 ± 1.939 ▲ 4.1089 ± 1.769 ▲
GSDTSR 1.9072 ± 0.06 ▲ 3.5648 ± 0.141 ▲ 1.0 ± 0.000 ⋆ 2.1461 ± 0.101 ▲ 1.1505 ± 0.072 ▲
Guava 289.1586 ± 99.054 ▲ 235.0919 ± 27.865 ▲ 1.0 ± 0.000 ⋆ 78.6409 ± 45.928 ▲ 24.0869 ± 21.479 ▲
IOF/ROL 1.8009 ± 0.292 ▲ 1.9213 ± 0.218 ▲ 1.0 ± 0.000 ⋆ 1.2588 ± 0.035 ▲ 1.151 ± 0.024 ▲
LexisNexis 73.6444 ± 41.192 ▲ 47.3883 ± 37.993 ▲ 1.0 ± 0.000 ⋆ 9.2074 ± 0.178 ▲ 8.784 ± 0.091 ▲
Paint Control 1.0234 ± 0.004 ▲ 1.0257 ± 0.007 ▲ 1.0 ± 0.000 ⋆ 1.0018 ± 0.001 ▲ 1.0014 ± 0.001 ▲
OkHttp 6.203 ± 2.066 ▲ 19.6306 ± 0.79 ▲ 1.0 ± 0.000 ⋆ 4.188 ± 0.014 ▲ 2.3643 ± 0.002 ▲
Retrofit 5.4302 ± 0.43 ▲ 5.625 ± 0.415 ▲ 1.0 ± 0.000 ⋆ 2.4059 ± 0.000 ▲ 1.4299 ± 0.000 ▲
ZXing 51.2576 ± 0.579 ▲ 49.4232 ± 3.15 ▲ 1.0 ± 0.000 ⋆ 5.6 ± 0.000 ▲ 2.0 ± 0.000 ▲

Time Budget: 80%

Druid 1427.8103 ± 493.429 ▲ 1035.3369 ± 658.042 ▲ 1.0 ± 0.000 ⋆ 146.9112 ± 46.436 ▲ 50.3805 ± 11.25 ▲
Fastjson 1535.2998 ± 101.625 ▲ 993.382 ± 393.441 ▲ 1.0 ± 0.000 ⋆ 398.4345 ± 105.27 ▲ 572.0954 ± 221.573 ▲
Deeplearning4j 5.5748 ± 2.358 ▲ 7.8533 ± 0.581 ▲ 1.0 ± 0.000 ⋆ 2.8146 ± 0.014 ▲ 2.5017 ± 0.011 ▲
DSpace 23.126 ± 1.021 ▲ 33.4617 ± 1.119 ▲ 1.0 ± 0.000 ⋆ 6.8651 ± 2.946 ▲ 6.0794 ± 3.343 ▲
GSDTSR 1.9413 ± 0.322 ▲ 3.4858 ± 0.112 ▲ 1.0 ± 0.000 ⋆ 2.1461 ± 0.101 ▲ 1.1505 ± 0.072 ▲
Guava 330.5342 ± 74.0 ▲ 202.2301 ± 47.258 ▲ 1.0 ± 0.000 ⋆ 84.6856 ± 34.075 ▲ 83.9989 ± 78.446 ▲
IOF/ROL 2.021 ± 0.447 ▲ 2.5248 ± 0.362 ▲ 1.0 ± 0.000 ⋆ 1.317 ± 0.026 ▲ 1.2366 ± 0.017 ▲
LexisNexis 47.6333 ± 43.432 ▲ 43.5358 ± 39.71 ▲ 1.0 ± 0.000 ⋆ 9.2 ± 0.208 ▲ 8.7981 ± 0.11 ▲
Paint Control 1.015 ± 0.002 ▲ 1.0344 ± 0.009 ▲ 1.0 ± 0.000 ⋆ 1.0003 ± 0.001 ▽ 1.0003 ± 0.001 ▽
OkHttp 4.2988 ± 2.242 ▲ 21.5784 ± 1.148 ▲ 1.0 ± 0.000 ⋆ 4.0748 ± 0.021 ▲ 2.282 ± 0.003 ▲
Retrofit 5.9252 ± 0.884 ▲ 5.8832 ± 0.587 ▲ 1.0 ± 0.000 ⋆ 2.4636 ± 0.000 ▲ 1.4386 ± 0.000 ▲
ZXing 51.0061 ± 1.233 ▲ 48.6848 ± 2.926 ▲ 1.0 ± 0.000 ⋆ 4.2727 ± 0.000 ▲ 1.3636 ± 0.000 ▲

using historical failure data.

Finding 7. Even using a deterministic approach,
sometimes, the test time reduction is low due
to peaks of failures, failure distributed across
the test cases, and variation of the failing test
cases over CI cycles. Nevertheless, COLEMAN
reached high percentages of reductions for sys-
tems, considered hard cases for prioritizing, such
as LexisNexis.

5.4 RQ4: Prioritization Time

We also observed the time spent to prioritize the test
cases (Prioritization Time in Table 7). Although the
deterministic approach is only a simple order, it can be
used as a baseline.

We can observe the time spent by the approaches
is negligible, even whimsy in most systems. A great
time is spent in Druid, Fastjson, and LexisNexis sys-
tems that also have a significant number of test cases
in a CI Cycle. RETECS using RNFail function has PR
values that are statistically equivalent to the optimal in
23 (≈ 73%) cases out of 36. In three cases, it presents
the best values for system Paint Control. But RETECS

also presents the greatest variations; see system Lexis-
Nexis. In overall, RETECS and COLEMAN spend less
than one second to perform the prioritization.

To observe the applicability in real scenarios, we con-
sidered the information presented in Table 2 regarding
each SUT. In such a table, we present the time spent in
a CI Cycle and the interval between commits for each
system. As we can observe, typically, a new commit is
performed, with a considered time, after a CI Cycle is
ended. Such systems do not present a situation with
multiple test requests, except in IOF/ROL system. As
mentioned before, the approaches can reduce ≈ 99% of
the CI Cycle time in such a system.

Moreover, the time presented in Table 2 is in minutes
while the prioritization time of the approaches is pre-
sented in Table 7 in seconds. In this way, considering
the interval between CI cycles, there is no negative im-
pact in the use of the approaches. Furthermore, they can
help developers concerning the time they spend waiting
for test feedback.

Finding 8. The learning-based approaches are ap-
plicable in our real scenarios. Overall, they spend
less than one second to execute.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 6. NTR comparison
RETECS Deterministic COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.1863 ± 0.124 0.1556 ± 0.077 0.4331 ± 0.000 0.2027 ± 0.115 0.2355 ± 0.135
Fastjson 0.0194 ± 0.016 0.0219 ± 0.007 0.1442 ± 0.000 0.0681 ± 0.014 0.0566 ± 0.020
Deeplearning4j 0.5488 ± 0.029 0.5546 ± 0.015 0.5642 ± 0.000 0.4626 ± 0.001 0.4663 ± 0.000
DSpace 0.0188 ± 0.001 0.0105 ± 0.001 0.0476 ± 0.000 0.0239 ± 0.002 0.0251 ± 0.003
GSDTSR 0.0087 ± 0.000 0.0090 ± 0.000 0.0136 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0449 ± 0.015 0.0367 ± 0.005 0.0660 ± 0.000 0.0313 ± 0.001 0.0333 ± 0.002
IOF/ROL 0.5133 ± 0.030 0.5646 ± 0.015 0.6222 ± 0.000 0.5585 ± 0.007 0.5701 ± 0.004
LexisNexis 0.9784 ± 0.012 0.9863 ± 0.010 0.9999 ± 0.000 0.9960 ± 0.000 0.9961 ± 0.000
Paint Control 0.1151 ± 0.000 0.1139 ± 0.000 0.1152 ± 0.000 0.1133 ± 0.000 0.1131 ± 0.000
OkHttp 0.0830 ± 0.001 0.0579 ± 0.008 0.1160 ± 0.000 0.0658 ± 0.000 0.0702 ± 0.000
Retrofit 0.0088 ± 0.000 0.0076 ± 0.001 0.0126 ± 0.000 0.0070 ± 0.000 0.0073 ± 0.000
ZXing 0.0122 ± 0.000 0.0126 ± 0.001 0.0227 ± 0.000 0.0037 ± 0.000 0.0037 ± 0.000

Time Budget: 50%

Druid 0.1840 ± 0.137 0.1213 ± 0.071 0.4331 ± 0.000 0.4057 ± 0.013 0.4225 ± 0.008
Fastjson 0.0399 ± 0.010 0.0602 ± 0.020 0.1445 ± 0.000 0.0768 ± 0.018 0.0724 ± 0.023
Deeplearning4j 0.5276 ± 0.039 0.5447 ± 0.010 0.5788 ± 0.000 0.4695 ± 0.000 0.4625 ± 0.000
DSpace 0.0334 ± 0.001 0.0218 ± 0.002 0.0604 ± 0.000 0.0486 ± 0.004 0.0499 ± 0.006
GSDTSR 0.0199 ± 0.000 0.0179 ± 0.000 0.0259 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0303 ± 0.016 0.0387 ± 0.006 0.0681 ± 0.000 0.0437 ± 0.002 0.0425 ± 0.005
IOF/ROL 0.7037 ± 0.019 0.6834 ± 0.014 0.7764 ± 0.000 0.7110 ± 0.003 0.7193 ± 0.003
LexisNexis 0.9894 ± 0.005 0.9902 ± 0.006 0.9999 ± 0.000 0.9959 ± 0.000 0.9961 ± 0.000
Paint Control 0.1283 ± 0.000 0.1142 ± 0.001 0.1290 ± 0.000 0.1222 ± 0.000 0.1223 ± 0.000
OkHttp 0.1118 ± 0.014 0.1060 ± 0.003 0.1671 ± 0.000 0.1431 ± 0.000 0.1486 ± 0.000
Retrofit 0.0134 ± 0.001 0.0138 ± 0.001 0.0188 ± 0.000 0.0156 ± 0.000 0.0172 ± 0.000
ZXing 0.0201 ± 0.000 0.0201 ± 0.001 0.0227 ± 0.000 0.0109 ± 0.000 0.0110 ± 0.000

Time Budget: 80%

Druid 0.1477 ± 0.113 0.1230 ± 0.096 0.4331 ± 0.000 0.4069 ± 0.014 0.4292 ± 0.004
Fastjson 0.0385 ± 0.011 0.0516 ± 0.018 0.1445 ± 0.000 0.1040 ± 0.010 0.0860 ± 0.022
Deeplearning4j 0.5016 ± 0.058 0.5475 ± 0.007 0.5806 ± 0.000 0.4224 ± 0.001 0.4047 ± 0.000
DSpace 0.0374 ± 0.001 0.0269 ± 0.002 0.0606 ± 0.000 0.0525 ± 0.003 0.0526 ± 0.005
GSDTSR 0.0218 ± 0.001 0.0203 ± 0.000 0.0280 ± 0.000 0.0093 ± 0.000 0.0096 ± 0.000
Guava 0.0247 ± 0.013 0.0348 ± 0.009 0.0681 ± 0.000 0.0501 ± 0.012 0.0556 ± 0.011
IOF/ROL 0.7263 ± 0.015 0.6857 ± 0.011 0.7789 ± 0.000 0.7293 ± 0.002 0.7334 ± 0.001
LexisNexis 0.9913 ± 0.005 0.9902 ± 0.006 0.9999 ± 0.000 0.9959 ± 0.000 0.9961 ± 0.000
Paint Control 0.1285 ± 0.000 0.1161 ± 0.001 0.1310 ± 0.000 0.1209 ± 0.000 0.1204 ± 0.000
OkHttp 0.1112 ± 0.017 0.1153 ± 0.003 0.1674 ± 0.000 0.1493 ± 0.000 0.1551 ± 0.000
Retrofit 0.0140 ± 0.001 0.0145 ± 0.001 0.0195 ± 0.000 0.0161 ± 0.000 0.0179 ± 0.000
ZXing 0.0201 ± 0.000 0.0197 ± 0.002 0.0227 ± 0.000 0.0224 ± 0.000 0.0227 ± 0.000

5.5 RQ5: Accuracy

The accuracy (RMSE) is given by the difference between
the predicted and the observed values of NAFPD and
APFDc; these last ones are obtained by the determin-
istic approach. The results are presented in Tables 8
and 9. By analyzing such tables we can corroborate our
previous findings.

Regarding the RMSE values for NAPFD metric (Ta-
ble 8), we observe the predominance of COLEMAN (us-
ing TimeRank function) against RETECS. In the pres-
ence of a restrictive time budget (10%), RETECS per-
forms better than in the other ones. However, COLE-
MAN is better in all time budgets.

The learning-based approaches obtain small RMSE
values in almost all systems, except in Druid and Lexis
Nexis. The smallest RMSE values are obtained under
time budget of 80% and by COLEMAN for the systems
Druid, DSpace, Guava, Paint Control, OkHttp, Retrofit,
and ZXing. In these systems, the NAPFD values ob-
tained are the closest to the optimal values. To a better
visualization, we generated Figure 6.

One interesting point is that RMSE values lower than
0.2 represent NAPFD values closer to optimal values.
For instance, in IOF/ROL system, the NAPFD values

are low, but this is because it is challenging to find rea-
sonable solutions. On the other hand, in the LexisNexis
system, the deterministic approach also obtained low
NAPFD values, but the learning-based approaches ob-
tained the worst RMSE values. Such values are between
0.22 and 0.76.

RETECS gets the worst RMSE values for the systems
Druid and LexisNexis in the time budget of 50%. They
are, respectively, RMSE ≥ 0.58 and RMSE ≥≈ 0.75.
For these systems, this phenomenon occurs, as men-
tioned before, due to the lack of historical data. Besides
them, we can observe in Figure 6 that the learning-
based approaches also have a poor performance for
Deeplearning4j. In this system, we do not find a cor-
relation between test case volatility and the number
of failures. For this, we investigated the accumulative
NAPFD across the CI Cycles (Figure 7).

As we can observe, the NAPFD values change a
bit before the 100th CI Cycle and normalize after the
300th. Near to the 100th cycle, the system Deeplearn-
ing4j starts presenting more failures, and the duration of
some test cases starts increasing. Probably, such behav-
ior influences more decisions taken by RETECS than
by COLEMAN, once the first considers besides the fail-
ures, the test case duration. From then on, the number

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 7. Prioritization Time (sec.) comparison.

RETECS Deterministic COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.3035 ± 0.031 ▲ 0.3113 ± 0.026 ▲ 0.0029 ± 0.000 ⋆ 0.2383 ± 0.005 ▲ 0.2316 ± 0.004 ▲
Fastjson 0.2108 ± 0.022 ▲ 0.2025 ± 0.012 ▲ 0.0029 ± 0.000 ⋆ 0.4947 ± 0.193 ▲ 0.4806 ± 0.191 ▲
Deeplearning4j 0.0037 ± 0.000 ▲ 0.0179 ± 0.003 ▲ 0.0026 ± 0.000 ⋆ 0.0272 ± 0.000 ▲ 0.0272 ± 0.000 ▲
DSpace 0.0103 ± 0.001 ▲ 0.0305 ± 0.002 ▲ 0.0027 ± 0.000 ⋆ 0.0296 ± 0.002 ▲ 0.0296 ± 0.002 ▲
GSDTSR 0.0026 ± 0.000 ▲ 0.0027 ± 0.000 ▲ 0.0020 ± 0.000 ⋆ 0.0253 ± 0.000 ▲ 0.0253 ± 0.000 ▲
Guava 0.0335 ± 0.003 ▲ 0.0385 ± 0.003 ▲ 0.0027 ± 0.000 ⋆ 0.0660 ± 0.013 ▲ 0.0660 ± 0.013 ▲
IOF/ROL 0.0031 ± 0.000 ▲ 0.2022 ± 0.036 ▲ 0.0024 ± 0.000 ⋆ 0.0277 ± 0.000 ▲ 0.0277 ± 0.000 ▲
LexisNexis 0.4077 ± 0.036 ▲ 0.5966 ± 0.052 ▲ 0.0037 ± 0.000 ⋆ 0.3328 ± 0.004 ▲ 0.3277 ± 0.004 ▲
Paint Control 0.0019 ± 0.000 ⋆ 0.0022 ± 0.000 ▲ 0.0022 ± 0.000 ▲ 0.0256 ± 0.000 ▲ 0.0256 ± 0.000 ▲
OkHttp 0.0074 ± 0.001 ▲ 0.0225 ± 0.002 ▲ 0.0026 ± 0.000 ⋆ 0.0286 ± 0.001 ▲ 0.0285 ± 0.001 ▲
Retrofit 0.0044 ± 0.001 ▲ 0.01 ± 0.002 ▲ 0.0026 ± 0.000 ⋆ 0.0277 ± 0.000 ▲ 0.0277 ± 0.000 ▲
ZXing 0.0125 ± 0.001 ▲ 0.0151 ± 0.001 ▲ 0.0026 ± 0.000 ⋆ 0.0343 ± 0.000 ▲ 0.0342 ± 0.000 ▲

Time Budget: 50%

Druid 0.3881 ± 0.042 ▲ 0.3844 ± 0.045 ▲ 0.0029 ± 0.000 ⋆ 0.2474 ± 0.004 ▲ 0.2373 ± 0.002 ▲
Fastjson 0.2474 ± 0.016 ▲ 0.2395 ± 0.028 ▲ 0.0029 ± 0.000 ⋆ 0.4774 ± 0.181 ▲ 0.4740 ± 0.181 ▲
Deeplearning4j 0.0038 ± 0.000 ▲ 0.0187 ± 0.003 ▲ 0.0026 ± 0.000 ⋆ 0.0271 ± 0.000 ▲ 0.0271 ± 0.000 ▲
DSpace 0.0101 ± 0.001 ▲ 0.0507 ± 0.002 ▲ 0.0027 ± 0.000 ⋆ 0.0291 ± 0.001 ▲ 0.0291 ± 0.001 ▲
GSDTSR 0.0027 ± 0.000 ▲ 0.0028 ± 0.000 ▲ 0.0021 ± 0.000 ⋆ 0.0253 ± 0.000 ▲ 0.0253 ± 0.000 ▲
Guava 0.0335 ± 0.003 ▲ 0.0405 ± 0.003 ▲ 0.0028 ± 0.000 ⋆ 0.0648 ± 0.012 ▲ 0.0648 ± 0.012 ▲
IOF/ROL 0.0034 ± 0.000 ▲ 0.5364 ± 0.088 ▲ 0.0024 ± 0.000 ⋆ 0.0278 ± 0.000 ▲ 0.0278 ± 0.000 ▲
LexisNexis 0.7408 ± 0.114 ▲ 1.5037 ± 0.290 ▲ 0.0037 ± 0.000 ⋆ 0.3745 ± 0.008 ▲ 0.3710 ± 0.008 ▲
Paint Control 0.0020 ± 0.000 ⋆ 0.0028 ± 0.000 ▲ 0.0021 ± 0.000 ▲ 0.0256 ± 0.000 ▲ 0.0256 ± 0.000 ▲
OkHttp 0.0079 ± 0.001 ▲ 0.0371 ± 0.003 ▲ 0.0026 ± 0.000 ⋆ 0.0283 ± 0.000 ▲ 0.0283 ± 0.000 ▲
Retrofit 0.005 ± 0.001 ▲ 0.0178 ± 0.003 ▲ 0.0026 ± 0.000 ⋆ 0.0277 ± 0.000 ▲ 0.0277 ± 0.000 ▲
ZXing 0.0156 ± 0.002 ▲ 0.0229 ± 0.006 ▲ 0.0026 ± 0.000 ⋆ 0.0343 ± 0.000 ▲ 0.0343 ± 0.000 ▲

Time Budget: 80%

Druid 0.3733 ± 0.022 ▲ 0.2954 ± 0.092 ▲ 0.0029 ± 0.000 ⋆ 0.2518 ± 0.003 ▲ 0.2393 ± 0.002 ▲
Fastjson 0.2587 ± 0.019 ▲ 0.223 ± 0.032 ▲ 0.0028 ± 0.000 ⋆ 0.4928 ± 0.185 ▲ 0.4795 ± 0.182 ▲
Deeplearning4j 0.0037 ± 0.001 ▲ 0.0217 ± 0.008 ▲ 0.0025 ± 0.000 ⋆ 0.0272 ± 0.000 ▲ 0.0272 ± 0.000 ▲
DSpace 0.0107 ± 0.001 ▲ 0.0556 ± 0.001 ▲ 0.0025 ± 0.000 ⋆ 0.0293 ± 0.001 ▲ 0.0293 ± 0.001 ▲
GSDTSR 0.0026 ± 0.000 ▲ 0.0028 ± 0.000 ▲ 0.0021 ± 0.000 ⋆ 0.0253 ± 0.000 ▲ 0.0253 ± 0.000 ▲
Guava 0.0349 ± 0.003 ▲ 0.0405 ± 0.003 ▲ 0.0028 ± 0.000 ⋆ 0.0655 ± 0.012 ▲ 0.0649 ± 0.012 ▲
IOF/ROL 0.0033 ± 0.001 ▲ 0.6649 ± 0.094 ▲ 0.0023 ± 0.000 ⋆ 0.0279 ± 0.000 ▲ 0.0279 ± 0.000 ▲
LexisNexis 1.0343 ± 0.451 ▲ 3.8491 ± 1.681 ▲ 0.0036 ± 0.000 ⋆ 0.4130 ± 0.013 ▲ 0.4090 ± 0.013 ▲
Paint Control 0.0019 ± 0.000 ⋆ 0.0032 ± 0.001 ▲ 0.0021 ± 0.000 ▲ 0.0257 ± 0.000 ▲ 0.0257 ± 0.000 ▲
OkHttp 0.0076 ± 0.001 ▲ 0.0417 ± 0.002 ▲ 0.0026 ± 0.000 ⋆ 0.0284 ± 0.000 ▲ 0.0284 ± 0.000 ▲
Retrofit 0.0052 ± 0.001 ▲ 0.0215 ± 0.004 ▲ 0.0025 ± 0.000 ⋆ 0.0277 ± 0.000 ▲ 0.0277 ± 0.000 ▲
ZXing 0.0188 ± 0.007 ▲ 0.0254 ± 0.011 ▲ 0.0026 ± 0.000 ⋆ 0.0343 ± 0.000 ▲ 0.0343 ± 0.000 ▲

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank)

Figure 6. Radar charts - RMSE values found using NAPFD.

of failures increases with the test case volatility. This
may have favored a catastrophic forgetting in the ANN.

Finding 9. A high test case volatility combined
with an increasing number of failures may be a
limitation for RETECS.

On the other hand, considering the RMSE values for
APFDc metric (Table 9), we observe that RETECS has
better performance than COLEMAN in a restrictive sce-
nario, in the other time budgets COLEMAN improves,

been competitive in time budget of 50% and better than
RETECS in time budget of 80%. In overall, COLEMAN
obtained the best results using TimeRank function in
17 cases (47%), and RETECS using RNFail function in
9 cases (25%). Figure 8 shows the radar plot for RMSE
values considering APFDc metric.

We observe similar charts to the ones obtained using
the NAPFD metric, including a bad performance in the
same systems. However, the RMSE values for APFDc
are small, that is, both approaches provide good perfor-
mance to reduce testing costs.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 8. RMSE comparison - NAPFD.
RETECS COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.5326 ± 0.1449 ▲ 0.5716 ± 0.0749 ▲ 0.5225 ± 0.0790 ▲ 0.4774 ± 0.1162 ▲
Fastjson 0.3513 ± 0.0256 ▲ 0.3512 ± 0.0067 ▲ 0.2975 ± 0.0261 ▽ 0.3080 ± 0.0333 △
Deeplearning4j 0.2858 ± 0.0818 ▽ 0.2971 ± 0.0197 ▽ 0.1512 ± 0.0031 ▼ 0.1077 ± 0.0009 ⋆
DSpace 0.1529 ± 0.0014 ▼ 0.1635 ± 0.0012 ▼ 0.1397 ± 0.0056 ⋆ 0.1381 ± 0.0102 ⋆
GSDTSR 0.0203 ± 0.0002 ⋆ 0.0201 ± 0.0002 ⋆ 0.0190 ± 0.0005 ⋆ 0.0186 ± 0.0005 ⋆
Guava 0.1583 ± 0.0396 ▼ 0.1919 ± 0.0105 ▼ 0.1981 ± 0.0030 ▼ 0.1930 ± 0.0022 ▼
IOF/ROL 0.1695 ± 0.0116 ▼ 0.1476 ± 0.0083 ⋆ 0.1852 ± 0.0027 ▼ 0.1759 ± 0.0030 ▼
LexisNexis 0.7026 ± 0.0142 ▲ 0.6583 ± 0.0599 ▲ 0.6216 ± 0.0017 ▲ 0.6175 ± 0.0016 ▲
Paint Control 0.0005 ± 0.0006 ⋆ 0.0026 ± 0.0004 ⋆ 0.0048 ± 0.0001 ⋆ 0.0048 ± 0.0001 ⋆
OkHttp 0.2126 ± 0.0033 ▼ 0.2613 ± 0.0117 ▽ 0.2200 ± 0.0000 ▼ 0.2064 ± 0.0000 ▼
Retrofit 0.0730 ± 0.0056 ⋆ 0.0835 ± 0.0079 ⋆ 0.0802 ± 0.0000 ⋆ 0.0790 ± 0.0000 ⋆
ZXing 0.1100 ± 0.0022 ⋆ 0.1097 ± 0.0026 ⋆ 0.1283 ± 0.0000 ⋆ 0.1276 ± 0.0000 ⋆

Time Budget: 50%

Druid 0.5264 ± 0.1502 ▲ 0.5885 ± 0.0778 ▲ 0.1766 ± 0.0357 ▼ 0.1129 ± 0.0327 ⋆
Fastjson 0.3516 ± 0.0105 ▲ 0.3234 ± 0.0211 △ 0.2645 ± 0.0488 ▽ 0.2739 ± 0.0623 ▽
Deeplearning4j 0.3577 ± 0.0773 ▲ 0.4235 ± 0.0213 ▲ 0.2424 ± 0.0014 ▽ 0.1743 ± 0.0006 ▼
DSpace 0.1655 ± 0.0022 ▼ 0.1857 ± 0.0026 ▼ 0.1116 ± 0.0292 ⋆ 0.0959 ± 0.0271 ⋆
GSDTSR 0.0282 ± 0.0005 ⋆ 0.0349 ± 0.0003 ⋆ 0.0494 ± 0.0002 ⋆ 0.0492 ± 0.0002 ⋆
Guava 0.2100 ± 0.0405 ▼ 0.1951 ± 0.0114 ▼ 0.1704 ± 0.0083 ▼ 0.1717 ± 0.0170 ▼
IOF/ROL 0.2183 ± 0.0162 ▼ 0.2258 ± 0.0129 ▼ 0.2168 ± 0.0041 ▼ 0.1937 ± 0.0040 ▼
LexisNexis 0.7598 ± 0.0230 ▲ 0.6948 ± 0.0916 ▲ 0.3820 ± 0.0074 ▲ 0.3543 ± 0.0077 ▲
Paint Control 0.0071 ± 0.0005 ⋆ 0.0160 ± 0.0010 ⋆ 0.0049 ± 0.0004 ⋆ 0.0048 ± 0.0003 ⋆
OkHttp 0.2531 ± 0.0169 ▽ 0.3086 ± 0.0047 △ 0.1537 ± 0.0004 ▼ 0.1278 ± 0.0006 ⋆
Retrofit 0.1434 ± 0.0079 ⋆ 0.1384 ± 0.0081 ⋆ 0.0836 ± 0.0000 ⋆ 0.0644 ± 0.0000 ⋆
ZXing 0.0914 ± 0.0008 ⋆ 0.0897 ± 0.0043 ⋆ 0.1158 ± 0.0000 ⋆ 0.1114 ± 0.0000 ⋆

Time Budget: 80%

Druid 0.5656 ± 0.1268 ▲ 0.5667 ± 0.1099 ▲ 0.1562 ± 0.0312 ▼ 0.0666 ± 0.0182 ⋆
Fastjson 0.3540 ± 0.0105 ▲ 0.3221 ± 0.0160 △ 0.1656 ± 0.0281 ▼ 0.2392 ± 0.0739 ▽
Deeplearning4j 0.4147 ± 0.0949 ▲ 0.4567 ± 0.0145 ▲ 0.2111 ± 0.0031 ▼ 0.1805 ± 0.0013 ▼
DSpace 0.1581 ± 0.0028 ▼ 0.1807 ± 0.0031 ▼ 0.0803 ± 0.0189 ⋆ 0.0609 ± 0.0271 ⋆
GSDTSR 0.0312 ± 0.0015 ⋆ 0.0398 ± 0.0003 ⋆ 0.0597 ± 0.0002 ⋆ 0.0595 ± 0.0002 ⋆
Guava 0.2268 ± 0.0309 ▼ 0.1968 ± 0.0190 ▼ 0.1131 ± 0.0498 ⋆ 0.0876 ± 0.0572 ⋆
IOF/ROL 0.1893 ± 0.0155 ▼ 0.2226 ± 0.0152 ▼ 0.1733 ± 0.0040 ▼ 0.1585 ± 0.0033 ▼
LexisNexis 0.6857 ± 0.0433 ▲ 0.5898 ± 0.1237 ▲ 0.2773 ± 0.0049 ▽ 0.2230 ± 0.0037 ▼
Paint Control 0.0360 ± 0.0013 ⋆ 0.0330 ± 0.0022 ⋆ 0.0240 ± 0.0006 ⋆ 0.0236 ± 0.0007 ⋆
OkHttp 0.2219 ± 0.0260 ▼ 0.3007 ± 0.0067 △ 0.1131 ± 0.0004 ⋆ 0.0795 ± 0.0007 ⋆
Retrofit 0.1437 ± 0.0161 ⋆ 0.1362 ± 0.0120 ⋆ 0.0808 ± 0.0000 ⋆ 0.0652 ± 0.0000 ⋆
ZXing 0.0912 ± 0.0007 ⋆ 0.0892 ± 0.0035 ⋆ 0.0283 ± 0.0000 ⋆ 0.0019 ± 0.0000 ⋆

0 100 200 300 400 500
CI Cycle

0

100

200

300

400

Ac
cu

m
ul

at
iv

e
NA

PF
D

Time Budget: 10%

0 100 200 300 400 500
CI Cycle

Time Budget: 50%

0 100 200 300 400 500
CI Cycle

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) Deterministic FRRMAB (RNFail) FRRMAB (TimeRank)
Figure 7. Accumulative NAPFD values for Deeplearning4j system.

5.6 Answering our general question

Analysing the results of our RQs in this section we aim
at answering our general question by defining a scale
of RMSE magnitude to represent how far the solutions
found by the learning approaches are from the optimal
solutions, as follows:

RMSE Magnitude =

very near if RMSE < 0.15
near if 0.15 ≤ RMSE < 0.23
reasonable if 0.23 ≤ RMSE < 0.30
far if 0.30 ≤ RMSE < 0.35
very far if 0.35 ≤ RMSE

(7)

where i) the very near category (“⋆”) represents an
approximated optimal performance, that is, the prioriti-
zation generated by the approach is almost equivalent to
the one generated by deterministic; ii) the near category

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 9. RMSE comparison - APFDc.
RETECS COLEMAN

SUT RNFail TimeRank RNFail TimeRank

Time Budget: 10%

Druid 0.3798 ± 0.1186 ▲ 0.4221 ± 0.0579 ▲ 0.5072 ± 0.0922 ▲ 0.4750 ± 0.1176 ▲
Fastjson 0.3340 ± 0.0244 △ 0.3343 ± 0.0054 △ 0.2935 ± 0.0246 ▽ 0.3079 ± 0.0334 △
Deeplearning4j 0.0930 ± 0.0483 ⋆ 0.0966 ± 0.0407 ⋆ 0.1922 ± 0.0036 ▼ 0.1839 ± 0.0014 ▼
DSpace 0.1471 ± 0.0012 ⋆ 0.1567 ± 0.0013 ▼ 0.1353 ± 0.0044 ⋆ 0.1353 ± 0.0100 ⋆
GSDTSR 0.0193 ± 0.0002 ⋆ 0.0188 ± 0.0002 ⋆ 0.0191 ± 0.0005 ⋆ 0.0186 ± 0.0005 ⋆
Guava 0.1203 ± 0.0237 ⋆ 0.1380 ± 0.0105 ⋆ 0.1977 ± 0.0024 ▼ 0.1942 ± 0.0019 ▼
IOF/ROL 0.1696 ± 0.0116 ▼ 0.1478 ± 0.0083 ⋆ 0.1862 ± 0.0027 ▼ 0.1768 ± 0.0030 ▼
LexisNexis 0.7056 ± 0.0140 ▲ 0.6625 ± 0.0583 ▲ 0.6284 ± 0.0017 ▲ 0.6243 ± 0.0016 ▲
Paint Control 0.0005 ± 0.0007 ⋆ 0.0033 ± 0.0006 ⋆ 0.0060 ± 0.0001 ⋆ 0.0060 ± 0.0001 ⋆
OkHttp 0.1868 ± 0.0028 ▼ 0.2273 ± 0.0120 ▼ 0.2083 ± 0.0000 ▼ 0.1982 ± 0.0000 ▼
Retrofit 0.0636 ± 0.0058 ⋆ 0.0744 ± 0.0084 ⋆ 0.0816 ± 0.0000 ⋆ 0.0803 ± 0.0000 ⋆
ZXing 0.0940 ± 0.0031 ⋆ 0.0937 ± 0.0035 ⋆ 0.1256 ± 0.0000 ⋆ 0.1243 ± 0.0000 ⋆

Time Budget: 50%

Druid 0.3365 ± 0.1361 △ 0.4203 ± 0.0602 ▲ 0.1650 ± 0.0437 ▼ 0.1050 ± 0.0341 ⋆
Fastjson 0.2018 ± 0.0097 ▼ 0.1956 ± 0.0446 ▼ 0.2594 ± 0.0492 ▽ 0.2691 ± 0.0602 ▽
Deeplearning4j 0.2061 ± 0.0591 ▼ 0.1983 ± 0.0248 ▼ 0.2513 ± 0.0029 ▽ 0.2363 ± 0.0011 ▽
DSpace 0.1401 ± 0.0028 ⋆ 0.1568 ± 0.0033 ▼ 0.1085 ± 0.0259 ⋆ 0.0969 ± 0.0252 ⋆
GSDTSR 0.0267 ± 0.0004 ⋆ 0.0290 ± 0.0003 ⋆ 0.0473 ± 0.0002 ⋆ 0.0471 ± 0.0002 ⋆
Guava 0.1114 ± 0.0253 ⋆ 0.1049 ± 0.0199 ⋆ 0.1606 ± 0.0084 ▼ 0.1708 ± 0.0184 ▼
IOF/ROL 0.2186 ± 0.0166 ▼ 0.2315 ± 0.0122 ▽ 0.2209 ± 0.0041 ▼ 0.1981 ± 0.0038 ▼
LexisNexis 0.7327 ± 0.0172 ▲ 0.6780 ± 0.0868 ▲ 0.3893 ± 0.0073 ▲ 0.3636 ± 0.0075 ▲
Paint Control 0.0059 ± 0.0006 ⋆ 0.0315 ± 0.0019 ⋆ 0.0126 ± 0.0003 ⋆ 0.0126 ± 0.0003 ⋆
OkHttp 0.2164 ± 0.0290 ▼ 0.2114 ± 0.0040 ▼ 0.1360 ± 0.0004 ⋆ 0.1192 ± 0.0005 ⋆
Retrofit 0.1138 ± 0.0086 ⋆ 0.1069 ± 0.0098 ⋆ 0.0731 ± 0.0000 ⋆ 0.0572 ± 0.0000 ⋆
ZXing 0.0420 ± 0.0018 ⋆ 0.0407 ± 0.0071 ⋆ 0.1078 ± 0.0000 ⋆ 0.1059 ± 0.0000 ⋆

Time Budget: 80%

Druid 0.4928 ± 0.1520 ▲ 0.5337 ± 0.1015 ▲ 0.1562 ± 0.0396 ▼ 0.0538 ± 0.0218 ⋆
Fastjson 0.2859 ± 0.0157 ▽ 0.2739 ± 0.0318 ▽ 0.1679 ± 0.0268 ▼ 0.2309 ± 0.0689 ▽
Deeplearning4j 0.2728 ± 0.0838 ▽ 0.2104 ± 0.0238 ▼ 0.2842 ± 0.0034 ▽ 0.3058 ± 0.0014 △
DSpace 0.1169 ± 0.0030 ⋆ 0.1454 ± 0.0038 ⋆ 0.0782 ± 0.0171 ⋆ 0.0707 ± 0.0260 ⋆
GSDTSR 0.0284 ± 0.0006 ⋆ 0.0305 ± 0.0003 ⋆ 0.0541 ± 0.0002 ⋆ 0.0539 ± 0.0002 ⋆
Guava 0.1686 ± 0.0333 ▼ 0.1596 ± 0.0281 ▼ 0.1134 ± 0.0524 ⋆ 0.0922 ± 0.0584 ⋆
IOF/ROL 0.1870 ± 0.0160 ▼ 0.2291 ± 0.0137 ▼ 0.1797 ± 0.0037 ▼ 0.1652 ± 0.0032 ▼
LexisNexis 0.6459 ± 0.0365 ▲ 0.5812 ± 0.1008 ▲ 0.2890 ± 0.0045 ▽ 0.2424 ± 0.0037 ▽
Paint Control 0.0321 ± 0.0011 ⋆ 0.0431 ± 0.0025 ⋆ 0.0301 ± 0.0005 ⋆ 0.0295 ± 0.0006 ⋆
OkHttp 0.2246 ± 0.0408 ▼ 0.1846 ± 0.0074 ▼ 0.1058 ± 0.0005 ⋆ 0.0791 ± 0.0007 ⋆
Retrofit 0.1084 ± 0.0152 ⋆ 0.0985 ± 0.0136 ⋆ 0.0702 ± 0.0000 ⋆ 0.0544 ± 0.0000 ⋆
ZXing 0.0431 ± 0.0014 ⋆ 0.0437 ± 0.0116 ⋆ 0.0258 ± 0.0000 ⋆ 0.0030 ± 0.0000 ⋆

Druid
Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

0.2

0.4

0.6

0.8

1.0

Time Budget: 10%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 50%
Druid

Fastjson

Deeplearning4j

DSpace

GSDTSR

Guava
IOF/ROL

LexisNexis

Paint Control

OkHttp

Retrofit

ZXing

Time Budget: 80%

ANN (RNFail) ANN (TimeRank) FRRMAB (RNFail) FRRMAB (TimeRank)

Figure 8. Radar charts - RMSE values found using APFDc.

(“▼”) represents reaching optimal performance, and that
some improvements are required; iii) the reasonable cat-
egory (“▽”) represents the minimum acceptable perfor-
mance. Solutions in this category are acceptable and are
related to the cases in which the SUT behavior, or pos-
sibly the constraints, can make the TCP task hard. In
this sense, the approach requires some refinement for im-
provements, such as a dedicated tuning for the SUT; iv)
the far category (“△”) represents unsatisfactory perfor-
mance, and that meaningful improvements are required;
and v) the very far category (“▲”) includes solutions
that are far away from to be useful and considered rea-

sonable. By analogy and to a better visualization, we
represent the RMSE magnitude with the same symbols
used to represent the effect size magnitude in Tables 8
and 9. In this way, we generate Table 10 that presents
the distribution of each magnitude for the NAPFD and
APFDc values found by COLEMAN and RETECS.

In this path, we consider an approach that finds rea-
sonable solutions when RMSE < 0.3. Moreover, other
measures suggest such an affirmation. For instance, with
10% of the available time to execute the test cases and
considering RMSE for NAPFD values, COLEMAN ob-
tains reasonable solutions with RNFail function in 10

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Table 10. RMSE magnitudes for NAPFD and APFDc values found by COLEMAN and RETECS.

NAPFD APFDc

Scale RETECS COLEMAN RETECS COLEMAN

RNFail TimeRank RNFail TimeRank RNFail TimeRank RNFail TimeRank

Time Budget: 10%

⋆ very near 4 (33%) 5 (42%) 5 (42%) 6 (50%) 7 (58%) 7 (58%) 5 (42%) 5 (42%)
▼ near 4 (33%) 2 (17%) 4 (33%) 3 (25%) 2 (17%) 2 (17%) 4 (33%) 4 (33%)
▽ reasonable 1 (8%) 2 (17%) 1 (8%) 0 (0%) 0 (0%) 0 (0%) 1 (8%) 0 (0%)
△ far 0 (0%) 0 (0%) 0 (0%) 1 (8%) 1 (8%) 1 (8%) 0 (0%) 1 (8%)
▲ very far 3 (25%) 3 (25%) 2 (17%) 2 (17%) 2 (17%) 2 (17%) 2 (17%) 2 (17%)

Time Budget: 50%

⋆ very near 4 (33%) 4 (33%) 5 (42%) 7 (58%) 6 (50%) 5 (42%) 6 (50%) 7 (58%)
▼ near 3 (25%) 3 (25%) 4 (33%) 3 (25%) 4 (33%) 4 (33%) 3 (25%) 2 (17%)
▽ reasonable 1 (8%) 0 (0%) 2 (17%) 1 (8%) 0 (0%) 1 (8%) 2 (17%) 2 (17%)
△ far 0 (0%) 2 (17%) 0 (0%) 0 (0%) 1 (8%) 0 (0%) 0 (0%) 0 (0%)
▲ very far 4 (33%) 3 (25%) 1 (8%) 1 (8%) 1 (8%) 2 (17%) 1 (8%) 1 (8%)

Time Budget: 80%

⋆ very near 4 (33%) 4 (33%) 7 (58%) 8 (67%) 5 (42%) 5 (42%) 7 (58%) 8 (67%)
▼ near 4 (33%) 3 (25%) 4 (33%) 3 (25%) 3 (25%) 4 (33%) 3 (25%) 1 (8%)
▽ reasonable 0 (0%) 0 (0%) 1 (8%) 1 (8%) 2 (17%) 1 (8%) 2 (17%) 2 (17%)
△ far 0 (0%) 2 (17%) 0 (8%) 0 (0%) 0 (0%) 0 (0%) 0 (0%) 1 (8%)
▲ very far 4 (33%) 3 (25%) 0 (0%) 0 (0%) 2 (17%) 2 (17%) 0 (0%) 0 (0%)

Total of
Reasonable
Solutions1

25 (69%) 23 (64%) 33 (92%) 32 (89%) 29 (81%) 29 (81%) 33 (92%) 31 (86%)

1The reasonable solutions are that ones with RMSE < 0.3.

out of 12 cases, while with the budgets of 50% and
80% obtains, respectively 11 and 12 cases. However, on
the other hand, RETECS using RNFail function obtains
reasonable solutions in 9 out of 12 cases with the bud-
get of 10%, and in 8 cases with the budgets of 50% and
80%.

Considering RMSE values for APFDc metric, COLE-
MAN using RNFail function, finds reasonable solutions
in 10 cases, out of 12, for a time budget of 10%, and
11 and 12 cases for, respectively, the budgets of 50%
and 80%. While RETECS using RNFail finds reason-
able solutions in 9 out of 12 cases with the budget of
10%, and in 10 cases for the budgets of 50% and 80%. In
such cases, we can conclude that the approaches have,
in overall, a good performance.

Considering all 72 cases - all systems, budgets and
both measures NAPFD and APDFc - COLEMAN ob-
tained reasonable solutions in 66 cases (92%) using RN-
Fail, and using TimeRank in 63 (88%). On the other
hand, RETECS obtained reasonable solutions in 54
cases (75%) using RNFail and using TimeRank in 52
(72%). In overall, RNFail produced more reasonable so-
lutions than TimeRank for both approaches. However,
COLEMAN using TimeRank obtained the best perfor-
mance obtaining the best RMSE values (highlight in
gray in Tables 8 and 9) in 24 cases for NAPFD and in
17 for APFDc, followed by RETECS using RNFail that
obtained 5 cases for NAPFD and 9 for APFDc.

Finding 10. Based on the proposed scale, COLE-
MAN finds reasonable solutions in 92% of the
cases and RETECS in 75%. The less restrictive
the budget the greater the number of reason-
able solutions found by both approaches. We can
then conclude that the solutions generated are
very close to the optimal ones.

5.7 Discussions and Implications
In this section, we discuss some implications of our find-
ings regarding the application and limitations of the ap-
proaches.

Guidelines for application. Both approaches gener-
ate reasonable solutions compared with optimal ones.
COLEMAN and RETECS are able to obtain reason-
able solutions in, respectively, 92% and 75% of the cases.
That is, they provided solutions with a high quality and
spending around one second in the worst case to execute.
For this reason, both approaches are applicable in real
scenarios, contributing to reducing costs by decreasing
the time spent in the CI cycle. RETECS presents better
performance with RNFail function. This happens with
all measures evaluated. In contrast with COLEMAN,
which performs better with TimeRank.

COLEMAN outperforms RETECS in the great ma-
jority of cases. It is important to highlight that this
happens for the systems that can be considered hard
cases, and considering all measures. However, the use
of RETECS is indicated in a restrictive budget regard-

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

ing early fault detection with cost consideration, in this
case, test case execution. However, overall considering
this cost does not seem to impact the results, nor the
performance of COLEMAN, which does not include
time in its formulation.

Another point to be considered in future research is
to evaluate if the performance of the approaches is some-
how impacted by how well a given project is adopting
CI. For example, although many CI projects claim to
use CI, they actually fail to implement CI practices.
This failure to implement CI has been coined as CI The-
ather Felidre et al. (2019).

Limitations and Improvements. We observe that both
approaches have some limitations to learn with few his-
torical test data. The following characteristics are draw-
backs for the learning approaches: systems with a small
number of CI Cycles, with peaks of failures, and a large
test case set, in which many failures are distributed over
many test cases. In this way, a possible research direc-
tion is to propose a hybrid approach. An algorithm with
good performance with few historical data could be used
to overcome that limitation in the first commits. Af-
ter with enough information RETECS or COLEMAN
would be used. Another possible improvement is the use
of Long Short Term Memory (LSTM) networks (Hochre-
iter and Schmidhuber, 1997). The LSTM is well suited
to classify, process, and predict time series with time
intervals of unknown duration. Gap length insensitivity
gives LSTM an advantage over traditional ANNs (used
by RETECS).

Benchmark. Our analysis revealed some interesting
characteristics of the target systems that could be con-
sidered in the composition of a benchmark for future ex-
periments. The IOF/ROL, LexisNexis, Deeplearning4j,
and Druid systems can be considered the most chal-
lenging prioritization cases, due to the high volatility
presented, as well as the number of test cases, peaks
of failures, and the high number of failures distributed
over many test cases. The Guava, Retrofit, and ZXing
systems represent scenarios for that it is challenging to
obtain expressive time reduction. The failure distribu-
tion over the test cases is low and presents small number
of peaks in a few CI Cycles. In addition to this, the fail-
ing test cases vary in each CI Cycle.

6 Threats to Validity
We identified the following points that can be threats
to the validity of our results.

Internal Validity: the set of parameters used for the ap-
proaches is a threat. It is possible that using an auto-
matic configuration setting, the results can get improve-
ments. To minimize such a threat, we used parameters
from previous experiments (Prado Lima and Vergilio,
2020a; Spieker et al., 2017) reported in the literature.

External Validity: the datasets used can be considered
a threat. For this, we used a relevant set of systems with
different behaviors and aspects concerning the number

of failures and test cases. But the results cannot be gen-
eralized.

Conclusion Validity: the measures used is a threat to
the analysis conducted. Other TCP measures could lead
to different results. To mitigate this threat, we chose
distinct measures largely used in the TCP literature
that better deal with the time budgets and allow us to
analyze different perspectives.

Another threat concerns the RMSE magnitude scale.
Such magnitudes were obtained based on our analysis,
observations, SUTs behavior, and by making correlation
with NAPFD and APFDc values. Other researchers can
observe different aspects and propose a different scale.

7 Concluding Remarks

In this paper, we evaluate how far the solutions obtained
by TCPCI Ranking-to-Learn approaches, RETECS and
COLEMAN, are from optimal solutions produced by
a deterministic approach (ground truth). We analyzed
three test budgets and two reward functions: Reward
Based on Failures and Reward Based on Time-Rank,
concerning twelve large-scale real-world software sys-
tems. Six measures are used to evaluate: fault detection
capability (and cost consideration), early fault detec-
tion, time reduction percentage in the CI cycles, pri-
oritization time, and distance from the approximated
solution.

Regarding the application of the approaches,
RETECS reaches the best performance with RNFail
function, in a less restrictive budget of 10%, and APFDc
considering test duration as cost. COLEMAN reaches
the best performance with TimeRank function and
mainly for budgets of 50% and 80%. Overall, COLE-
MAN outperforms RETECS in the great majority of
the cases, considering all systems, budgets, and mea-
sures.

Regarding our RQ, we can conclude that both ap-
proaches are applicable in real scenarios, taking a negli-
gible time to execute and reducing the CI cycle’s time
cost. Considering all cases - all systems, budgets and
both measures NAPFD and APDFc - COLEMAN and
RETECS produce solutions that are close to the opti-
mal ones in, respectively, 92% and 75% of the cases.

We observe that a high test case volatility, i.e., test
case addition or removing along with the CI Cycles,
and a high number of failures distributed over many
test cases make the problem hard for both approaches.
Other findings are that a few cycles can hamper the
learning process and that the reduction time in a CI
cycle also depends on the test case duration.

Future work includes the use of other evaluation mea-
sures to evaluate the approaches. Other systems should
be used with a greater number of failures and test cases
to allow scalability evaluation.

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

Acknowledgements

The work is supported by the Brazilian funding agencies
CAPES and CNPq (Grant 305968/2018).

References

Bajaj, A. and Sangwan, O. P. (2019). A Systematic
Literature Review of Test Case Prioritization Using
Genetic Algorithms. IEEE Access, 7:126355–126375.

Basili, V. R., Caldiera, G., and Rombach, H. D. (1994).
The goal question metric approach. Encyclopedia of
software engineering, 2(1994):528–532.

Bertolino, A., Guerriero, A., Breno Miranda, R. P., and
Russo, S. (2020). Learning-to-rank vs ranking-to-
learn: Strategies for regression testing in continuous
integration. In 42nd International Conference on Soft-
ware Engineering, ICSE’20, pages 1–12, New York,
NY, USA. ACM.

Busjaeger, B. and Xie, T. (2016). Learning for Test Pri-
oritization: An Industrial Case Study. In Proceedings
of the 2016 24th ACM SIGSOFT International Sym-
posium on Foundations of Software Engineering, FSE
2016, pages 975–980, New York, NY, USA. ACM.

Di Nucci, D., Panichella, A., Zaidman, A., and De Lucia,
A. (2018). A Test Case Prioritization Genetic Algo-
rithm guided by the Hypervolume Indicator. IEEE
Transactions on Software Engineering.

Duvall, P., Matyas, S., and Glover, A. (2007). Con-
tinuous Integration: Improving Software Quality and
Reducing Risk. Addison-Wesley.

Elbaum, S., Malishevsky, A., and Rothermel, G. (2001).
Incorporating varying test costs and fault severities
into test case prioritization. In Proceedings of the
23rd International Conference on Software Engineer-
ing, pages 329–338.

Elbaum, S., McLaughlin, A., and Penix, J. (2014). The
Google Dataset of Testing Results.

Epitropakis, M., Yoo, S., Harman, M., and Burke, E.
(2015). Empirical evaluation of pareto efficient multi-
objective regression test case prioritisation. In Pro-
ceedings of the 2015 International Symposium on
Software Testing and Analysis, ISSTA, pages 234–
245, New York, NY, USA. ACM.

Felidre, W., Furtado, L., Costa, D., Cartaxo, B., and
Pinto, G. (2019). Continuous integration theater.
In 2019 ACM/IEEE International Symposium on
Empirical Software Engineering and Measurement
(ESEM), pages 1–10, Los Alamitos, CA, USA. IEEE
Computer Society.

Fowler, M. (2006). Continu-
ous Integration. https://martin
fowler.com/articles/continuousIntegration.html.

Haghighatkhah, A., Mäntylä, M., Oivo, M., and Kuvaja,
P. (2018). Test prioritization in continuous integra-
tion environments. Journal of Systems and Software,
146:80–98.

Hilton, M. (2016). Understanding and improving con-

tinuous integration. In 24th ACM SIGSOFT Interna-
tional Symposium on Foundations of Software Engi-
neering, FSE 2016, pages 1066–1067, New York, NY,
USA. ACM.

Hochreiter, S. and Schmidhuber, J. (1997). Long short-
term memory. Neural Computation, 9(8):1735–1780.

Khatibsyarbini, M., Isa, M. A., Jawawi, D. N. A.,
and Tumeng, R. (2018). Test case prioritization ap-
proaches in regression testing: A systematic literature
review. Information and Software Technology, 93:74–
93.

Kruskal, W. H. and Wallis, W. A. (1952). Use of Ranks
in One-Criterion Variance Analysis. Journal of the
American Statistical Association, 47(260):583–621.

Kuleshov, V. and Precup, D. (2014). Algorithms for
multi-armed bandit problems. Journal of Machine
Learning Research, 1:1–48.

Li, K., Fialho, A., Kwong, S., and Zhang, Q. (2014).
Adaptive operator selection with bandits for a multi-
objective evolutionary algorithm based on decomposi-
tion. Evolutionary Computation, IEEE Transactions
on, 18(1):114–130.

Li, Z., Harman, M., and Hierons, R. M. (2007).
Search Algorithms for Regression Test Case Prioriti-
zation. IEEE Transactions on Software Engineering,
33(4):225–237.

Mann, H. B. and Whitney, D. R. (1947). On a test of
whether one of two random variables is stochastically
larger than the other. The annals of mathematical
statistics, pages 50–60.

Marijan, D. (2015). Multi-perspective Regression Test
Prioritization for Time-Constrained Environments.
In Proceedings of the 2015 IEEE International Con-
ference on Software Quality, Reliability and Secu-
rity, QRS’15, pages 157–162, Washington, DC, USA.
IEEE Computer Society.

Marijan, D., Gotlieb, A., and Liaaen, M. (2019). A
learning algorithm for optimizing continuous inte-
gration development and testing practice. Software:
Practice and Experience, 49(2):192–213.

Marijan, D., Gotlieb, A., and Sen, S. (2013). Test Case
Prioritization for Continuous Regression Testing: An
Industrial Case Study. In IEEE International Confer-
ence on Software Maintenance, pages 540–543. IEEE.

Marijan, D., Liaaen, M., Gotlieb, A., Sen, S., and
Ieva, C. (2017). TITAN: Test Suite Optimization
for Highly Configurable Software. In Proceedings of
the IEEE International Conference on Software Test-
ing, Verification and Validation, ICST, pages 524–531.
IEEE.

Prado Lima, J. A. and Vergilio, S. R. (2020a). A multi-
armed bandit approach for test case prioritization in
continuous integration environments. IEEE Transac-
tions on Software Engineering, page 12.

Prado Lima, J. A. and Vergilio, S. R. (2020b). Multi-
armed bandit test case prioritization in continuous
integration environments: A trade-off analysis. In
Proceedings of the 5th Brazilian Symposium on Sys-
tematic and Automated Software Testing, pages 21–

An Evaluation of Ranking-to-Learn Approaches for TCPCI Prado Lima and Vergilio 2023

30, New York, NY, USA. Association for Computing
Machinery.

Prado Lima, J. A. and Vergilio, S. R. (2020c). Test
Case Prioritization in Continuous Integration Envi-
ronments: A Systematic Mapping Study. Information
and Software Technology.

Prado Lima, J. A. and Vergilio, S. R. (2021).
Supplementary Material - An Evaluation
of Ranking-to-Learn Approaches for Test
Case Prioritization in Continuous Integration.
URL https: // osf. io/ x96fk/ ?view_ only=
020b612cbdd84fa38d6a974743f9d823 .

Qu, X., Cohen, M. B., and Woolf, K. M. (2007). Com-
binatorial Interaction Regression Testing: A Study of
Test Case Generation and Prioritization. In IEEE
International Conference on Software Maintenance,
pages 255–264.

Robbins, H. (1985). Some aspects of the sequential de-
sign of experiments. In Herbert Robbins Selected Pa-
pers, pages 169–177. Springer.

Rothermel, G., Untch, R. H., Chu, C., and Harrold,
M. J. (1999). Test Case Prioritization: An Empirical
Study. In Proceedings of the IEEE International Con-
ference on Software Maintenance, ICSM ’99, pages
179–188. IEEE Computer Society.

Spieker, H., Gotlieb, A., Marijan, D., and Mossige, M.
(2017). Reinforcement Learning for Automatic Test
Case Prioritization and Selection in Continuous Inte-

gration. In Proceedings of the 26th ACM SIGSOFT
International Symposium on Software Testing and
Analysis, ISSTA 2017, pages 12–22, New York, NY,
USA. ACM.

Vargha, A. and Delaney, H. D. (2000). A Critique and
Improvement of the CL Common Language Effect
Size Statistics of McGraw and Wong. Journal of Ed-
ucational and Behavioral Statistics, 25(2):101–132.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Reg-
nell, B., and Wesslén, A. (2000). Experimentation in
Software Engineering: An Introduction. Kluwer Aca-
demic Publishers.

Xiao, L., Miao, H., and Zhong, Y. (2018). Test case
prioritization and selection technique in continuous
integration development environments: a case study.
International Journal of Engineering & Technology,
7(2.28):332–336.

Yoo, S. and Harman, M. (2012). Regression Testing
Minimization, Selection and Prioritization: A Survey.
Software Testing, Verification & Reliability, 22(2):67–
120.

Yu, Z., Fahid, F., Menzies, T., Rothermel, G., Patrick,
K., and Cherian, S. (2019). TERMINATOR: better
automated UI test case prioritization. In Proceedings
of the 2019 27th ACM Joint Meeting on European
Software Engineering Conference and Symposium on
the Foundations of Software Engineering, FSE, pages
883–894. ACM.

https://osf.io/x96fk/?view_only=020b612cbdd84fa38d6a974743f9d823
https://osf.io/x96fk/?view_only=020b612cbdd84fa38d6a974743f9d823

	Introduction
	Background and Related Work
	TCP in CI environments

	Learning-based Approaches
	RETECS
	COLEMAN
	Reward Functions

	Evaluation Methodology
	Evaluation Measures
	Target Systems
	Generating Optimal Solutions
	Executing Learning-based approaches

	Results and Analysis
	RQ1: Fault Detection Effectiveness
	RQ2: Fault Detection Effectiveness with Cost Consideration
	RQ3 Early Fault Detection and Test Time Reduction
	RQ4: Prioritization Time
	RQ5: Accuracy
	Answering our general question
	Discussions and Implications

	Threats to Validity
	Concluding Remarks

