
Journal of Software Engineering Research and Development, 2022, 10:10, doi: 10.5753/jserd.2022.2554
 This work is licensed under a Creative Commons Attribution 4.0 International License..

On the Use of UML in the Brazilian Industry: A Survey
Ed Wilson Júnior [Universidade do Vale do Rio dos Sinos | edwjr7@edu.unisinos.br]
Kleinner Farias [Universidade do Vale do Rio dos Sinos | kleinnerfarias@unisinos.br]
Bruno da Silva [California Polytechnic State University | bcdasilv@calpoly.edu]

AbstractOver the past decade, UMLmodeling has been used in the industry in software development tasks, such as
documenting design decisions and promoting better communication between teams, as pointed out in recent studies.
However, little is known about the factors, practitioners’ perceptions, and practices that affect UML use in real-
world projects. This article, therefore, reports exploratory research focused on investigating how UML is used in
practice in the Brazilian software industry. In total, 376 professionals from 210 information technology companies
answered an online questionnaire about the factors affecting use, difficulty and frequency of use, perceived benefits,
and contextual factors that prevent the adoption of UML models. In addition, 20 professionals participated in a
semi-structured interview answering basic questions about professional experience, vision on software modeling,
use of tools, and other aspects of UML. The main results show that: 74% of the participants answered that they do
not use UML frequently. Factors such as (1) high time pressure to develop features; (2) the cost of disseminating
a common model understanding among diverse audiences and; (3) the difficulty of evaluating the quality of the
models affect the effective use of UML. In general, most participants know UML, but do not use it frequently (or
do not use at all) in their projects. Finally, this article draws some challenges, implications and research directions
that can be explored in upcoming studies for promoting UML modeling in practice.

Keywords: UML, Unified Model Language, Practice, Industry, Survey

1 Introduction
UMLmodels can play a crucial role in software development
tasks such as documenting design decisions and promoting
better communicationwithin and across teams (OMG, 2017).
Some previous studies (Bucchiarone et al., 2021; Fernández-
Sáez et al., 2018; Chaudron et al., 2012) highlight that the
use of UML modeling can provide benefits to the software
development process, such as providing a common under-
standing among team members, understanding the details of
design decisions, and ultimately making the process more ef-
ficient after all. However, in practice, such benefits are of-
ten overlooked or not observed. Some studies (Fernández-
Sáez et al., 2018; Chaudron et al., 2012; Störrle, 2017) ar-
gue that such benefits can be realized when there is a consis-
tent and (in)formal application of modeling, where develop-
ers typically use UML throughout the project and have pre-
cise control over its use. As we can rarely find such a sce-
nario, researchers (Fernández-Sáez et al., 2018; Petre, 2014)
have tried to draw a clear picture of UML use in real-world
projects.
Today, the current literature (Akdur et al., 2021;

Fernández-Sáez et al., 2018; Petre, 2014; Chaudron
et al., 2012) lacks a broad and exploratory understanding of
practitioners’ perceptions of the factors that affect or even
compromise the adoption of UML modeling in real-world
projects. More specifically, little is known about how
practitioners deal with software modeling in the Brazilian
software development industry context. Previous studies (Pe-
tre, 2014, 2013) have focused on collecting opinions from
participants to understand which UML diagrams are most
used. However, this assumes that participants’ perceptions
and experiences worldwide match those at the regional
level (i.e., country or significant geographic region). These
studies neither explore, for example, whether the project

context can influence the UML adoption nor do they discuss
practitioners’ views on the perceived usefulness of UML
itself.

This article investigates the state of the practice regarding
the use of UML in the Brazilian industry by surveying and
interviewing software practitioners in that country. Specif-
ically, this work seeks to investigate (1) how practitioners
use UML and (2) the relevance of its use in real-world soft-
ware projects. Therefore, this study surveyed 376 profession-
als from 210 Brazilian information technology companies.
We selected participants based on two criteria: (1) level of
knowledge and practical experience related to software mod-
eling; and (2) programming experience in regular projects.
Participants answered an online questionnaire about their ex-
perience with UML, the difficulties of adopting it, factors
that affect its practical use, frequency of use, and the bene-
fits it brings (or could bring). Also, in the second phase, we
interviewed 20 participants following a semi-structured in-
terview protocol to understand further the survey results.

Our findings are encouraging and bridge the literature
gap regarding the impact of the organizational culture is-
sue in UML use, the analysis of factors that hinder UML
use, and help to understand the broader landscape of the
UML adoption. Some evidence already reported in the liter-
ature is reinforced. This study can help companies and soft-
ware practitioners understand the broader landscape of UML
use, thus supporting their future decision-making around
software practices and techniques in their future projects.
Academia and industry can benefit from our insights on
how to improve their software modeling practices or develop
new tools and processes. Besides, this study also benefits re-
searchers and practitioners by providing additional empirical
knowledge about practical issues concerning UMLmodeling
in a broader view.

https://orcid.org/0000-0002-2225-3004
mailto:edwjr7@edu.unisinos.br
https://orcid.org/0000-0003-1891-3580
mailto:kleinnerfarias@unisinos.br
https://orcid.org/0000-0002-6467-9943
mailto:bcdasilv@calpoly.edu

Presenting the new SBC journal template Júnior et al. 2022

This article is an extended version of our previous work
(Júnior et al., 2021) in several ways. First, the article un-
derwent a careful review and was significantly improved
as a whole. Second, the research protocol was improved by
adding the list of interview questions and considering the lo-
cation of the companies where the participants work. Third,
the number of survey participants increased from 314 to 376
(i.e., 62 new participants), new findings are generated from
this sample, and more thorough discussions regarding six re-
search questions. In addition, this article presents additional
discussions, identifies open challenges and implications, and
describes the key underlying issues that need to be addressed
in future investigations.
The article is structured in seven sections. Section 2 de-

fines related work. Section 3 details the adopted methodol-
ogy. Section 4 describes the results for each research ques-
tion. Section 5 brings up qualitative reflections and insights
for future work. Section 6 presents the main threats to the
study’s validity. Section 7 wraps up the article and include
some ideas for future work.

2 Related Work
The selection of related works was performed based on two
steps: (1) initial search in digital repositories, such as Google
Scholar1 and Scopus2, was done to identify articles regard-
ing the UML usage and survey in this research field; and (2)
filtering of the selected articles considering the alignment of
such works with the objective of our article (Section 3.1). We
selected studies from 2014 until now as our study is based on
the findings reported in (Petre, 2014). After that, they were
analyzed (Section 2.1) and compared to nine studies to iden-
tify research opportunities (Section 2.2).

2.1 Analysis of Related Works
Petre (2014). This work performed an empirical study about
the use of UML in practice, which involved interviews con-
ducted over two years with more than fifty software develop-
ers. The participants were mainly from North America and
Europe, but some were from Brazil, India, and Japan, and
many had worked in more than one country. Petre found that
participants did not use UML universally but used it consis-
tently in specific contexts such as embedded systems (e.g.,
automotive, aerospace, etc.). In addition, Petre reported that
the UML models are not used homogeneously, on the con-
trary, the interviewees reported heterogeneity in relation to
the way to use the models in practice. Typically, intervie-
wees assumed different roles throughout the development cy-
cle, using UML models differently in each role. Petre also
reported that the way practitioners used UML diagrams de-
pended on the problem domain faced.
Ozkaya and Erata (2020). This research involved 109

professionals from 34 countries, representing the different
profiles, positions, types of software projects, and years of
experience to understand how professionals use UML to

1https://scholar.google.com/
2https://www.scopus.com/

model software architecture from different viewpoints: func-
tional, information, concurrency, development, deployment,
and operational. They found that the information and func-
tional viewpoints are the most popular ones. Moreover, the
obtained results showed that most participants (88%) used
UML when they needed to model system architecture from
different viewpoints.
Fernández-Sáez et al. (2015). This study presents a sur-

vey on the use of UML in software maintenance. They sur-
veyed 178 practitioners working on software maintenance
projects in 12 different countries. Their results indicate that
companies can improve system maintenance by leveraging
the use of UMLdiagramswhile executingmaintenance tasks;
however, it would require a significant effort to update UML
diagrams as source code evolves.
Farias et al. (2018). We reported research findings on a

shorter survey to identify the UML use in practice in the
Brazilian industry. Two hundred and twenty-two practition-
ers from 140 different Information Technology companies
answered a questionnaire concerning their experiences with
UML, the difficulty in adopting it, and what should be done
to increase adoption in practice. The results show that: (1)
only 60 participants (28.2%) had used UML in their daily
work; (2) 55.41% of the surveyed participants did not dis-
agree with the statement that UML is the “lingua franca” in
software modeling; (3) 61.26% reported to find that the au-
tomatic creation of UML diagrams to represent a big picture
of the system under development would be useful to boost
UML use.
Ciccozzi et al. (2019). This work carried out a systematic

review that involved 63 research studies and 19 tools from
more than 5400 initial entries. The objective was to identify,
classify, and evaluate the existing solutions for UML model
execution (i.e., automatically interpret or translate models
into running software). The main results of this study are: (1)
there is a growing scientific interest in the execution of UML
models; (2) model-level debugging is supported in very few
cases; (3) only a few surveys provide evidence of industrial
use, with very limited empirical assessments; and the most
common limitation is the coverage of the UML language.
Störrle (2017). This article conducted an online survey in-

volving 82 professionals to determine whether and to what
extent they use conceptual models and for what purposes.
Specifically, the author sought to grasp (1) if practitioners
use UML and BPMN (Business Process Modeling Notation)
for software modeling; (2) for what purposes are these mod-
eling languages used; (3) what are the different ways of us-
ing these models in practice; and (4) how often practitioners
use these modeling languages. Storrle found that models are
perceived to be widely used by study participants, and UML
is the leading language. Storrle reported three distinct usage
modes of models, of which the most frequent is informal us-
age for communication and cognition.
Fernández-Sáez et al. (2018). This study performed a

case study in a multinational company’s ICT department and
involved 31 interviews with employees who work on soft-
ware maintenance projects. The study mainly focused on the
use of UML in software maintenance. They found that using
software modeling notations such as UML is considered ben-
eficial for software maintenance but needs to be tailored to

Presenting the new SBC journal template Júnior et al. 2022

its context. The authors also provided a list of recommended
practices that contribute to the increased effectiveness of soft-
ware modeling.
Ho-Quang et al. (2017). The authors conducted a large-

scale survey with 485 responses from contributors from 458
different open source projects. In that context, they found
that collaboration was the most important motivation for us-
ing UML in open source projects as teams use UML during
communication and planning of joint implementation efforts.
UML models seem to benefit new contributors’ onboarding
but do not seem to be a significant factor in attracting new
contributors.
Neto et al. (2021). This study presents an overview of the

adoption of UML in IT companies in São Carlos (Brazil) and
the region through a survey of 21 questions answered by 24
participants. Also, it aims to compare how language is taught
in universities. The results show a significant use of UML,
including in companies that adopt agile methods and the au-
thors suggest that the content on UML is preserved in the
curriculum of educational institutions, in an updated and op-
timized way, meeting the trends presented by IT companies.
The study also points out that the opportunities in the area of
modeling, with the mastery of agile methodologies and the
trend of continuous acceleration of processes, are vast. One
of themwould be, at first, the adequacy of UMLmodeling for
agile methodologies, without the most valued asset in these
methodologies: time.

2.2 Comparative Analysis and Opportunities
Six Comparison Criteria (CC) were defined to assist in identi-
fying similarities and differences between the proposed work
and the selected articles. This comparison is crucial to iden-
tify research opportunities using objective rather than subjec-
tive criteria. We describe the six comparison criteria below:

• Context (CC01): Studies that involved professionals in
the Brazilian industry.

• Participant profile (CC02): Studies that collected par-
ticipant data for screening and profile characterization.

• Specific geographic region (CC03): Works that ex-
plored the UML use in a specific regional scope.

• Applicability of UML (CC04): Studies that evaluated
which factors prevent the adoption of UML in the soft-
ware industry.

• Interviews with participants (CC05): Studies that tri-
angulated quantitative and qualitative data.

• Different domains (CC06): Studies that involved soft-
ware developers working in different problem domains
or business segments.

Table 1 compares the selected papers and summarizes
whether they meet the criteria completely, partially, or do
not meet, thus contrasting them with our work. Moreover, it
highlights the similarities and differences between them. We
observe that only our work fulfill’s all criteria. In this sense,
two research opportunities were identified: (1) few studies
broadly inspect the adoption of UML models from the per-
spective of the Brazilian industry; and (2) no study produced
empirical evidence from a survey and conductingted inter-

views at the same time. The next section outlines a method-
ology to explore these identified research opportunities.

Table 1. Comparative analysis of the selected related works

Related Work Comparison Criterion
CC1 CC2 CC3 CC4 CC5 CC6

Proposed Work
Petre (2014) G# # # #
Ozkaya and Erata
(2020)

G# # # #
Fernández-Sáez
et al. (2015)

G#
Farias et al. (2018) # G# #
Ciccozzi et al.
(2019)

G#
Störrle (2017) # # # G#
Fernández-Sáez
et al. (2018)

G#
Ho-Quang et al.
(2017)

Neto et al. (2021) # #

 Completely Meets G# Partially Meets # Does not attend

3 Methodology
This section presents the research methodology followed for
conducting our survey. This protocol was formulated based
on well-known guidelines (Wohlin et al., 2012; Kitchenham
and Pfleeger, 2008) to design and run empirical studies, as
well as based on our experience in carrying out previous
surveys (Farias et al., 2018; Júnior et al., 2021). This sec-
tion is organized as follows. Section 3.1 introduces the main
objective and research questions. Section 3.2 describes the
adopted experimental process. Section 3.3 describes the ques-
tionnaire and interview formulated and applied in the study.

3.1 Objective and Research Questions
The study objectives are twofold: (1) to understand the diffu-
sion and relevance of the use of UML in the Brazilian indus-
try; and (2) to analyze at what level developers understand
the benefits of UML in real-world projects. We formulated
six research questions (RQ) to analyze different facets of
these objectives. Table 2 describes the formulated RQs.

3.2 Experimental Process
Figure 1 introduces the adopted experimental process, com-
posed of three phases discussed as follows:
Phase 1: Selection of participants. Participants were se-

lected based on the following criteria: level of knowledge,
practical experience related to software modeling, and pro-
gramming in industrial software development projects. Us-
ing these criteria, we sought to select participants with aca-
demic backgrounds and practical experience in the Brazilian
industry. This set of all possible participants represents the
target population (Kitchenham and Pfleeger, 2008; Wohlin
et al., 2012). More specifically, the target population com-
prises practitioners working in Brazil — including devel-
opers (different seniority levels), software architects, and
project managers — with academic backgrounds obtained
from Brazilian universities. This population represents those
who are in a position to answer the questions asked and to
whom the research results apply (Kitchenham and Pfleeger,

Presenting the new SBC journal template Júnior et al. 2022

Table 2. Research questions investigated in this article
Research Questions Motivation Variable

RQ1: What factors influence the effective
use of the UML?

Reveal the influencing factors in a broader usage of UMLmod-
els in practice.

Usage-influencing factors

RQ2: What makes UML modeling a chal-
lenging practice?

Understand the challenges practitioners face that hinder the
adoption of UML modeling

Adoption-hindering

RQ3: What benefits do practitioners realize
when it comes to using UML?

Reveal the most commonly realized benefits when using UML
modeling.

Perceived benefits

RQ4: How often do practitioners use UML? Understand how often practitioners use UML modeling. Frequency of use
RQ5: How does the context of software
projects limit the use of UML in organiza-
tions?

Identify context factors that limit the use of UML in organiza-
tions.

Project context

RQ6: How do practitioners view UML mod-
eling?

Reveal the practitioners’ vision regarding the adoption of UML
modeling.

Practitioner view

Figure 1. Experimental process

2008; Wohlin et al., 2012). In total, 376 participants an-
swered the questionnaire.
Phase 2: Application of the questionnaire and inter-

views. This phase focused on the application of the question-
naire and the interviews execution. We conducted interviews
to collect additional qualitative data related to research ques-
tions. Such data is essential to triangulate the obtained re-
sults (Section 4) from our questionnaire and interviews. The
questionnaire (discussed in Section 3.3) was sent by e-mail
to the target population, totaling more than 406 people in-
vited. In total, the study had 376 participants. We carefully
selected the target population to avoid collecting data from
people with inadequate profiles. We invited undergraduates,
graduate students (master’s and doctorate), industry profes-
sionals with a recognized academic background, and pro-
fessionals identified in the social network of professionals,
such as Linkedin. The 376 participants worked in 210 compa-
nies in different Brazilian regions (midwest, south, southeast,
and northeast). After completing the stages of answering and
sending the questionnaire, we randomly invited 27 partici-
pants (out of 376) for a semi-structured interview (Wohlin
et al., 2012; Farias et al., 2015). 20 participants, namely (P1-
20) hereafter, accepted the invitation. The script was direct,
starting from basic questions about the professional experi-
ence, the vision of software modeling, the use of tools, and
other aspects of UML. The interviews were performed and
recorded using the Microsoft Teams software. In a further
step, we triangulated the qualitative and quantitative data

from the interview and the questionnaire to explore comple-
mentary aspects of the data.
Phase 3: Data analysis. This phase sought to analyze the

data collected through the questionnaire and interviews care-
fully. For this, we first analyzed the collected data (inter-
views and survey) separately and then compared them (tri-
angulation). Initially, we analyzed the data collected through
the survey and tabulated it. Then, we used those initial sur-
vey results as the basis to formulate the interview ques-
tions. Therefore, the interviewees answered questions that
sought to explore the results obtained through the survey
more deeply, seeking consistency in the data analysis. The
investigation provided interaction through a dialectical pro-
cess, interaction, and reflection between the researcher and
the participants. We manually performed interview data anal-
ysis and went from a broad view to a more focal one without
divergences. That helped us obtain complementary evidence
to explain the quantitative results and then derive concrete
conclusions from a chain of evidence formed from the sys-
tematic alignment of quantitative and qualitative data.

3.3 Questionnaire and Interviews
Data were collected from interviews and an online question-
naire3 (created in Google Forms). The study repository 4

has more information. Participants reflected on their expe-
rience on UML software modeling in practice through our
semi-structured interviews. Table 3 presents the list of ques-
tions used in the interview. These interviews helped us to
enrich the body of qualitative data. The authors ask a list
of predefined questions for all respondents. New questions
were formulated based on the answers given by the partici-
pants. We chose the online survey instrument because it en-
abled quick application, and fast distribution, thus reaching
a larger number of individuals in geographically diverse lo-
cations at no additional cost. The survey questions examined
research gaps in previous studies and apprehended the struc-
tures of the previously developed questionnaire. In addition,
we based the design of the questionnaire and interview ques-
tions on the findings reported by Petre (2014).

3Questionnaire: https://forms.gle/TFRwsgJ7UFUcpafN7
4Study repository: https://github.com/edwjr/surveyQuestionnaire

Presenting the new SBC journal template Júnior et al. 2022

Table 3. List of questions used in the interview
ID Question
q1 Which company do you currently work for?
q2 What is your view on software modeling?
q3 How is UML used where you work?
q4 What is the main difficulty in using UML?

q5 Why do developers tend not to use UML
in organizations?

q6 When is the use of UML worth it?

q7 Do you use any specific software modeling tools
to visualize and edit diagrams?

q8
How often do you not consult the software
documentation and work directly with
source code?

q9 How much effort do you put into
reading UML diagrams?

q10 What improvements should be made to enhance
the use of UML?

4 Results
This section presents the obtained results concerning the for-
mulated research questions (described in Section 3.1). We
used histograms to provide an overview of the collected data
from the responses of 376 survey participants and 20 inter-
views.

4.1 Analysis of the participants’ profile
Table 4 summarizes the participant’s profile, reporting dif-
ferent facets including education, undergraduate degree, job
role, overall experience, professional experience with soft-
ware modeling, experience with software development, and
location. The 376 participants who responded to the survey
came from 210 companies in Brazil (at the time of data col-
lection). As some questions were not required, the sum (n) is
not necessarily equivalent to the total number of participants
(376).
Education. The majority (68.1%) either had already grad-

uated from college (36.9%) or were pursuing a degree as a
student, while 10.6% had already completed either a post-
graduate specialization (7.9%) or aMaster’s degree (3.7%) in
the field of computing. 20.6% of the participants were “certi-
fied technicians” in the field of computing5. Only one partic-
ipant did not earn an undergraduate degree in computing but
rather mathematics, subsequently pursuing a master’s degree
in applied computing. Regardless of their level of education,
all participants were professionals with experience in the in-
dustry.
Undergraduate degree.Most participants (91.8%) had an

undergraduate degree in computing. In Brazil, universities of-
fer computing degrees under different names, including sys-
tems analysis (51.9%), computer science (28.7%), and infor-
mation systems (11.2%). This shows our participant pool has
a strong academic background which complements the par-
ticipants’ practical experience. Considering their job roles,
50.7% were software developers, 23.6% were systems ana-
lysts and 2.4% were software architects. Software architects

5In Brazil, some schools have programs to offer high school degrees
with an additional professional/technical certificate.

Table 4. The profile data of the participants.
Characteristic (n=376) Answer # %

Education Technical Certificate 77 20.6%
Undergraduate student 117 31.2%

Graduate 138 36.9%
Specialization 22 7.9%

Master 14 3.7%
Undergraduate degree System Analysis 195 51.9%

Computer Science 108 28.7%
Information Systems 42 11.2%

Others 31 8.2%
Position Developer 187 50.7%

Systems Analyst 87 23.6%
Software Architect 9 2.4%

Manager 7 1.9%
Others 79 19.6%

Overall < 2 years 138 37.5%
Experience 2-4 years 129 35.1%

5-6 years 56 15.2%
7-8 years 10 2.7%
> 8 years 18 4.9%

Professional experience < 2 years 227 61.2%
with software modeling 2-4 years 91 24.5%

5-6 years 25 6.7%
7-8 years 10 2.7%
> 8 years 18 4.9%

Professional experience < 2 years 126 34.1%
with software development 2-4 years 120 32.5%

5-6 years 54 14.6%
7-8 years 28 7.6%
> 8 years 41 11.1%

Geographical distribution of Northeast 3 1%
companies Midwest 31 15%

South 102 42%
Southeast 13 6%

More than one location 61 29%

and managers accounted for 1.9% of the sample. Thus, 80%
of the participants were in job positions directly related to
software development practices.
Overall experience. The experience level is diverse in our

participant pool, showing higher concentration in the 2 to 6
years range (62.5%), 7.6% had seven years or more of overall
professional experience.
Modeling experience. Regarding the characteristics of

modeling experience, participants were experienced, but not
highly, with software modeling. The expected result would
be the lack of experience since previous empirical studies
point to low adoption of UML models in the industry. About
38% of the participants had more than two years of profes-
sional experience in software modeling, while the others said
they had less than two years of experience.
Development experience. Regarding software develop-

ment, overall, participants reported more years of experience
compared to software modeling experience (when software
modeling is considered a separate activity). As expected,
practitioners are generally more exposed to experience pro-
gramming tasks than modeling tasks. That is why we see
more years of experience in “software development” than
“software modeling” when these are considered “separate ac-
tivities”.
Geographical distribution of companies. Regarding

work location, our participants came from 210 different com-
panies located in all regions of the country except the north-
ern region. The largest concentration was in the southern re-
gion with 102 companies, representing 42% of the sample.
The midwest and southeast regions were 15% (31) and 6%
(13), respectively, and the northeast region represented 1%
(3). Companies located in more than one region represent
29% (61).
Given the participant demographics, we consider the

Presenting the new SBC journal template Júnior et al. 2022

participants’profile adequate to answer the research ques-
tions of our study for two main reasons. First, the partici-
pants came from a diverse set of companies (210), avoid-
ing responses biased by experiences obtained in a limited
set of companies. Also, the large number of companies the
participants came from increases the chances of participants
with experiences in diverse business contexts and organiza-
tional cultures, thus improving the quality of the signal we
can get in the study. Second, all the participants had some
formal education in computing, thus increasing the chances
that they had some level of training in software modeling.
This reduces the risk of biasing their answers because they
had not known UML or had not heard about software mod-
eling before the survey. Moreover, the 20 interviewed partic-
ipants reported modeling experience greater than five years,
and they worked in software development in areas such as
education (4 participants), agribusiness (3), e-commerce (2),
government (3), trading (3), product exports (2), and finance
(3). That diversity of areas, experience, and knowledge en-
riched the discussion. For ethical and privacy reasons, we
chose not to present the names of the companies where par-
ticipants worked. The following sections discuss the results
obtained organized by research question.

4.2 RQ1: What factors influence the effective
use of the UML?

Figure 2 presents the collected data concerning the UML
usage-influencing factors (RQ1). We explored three factors
to answer RQ1: (a) time pressure that leads developers not
to do software modeling, focusing only on working on the
code; (b) the cost of promoting a common model understand-
ing among the involved people with different levels of educa-
tion/experience; and (c) the difficulty in assessing the quality
of the created models.
Time. Figure 2(a) indicates that 52% of the survey partic-

ipants and 18 of the 20 interviewees reinforced that the short
development time and high demands are themain factors that
influence the use of UML since the software systems devel-
oped are getting larger and more complex every day due to
the increasing demand of customers. “Currently the projects
are large and with a very short delivery time, you can barely
deliver 100% software, imagine a documentation that would
have to be updated at every step” (P17). This also leads to
complex software projects that cannot be easily managed by
project stakeholders and cause software systems to be deliv-
ered late (or with budget overrun) or incorrectly developed
(Ozkaya and Erata, 2020). Consequently, they end up opting
for other complementary methods, such as screen prototyp-
ing, or not even creating UML models.
Cost of promoting understanding. Figure 2(b) shows

that most of the participants either fully agree (34%) or par-
tially agree (34%) that the cost of promoting a common un-
derstanding among team members is a significant influenc-
ing factor on UML use. Conversely, when we approached
the interviewees with this question, most of them (12 out
of 20) considered that the cost of promoting accurate mod-
eling understanding between different people with different
levels of education/experience and viewpoints is low, diverg-
ing from the survey data. This divergence possibly emerged

since most interviewees worked in teams where all mem-
bers had the same level of experience/training, thus lead-
ing to a smoother alignment regarding model understanding.
The academic skill set affects where/how stakeholders have
learned software modeling, influencing their modeling ap-
proaches and their relevant practices through the modeling
experience Akdur et al. (2017).

Difficulty evaluating. Figure 2(c) shows the difficulty
in evaluating the quality of UML models is another signifi-
cant usage-influencing factor (21% fully agree, 40% partially
agree). Also, data from the interviews supported the diffi-
culty in evaluating the models created and identified that this
is one of the factors that affect the effective use of UML in
the industry.

Moreover, the results on the usage-influencing factors sup-
port previous findings (Chaudron et al., 2012; Fernández-
Sáez et al., 2015; Bucchiarone et al., 2021; Störrle, 2017).
Bucchiarone et al. (2021) advocate that stakeholders model
informally to support communicative and cognitive pro-
cesses using emergent and flexible graphical notations in
the early stages of the software development process. Stör-
rle (2017) also indicates that informal modeling (e.g., sketch-
ing on a whiteboard) is considered more effective in promot-
ing communication, collaboration, and understanding. How-
ever, it is worth noting that such diagrams can be scrapped
or become inaccurate since they are not maintained together
with the updated source code. Jackson (2019) points out that
informal representations can be a good start for modeling,
but it is limited, gives inconsistent interpretations, and can-
not be analyzed mechanically. Additionally, previous exper-
imental studies such as (Ho-Quang et al., 2017; Petre, 2014;
Scanniello et al., 2014) revealed that some issues challenge
UML’s effectiveness. For instance, the UML complex nota-
tion as a whole, preference for other modeling approaches
(e.g., informal sketches), and certain problem domains or in-
dustries might be more suitable than others for UML model-
ing. However, professionals have developed ad hoc practices
that employ UML models in reasoning and communication
about design, both individually and in collaborative dialogue.

On the other hand, in some scenarios and industries, mod-
els can be transformed into programs using the proper tools.
In such cases, models have a longer service life and must
be kept up to date. It is also often observed that different
teams and sub-organizations within the same company can
use different modeling approaches for different purposes at
different stages of the software development lifecycle (Hel-
dal et al., 2016). Therefore, either informal modeling or “tra-
ditional UML modeling” with automated code generation
can become alternatives when time is a first-class constraint.

Presenting the new SBC journal template Júnior et al. 2022

Figure 2. Usage-influencing factors (RQ1)

Summary of RQ1: The results show that most par-
ticipants indicate three points that affect the use of
UML diagrams: (1) limited available time to create
and maintain diagrams; (2) the cost of promoting
proper understanding among different people with
different levels of education/experience and view-
points is high; and (3) difficulty in evaluating the
quality of the diagrams. We understand that compa-
nies may need different modeling practices for dif-
ferent projects or roles within projects. Practition-
ers should consider those three points when consider-
ing UML modeling as part of their development pro-
cesses.

4.3 RQ2: What makes UML modeling a chal-
lenging practice?

Figure 3 shows the collected data regarding RQ2. From
the survey responses, we highlight three adoption-hindering
challenges: (a) the company’s culture, which affects the way
UML is used, (b) the necessary effort to keep different UML
diagrams in sync, and (c) the high effort to create and main-
tain the models.
Company culture. Figure 3(a) indicates that 56% an-

swered that they totally agree, 30% partially agree, and 10%
were neutral. From the interviews, participants pointed out
that, in some organizations, there is a culture of risking and
failing as a path to learn quickly and meet customer needs,
even if it requires much rework, thus, sometimes neglecting
planning and upfront design. In addition, one of our intervie-
wees mentioned: “I believe that the greatest difficulty is to
change paradigms, especially when working with more ma-
ture teams that have grown without this modeling” (P4). Al-
though the current state of practice has reached some degree
of automation in systems engineering, its tasks still require
many human resources. Thus, introducing process change in
an organization already in operation is not easy (Böhm et al.,
2014).
It is important to note that organizations may need dif-

ferent modeling approaches for different projects or even
for different engineering roles within projects (Akdur et al.,
2021). As also described in (Heldal et al., 2016), different

units within the same company tend to use different mod-
eling approaches. In addition, in the same project, different
engineers may use different modeling practices, depending
on their tasks and responsibilities (Akdur et al., 2021).
Synchronization of diagrams. Figure 3(b) shows that

37% of the participants partially agree and 30% fully agree
that keeping diagrams in sync is a significant challenge that
hinders UML use, corroborating the majority of the intervie-
wees (19). Although collaborative tools for software model-
ing exist, our result reinforces the findings reported in other
studies conducted with industry participants (Chaudron et al.,
2012; Cicchetti et al., 2016; Kuhn et al., 2012; Liebel et al.,
2018), which appointed problems related to insufficient sup-
port for collaboration. There is a gap between UML tools and
advanced solutions specialized in supporting collaboration.
In addition, the next generation of modeling tools should sup-
port round-trip engineering to synchronize related UML dia-
grams and source code. Since modeling a software system’s
structural and behavioral aspects within a single model is not
a trivial task, UML has proposed a set of diagrams to support
a multiview modeling approach. Thus, different aspects of
the system under development are represented by different
diagrams.
High effort. Figure 3(c) revealed that 41% totally agree,

38% partially agree, 13% are neutral, 7% partially disagree,
and 1% totally disagree. Therefore, the vast majority con-
sider the effort invested in the creation and maintenance of
UML models unanimously pointed out by the interviewees.
“The biggest problem is the cost of keeping the diagrams as
the system changes. In addition, it is still difficult to main-
tain a strong culture of maintenance and updating of mod-
els” (P17). Another interviewee complements:“from a main-
tenance point of view, I think that some improvements would
be necessary for the diagrams to provide a better figure of the
big picture, allowing to identify more quickly relevant issues
such as impact and points that can be taken into attention”
(P4). In Ozkaya and Erata (2020), the authors mentioned that
modeling software architectures based onUML from the con-
currency point of view has relatively less interest on the part
of professionals. One important reason here could be UML’s
lack of support for modeling concurrency and race condi-
tions. In addition, based on the findings of this study, most
professionals are not used to planning development issues
(e.g., source code organization and software construction and
release processes) during the modeling and design, and this
is usually omitted until the implementation. Interviewee 11
reports: “UML is used at the beginning of the project, more
specifically the projection phase, but with the progress being
left aside, it ends up being outdated, since most developers
focus only on the code and management does not make large
charges on its use” (P11). In this context, Fernández-Sáez
et al. (2015) pointed out that the modeling tool used to main-
tain/modify UML diagrams is an important factor when de-
ciding whether to use a software development process. There
are different types of tools with different benefits: licensed
tools (which implies an investment but also return with pos-
sible training, customizations, etc.) vs. open tools or specific
tools for modeling in UML (which check the syntax correc-
tion) or general modeling tools (are more “accessible”).
UML was identified as the dominant notation in Forward

Presenting the new SBC journal template Júnior et al. 2022

and Lethbridge (2008). The authors found that UML model-
ing tools are primarily used for initial design, while UML is
not widely used for code generation. The study participants
seemed open to incorporating modeling into their processes.
However, the difficulty of keeping models up to date with
code changes is a significant depreciation factor (68% agree-
ment on this from Forward and Lethbridge (2008)). The anal-
ysis performed on Forward and Lethbridge (2008) is particu-
larly interesting, finding that programmers are more likely to
agree that modeling tools are “heavy-weight.” Given this sce-
nario, Fernández-Sáez et al. (2018) points out that it would
be desirable to have a tool that would create and maintain
documentation containing a mix of text and diagrams, in ad-
dition to having features that improve traceability between
model and text to avoid leaving the documentation and the
model out of sync. It would also be useful to have a tool
that supports diagram versioning that matches the system
version, searching model elements and presenting different
views for the diagrams (for different consumers of informa-
tion diagrams). In addition, another point we noted is that
most participants are not used to putting effort into upfront
planning and design (such as modeling) when they attempt
to tackle coding issues.

Figure 3. Adoption-hindering factors (RQ2)

Summary of RQ2: The results show that (a) or-
ganizational culture represents a significant chal-
lenge to enabling the adoption of UML models since
the adopted engineering practices and the culture
of agility sometimes do not give room to modeling.
Therefore, we observe that modeling in agile pro-
cesses consists of a unique pattern of UML use. (b)
Synchronization between UML artifacts makes it dif-
ficult to use in highly collaborative software teams,
and (c) the overall high effort to develop and main-
tain models is scarce in current organizational cul-
tures.

4.4 RQ3: What benefits are realized when us-
ing UML?

Figure 4 shows a summary of collected data related to RQ3.
We asked three questions related to (a) whether using UML
selectively (only a few diagrams) helps to minimize com-
plexity, avoid problems of completeness and inconsistency
between diagrams, (b) whether UMLmodels are helpful dur-
ing application integration discussions, and (c) whether UML
helps to form a common system understanding among devel-
opers.
Figure 4(a) indicates that 39% fully agree and 39% par-

tially agree, and 15% are neutral. Figure 4 (b) shows that
49% fully agree; 41% partially agree, and; 7% are neutral.
Figure 4 (c) reveals that 41% fully agree, 41% partially agree,
and 11% are neutral.
All twenty interviewees unanimously agreed that using

UML benefits software development, as it helps in the gen-
eral understanding of the system context, thus facilitating
communication in the team. “The use of this language en-
ables the understanding and discussion of the architecture
of a project by the entire team and allows the representing
more complex and difficult flows” (P17). “UML is a pow-
erful language for understanding software at various lev-
els of abstraction. When used properly it contributes to cre-
ating a better product. When used improperly (in a forced
way) ends up consuming resources and not helping much. In
short, diagrams should be used as a means to understand
various aspects of the software to be developed and not as
the end. The goal of development is software and not dia-
grams” (P9). These factors are identified in Ho-Quang et al.
(2017) where most participants (79%) found UML useful for
understanding systems, improving communication between
developers, guiding implementation, and managing project
quality. Interviewees also mentioned UML could help with
defect detection and design/implement integration of hetero-
geneous applications. However, inconsistent model interpre-
tations can have serious consequences, especially when mul-
tiple and conflicting stakeholders are involved. For example,
different interpretations between the development team, cus-
tomers, and regulatory bodies can lead to rework, delays, and
financial and legal repercussions. This risk may be exacer-
bated because compliance verification is usually performed
later in the software development process. Consequently, any
problem discovered in the compliance check (when applica-
ble) is expensive to repair (Usman et al., 2020).
Participants of Petre (2014) reported using UML more

enthusiastically, working in a more scope-focused manner,
and keeping the artifacts manageable in size and suitable to
avoid synchronization and consistency issues. The interest re-
volves around problem-solving or decision-making to avoid
undue costs. One area that deserves further research is how
the use of UML is shaped by the context of the domain - an
investigation that requires much more access to a variety of
software industries.
This context demonstrates that it is necessary to under-

stand what actually facilitates effective software develop-
ment. All this evidence highlights the need to consider the
relationship of tools, including notation, both with the com-
munity of practice and with the application domain. Partici-

Presenting the new SBC journal template Júnior et al. 2022

pants reinforced the fact that software developers are open to
understanding the concepts and that, at the same time, they
want to use tools that make the process effective. Otherwise,
they tend to discard them if they are at odds with their prac-
tices.

Figure 4. Perceived benefits (RQ3)

Summary ofRQ3: Selectively using only a fewUML
diagrams helps minimize complexity and avoid prob-
lems of completeness and inconsistencies between di-
agrams. In participants’ view, using UML is benefi-
cial and can help avoid issues in the project, enabling
better system understanding and assisting in integra-
tion discussions.

4.5 RQ4: How often is UML used?
Figure 5 presents the participants’responses on the use of
UML in their work. As the question was not mandatory,
365 of the 376 participants answered it. 74% answered that
they do not use UML frequently, while 26% answered that
they use UML quite often. This result reinforces findings
in Ozkaya and Erata (2020), in which the authors report that
35 of the 50 subjects in the study do not use UML in practice.
Similarly, Gorschek et al. (2014) found that practitioners do
not frequently use UML. When they do it, they do it infor-
mally, with minimal or no tool support, and the notation is
not necessarily enforced to be UML.

Figure 5. Frequency of use (RQ4)

The twenty interviewees stated that they did not use UML

frequently. However, they acknowledged the various bene-
fits of using it in software development. “I understand that
UML has a very strong semantic power, which favors its use
in the elaboration of architecture, as well as in the construc-
tion of the system” (P4). Störrle (2017) pointed out the im-
portance of understanding the ever-changing demands of the
software industry, which indicates more organizational and
software development cultural differences as potential fac-
tors influencing UML use. Similarly, the results of Ozkaya
and Erata (2020) show that the majority of professionals
(88%) use UML in modeling their software systems from
different architectural points of view. Among the architec-
tural views (i.e., functional, information, concurrency, devel-
opment, deployment, and operational), themost popular ones
are functional and information views (96–99%). The opera-
tional point of view is the least popular, ignored by 61% of
participants in their software modeling with UML. Studies
(Kobryn, 2002; Dori, 2002; Thomas, 2004) argue that UML
is not fulfilling the role of being a “lingua franca” or stan-
dard because of issues such as size, complexity, semantics,
consistency, and model transformation.

Summary of RQ4: The collected results show that
UML modeling has low adherence in companies, al-
though participants recognize the benefits of using
UML models in software projects. These results are
consistent with previous studies.

4.6 RQ5: How does the context of software
projects in companies limit the use of
UML?

Figure 6 presents the collected data associated with RQ5.
Three project context issues have been summarized that may
affect UML use: (a) UML formalism (or lack thereof) –
would more formalism in UML lead developers to use it
more frequently? (b) the use of UML for practitioners arises
from the fact of adapting its use for a specific purpose, and (c)
companies tend to develop relatively small software that un-
dergoes continuous modification. Participants indicated that
the high demand for software development may end up lim-
iting the use of UML in practice. Thus, developers start to
keep design decisions ”in mind” (or through informal com-
munication channels) and communicate effectively without
any formal diagram.
More formalism. Regarding UML formalism, Figure 6

(a) shows that 28% are neutral, 27% partially agree, and 21%
totally agree that more formalism would help UML use. Of
the 20 participants we interviewed, 15 consider that the high
degree of formalism becomes a negative factor for the ap-
plicability of UML since the processes are highly dynamic
and agile, requiring a less formal and more interactive use.
The project context our interviewees were involved in is usu-
ally very dynamic and agile, thus leading to constant changes
in design, documentation, and UML models when they ex-
ist. More formalism in the language may lead to higher ef-
fort in producing and maintaining up-to-date models in such
dynamic and agile scenarios. Therefore, even though some
participants seem to understand the benefits of having more

Presenting the new SBC journal template Júnior et al. 2022

Figure 6. Context of use (RQ5)

formalism in modeling languages (e.g., more code genera-
tion and model transformations), in most of today’s projects,
there are not enough resources to take up the high cost of
creating and maintaining semantically-rich models (with a
higher degree of formalism).

Adaptation of use. Figure 6(b) summarizes to what ex-
tent participants agree that theUMLuse correlates towhether
they can adapt it to their specific needs. The majority of the
interviewees (12) pointed out that UML can be adaptable to
a specific purpose (e.g., project domain, a specific section
of the architecture, or a specific stakeholder’s view), but this
adaptation is complex due to factors such as 1) it costs a lot
to assure that documents/models are in sync with the code; 2)
the difficulty in measuring the return on investment of adopt-
ing modeling practices; 3) UML use in legacy software; 4)
the fear of adopting changes in the process, especially when
working with more mature teams that have grown without
modeling practices. Therefore, that all leads us to believe that
much research is still needed.

Continuous modification. Figure 6(c) summarizes data
on whether participants agree that the continuous modifica-
tion nature of relatively small to medium projects makes it
difficult to use UML. That data also matches with intervie-
wees’ perceptions. Even when practitioners work on larger
projects, they usually break them into smaller iterations (and
sub-projects) where developers can get along without much
modeling activity. Although the study participants of Petre
(2014) believe, for the most part, that UML is a “lingua
franca” in companies and that they have theoretical knowl-
edge about this type of modeling, participants end up not us-
ing it frequently. The results of Fernández-Sáez et al. (2015)
revealed that software developers using UML diagrams end
up experiencing difficulties with reading them. Therefore,
most surveyed companies use the “most understandable”
UML diagrams. Maintainers do not always use the available
documentation and work directly with the source code; even
when documentation with models is available, it is not typi-
cally used.

Summary of RQ5: The project context matters. De-
pending on the project and process, more or less
formalism might help UML use. Also, the ability to
continuously update diagrams together with contin-
uously changing code in specific projects is another
influencing factor. Finally, whether it is possible to
adapt modeling practices to specific project needs af-
fects UML use.

4.7 RQ6: How do practitioners view UML
modeling?

Figure 7 summarizes data regarding RQ6. We explored three
possible issues related to practitioners’ views on adopting
UML modeling.
Not interested in modeling. Figure 7(a) shows that 41%

totally agree, 33% partially agree, and 13% are neutral on
whether they are interested in modeling tasks. Additionally,
out of the 20 participants interviewed, 13 stressed that devel-
opers like and understand the importance of modeling; how-
ever, factors (discussed in RQ1 and RQ2) limit its adoption.
In Petre (2013), UML is considered “unnecessarily complex”
by several participants in that study who reported variations
in understanding and interpretation among developers, result-
ing in problems such as challenges in formal language seman-
tics. Others noted that the complexities of the notation lim-
ited its usefulness – or required targeted use – in discussions
with stakeholders (including highly technical stakeholders).
Lack of modeling pattern. Figure 7(b) indicates that 15%

fully agree, 37%partially agreewith the lack ofmodeling pat-
terns and modeling guidance; in other words, the open-ended
nature of UML makes it less attractive. According to the in-
terviewees, this lack of modeling guidance on creating mod-
els correctly and effectively prevents developers from us-
ing UML modeling. “Not all project participants will under-
stand modeling, there is no pattern. There are no people qual-
ified to generate UML” (P5). In Hutchinson et al. (2011b,a),
they found that there are various modeling languages people
use in projects following model-driven engineering (MDE).
Companies using MDE tend to develop domain-specific lan-
guages (DSLs), which have a very product/implementation-
focused notion.
General model. Figure 7(c) shows that 19% fully agree

and 39%partially agree that the lack of a general diagram that
provides a system big picture with structural and behavioral
elements makes the UML adoption less attractive. Most of
the interviewed participants (16) reinforced the difficulty of
modeling structural and behavioral aspects of complex soft-
ware in a single “big picture view.”

Fernández-Sáez et al. (2018) sought to provide a compre-
hensive and systematic view of the main challenges in soft-
ware modeling and to understand the different categories of
them together with discussions of the concrete challenges
in each category that professionals may face. In their study,
they raised eight different types of challenges, includingman-
aging the complexity of the language, extensive modeling
languages, domain-specific modeling environments, devel-
oping formal modeling languages, analyzing models, sepa-

Presenting the new SBC journal template Júnior et al. 2022

ration of concerns, transforming models, and management
models.

Figure 7. Practitioner view (RQ6)

Summary of RQ6: Most developers do not demon-
strate an interest in modeling, which can be justified
by crucial factors such as the absence of standard
modeling guidance and difficulty bringing upfront
design aspects to the software development lifecycle.
New modeling approaches are required to facilitate
modeling and bring developers closer to it, making
the process simpler, more dynamic, and motivating.

5 Additional Discussion
In Section 5.1 we provide reflections and future directions
based on the obtained results. Section 5.2 discusses issues re-
lated to the adoption of continuousmodeling. Section 5.3 out-
lines some discussions on gamified software modeling as a
way to enhance the adoption of UMLmodels. Section 5.4 dis-
cusses the need for new approaches to assess UML diagrams
in the context of modeling training education. Section 5.5
draws implications from our findings.

5.1 Summary of Reflections
Time constraints and lack of knowledge. The study results
point to time constraints as one of the main factors that affect
the use of UML. Although participants recognize the impor-
tance and benefits of creating UML diagrams, the short time
spent on projects leads professionals not to useUMLor to use
it in a limited manner. In addition, the lack of in-depth knowl-
edge about UML diagrams would be an impediment since
the cost of promoting proper understanding among people
with different levels of education/experience and viewpoints
is high. Also, the ability to evaluate the UML model quality
is another considerable challenge.
Academic vision. One factor that interviewees consis-

tently pointed out was the impression that UML tends to be
more academic than industrial/practical and that new teach-
ing approaches need to be adopted in academic programs

that involve UML in their curriculum. Software engineering
education training with UML needs to be accompanied by
real problems from the industry, which reinforces the find-
ings from Neto et al. (2021). It is evident that regardless
UML is a dominant representation in practice, there is evi-
dence that it plays an important role in software engineering
teaching (Petre, 2014). UML provides a common representa-
tion from which to direct the system design discussion and
build a shared model of the problem. It provides a means for
“model-based thinking” for students who do not yet have a
repertoire of representations and reasoning tools. The typical
use of UML in education introduces key concepts and directs
attention and structure to student exploration and practical in-
volvement with problems and design. One can argue that the
value of UML in education lies in intellectual development
rather than mirroring industry practice.
Company culture and agility. From the responses we got,

we identified that the culture of agility in companies conflicts
with the use of UML. Preparing and maintaining UML di-
agrams are two manual activities requiring knowledge and
time. Therefore, the popularity of informal modeling (e.g.,
whiteboard sketches) has grown as an attempt to improve col-
laboration and communication effectiveness. Also, informal
and lower-cost models (in the sense of beingmore straightfor-
ward and faster to draw) becomemore flexible since learning
is simplified. Usually, working with the representation of ab-
stractions (i.e., modeling) in the context of agility culture has
not proved to be a popular choice. Delivering quickly (with-
out major planning) and considering failures as a natural pro-
cess to arrive at the final software product have proved to be a
priority. In this context, the multi-vision modeling proposed
by UML does not find any application space, although it is
recognized as something important.
Selective use of diagrams and complexity. When asked

about what benefits they perceived when using UML, most
participants responded that using UML diagrams selectively
(i.e., the use of only a few diagrams) helps to minimize com-
plexity, avoids problems of inconsistency between diagrams,
and helps in forming a common understanding between de-
velopers. This conclusion was also verified by Dzidek et al.
(2008). The generality and freedom that enable UML to meet
this wide range of purposes are also the sources of its weak-
ness. UML has no formal semantics, which poses a prob-
lem when people use an UML model for different purposes.
Because one of UML’s main objectives is to communicate
software design, different ways of using UML are potential
causes of communication problems (Lange et al., 2006).

5.2 Adoption of continuous modeling
Companies seek not only to streamline their processes but
mainly to find continuity throughout the software develop-
ment cycle (Rubert and Farias, 2022; Chen, 2015; Elazhary
et al., 2021; Chen, 2017; Laukkanen et al., 2017; Fitzgerald
and Stol, 2017). Fitzgerald and Stol (2017) argue that achiev-
ing flow and continuity throughout the software development
cycle is much more important in the first instance than veloc-
ity. Since companies increasingly prioritize continuous de-
livery practices (Chen, 2015), to benefit from UML adop-
tion (Bucchiarone et al., 2021; Chaudron et al., 2012; Dzidek

Presenting the new SBC journal template Júnior et al. 2022

et al., 2008), companies must put effort into involving UML
modeling practices throughout the software development cy-
cle. However, this requires significant process changes, for
example, augmenting the CI/CD pipeline, giving rise to con-
tinuous software modeling (which poses a significant chal-
lenge).
Technical Challenges. Robust UML modeling ap-

proaches, tools, and good practices out-of-the-box and
highly adaptable to the companies’ realities are lacking.
The absence of such an approach has led to the isolated, as
opposed to continuous, adoption of UMLmodels throughout
the continuous delivery pipeline. Modeling tools that fill
this gap can bring the already documented benefits of
using UML models to the reality of companies, such as
improving the traceability between models so as not to
leave documentation and the process of modeling out of
sync, not to mention the ability to highlight resource saving.
When building a continuous modeling platform, different
tools and technologies can be used as building blocks
for the continuous delivery pipeline (Chen, 2015, 2017).
However, companies should not be trapped by such tool
suppliers. The scientific community should propose widely
accepted modeling guidelines and good practices applicable
to organizational needs companies typically experience,
define open APIs (software modeling as a service) and build
an ecosystem of tools for building a continuous software
modeling pipeline.
Nowadays, software development iterations are short to

of delivering newly requested features rapidly, establishing a
continuous cycle of getting feedback. Such large, monolithic
models need to be characterized and rethought as feature-
oriented UML models. Modeling practices must fit iterative
processes (with very short release cycles) that are typically
driven by incremental feature development. Rather than de-
signing a colossal set of UML diagrams upfront, it is recom-
mended that software design with UML follows the same it-
erative approach driven by incremental feature development,
which may ease the adoption of software modeling in agile
teams. That poses the significant challenge of implement-
ing continuous modeling approaches oriented by features,
as well as the production of empirical evidence about the
advantages and disadvantages of adopting continuous UML
modeling. Solving this challenge will require close collabo-
ration between researchers and practitioners and will enable
the benefits of UML modeling to be brought to the reality of
more companies.
Process challenge. Xavier et al. (2019) pointed out that

people still associate UMLmodeling with traditional process
practices (e.g. RUP), while UML is not explicitly integrated
with agile practices. Our results indicate that agile teams tend
not to adopt UMLmodeling. One of the participants reported:
“if the preparation of UML models requires, for example,
three days before it is ready for use by developers, this period
will be responsible for much of the sprint time, for example”
(P12). It is important to highlight that agile methodologies do
not prohibit the use of UML, another participant states: “we
work with Scrum and with some UML diagrams, but few and
only in the project phase. The system is giant to meet a bank’s
demands, there are many requests for functionality changes
and improvements on the part of the customer and we usually

fit the demands into weekly sprints” (P11). There are research
gaps in looking for alternatives, aiming at the alignment be-
tween business processes, agile development practices, and
UML modeling.
Documentation and legacymonolithic systems. Promot-

ing large-system modeling practices without processes that
support documentation is still a challenge for decades. There
may also be the cultural tendency to assume that the status
quo is the only possible path. The absence of design docu-
mentation complicates restructuring legacy monolithic sys-
tems into highly distributed systems such as those following
the microservice architecture. Legacy systems typically have
dozens of tightly coupled subsystems that interact to provide
different services for internal and external customers within
companies. Fitzgerald and Stol (2017) point out that the lack
of documentation only takes into account the tacit knowledge
of software engineers who work in different teams.
The legacy systems modeling based on creating a “big pic-

ture view” is still hard to implement due to the size, usu-
ally consisting of hundreds of thousands of lines of code.
Continuous updates to these models can be very challeng-
ing. The multiview modeling of UML allows updating com-
plementary models, such as class diagrams and sequence di-
agrams. This can lead to inconsistencies between such mod-
els (Kretschmer et al., 2021; Khelladi et al., 2019; Reder and
Egyed, 2013).

5.3 Gamification of modeling software
Gamification can be defined as “the use of game design ele-
ments in non-game contexts” (Deterding et al., 2011; Huotari
and Hamari, 2017; Liu et al., 2017). This technique uses the
philosophy, elements, and mechanics of game design in non-
game environments, aiming to bring all the positive aspects
they provide. The current literature recognizes the benefits
of applying gamification in software engineering practice.
However, how to design and use gamification in the context
of modeling applied to industrial needs is still an open ques-
tion. As far as we know, only a few studies on the application
of gamification in software engineering practices are avail-
able — most of which are related to broader contexts (Porto
et al., 2020; Pedreira et al., 2015; Ren et al., 2020).
Due to the related theoretical and practical difficulties,

learning to use the full potential of UML can be a complex
task, which makes developers feel discouraged and less en-
gaged over time. This scenario could lead, for example, to
the development of incomplete, decontextualized, and poor-
quality models. Lange et al. (2006) reinforce that this issue
brings potential risks that might cause misinterpretation and
miscommunication, thus reducing software quality. There-
fore, finding configurations that favor developer practices,
generate engagement, and consequently, increasingly effec-
tive UML models can become one of the main challenges
encountered in the industry today. Given this scenario, gam-
ification emerges as a possible alternative to mitigate these
problems, enhancing the adoption of UML, improving the
models generated by developers, and generating high-quality
software.
There is no clear and usually accepted taxonomy of game

elements (Pedreira et al., 2015). Shpakova et al. (2016) pro-

Presenting the new SBC journal template Júnior et al. 2022

posed a unified view of the different classifications, which
summarizes gamification in three dimensions: Components,
Mechanics, and Dynamics. Components are the basic build-
ing blocks of gamification. They represent the objects that
users see and interact with, such as badges, levels, and points.
Mechanics define the game as a rules-based system, specify-
ing how everything behaves and how the player can interact
with the game. Dynamics are the top level of gamification el-
ements. They include all aspects of the game that cannot be
implemented and managed directly and are related to users’
emotional responses (e.g., progression, exploration).
The success of gamifying a particular context unrelated to

the game depends heavily on the gamification design choices
for those three dimensions. Several research efforts have fo-
cused on identifying the phases thatmake up the gamification
project (Mora et al., 2015; Webb, 2013). However, similarly
to the taxonomy of gamification elements, there are no com-
monly accepted phases. They can vary in number and termi-
nology used. In software development, developers’ perfor-
mance concerning productivity or quality may relate to the
number of artifacts developers produce and how good the
artifacts are. However, while performance is often a quanti-
tative and objective metric for assessing the impact of gam-
ification on users’ activities in the out-of-game context, in
software development, performance may be related to pro-
ductivity or quality (usually subjective).
This article conjectures that the insertion of gamification

techniques, such as feedback, progress, and challenges, in
software modeling could help mitigate the issues of adopting
UML modeling. For example, the incompleteness of UML
models is a critical problem (Lange et al., 2006; Fernández-
Sáez et al., 2018). Using gamification techniques, such as
challenges, points, feedback, and progress, could motivate
developers to create more complete models in exchange for
points, for example. A ranking system for software teams
could be created to rank them in terms of the quality of the
models created. In addition, constant feedback during the
model editing could foster learning and stimulate modeling.
Researchers can carry out empirical studies to analyze the in-
tegration between gamification and software modeling based
on the factors mentioned in RQ1 and RQ2. That would in-
crease the perception of benefits by practitioners (RQ3) and
the frequency of use (RQ4). Therefore, the use of gamifica-
tion techniques can motivate developers, enhance the quality
of the created UML models, and foster learning.

5.4 Assessing and Grading UML Diagrams
Before using UML models, practitioners need to learn that
there are structural and behavioral diagrams available in
UML. Also, students (or practitioners under training) sub-
mit their diagrams for assessment and grading in educa-
tional/training contexts. University courses worldwide teach
UMLmodeling, to some extent, as the standard language for
modeling software. Additionally, UML is still a well-known
language when practitioners need to model software systems.
Moreover, universities are increasingly adopting a

learning-by-doing approach and having online classes with
a high number of students. In this context, students need
to practice through hands-on exercises and real-world

tasks. Instructors must find an efficient mechanism to fairly
and equitably assess student projects and assignments.
In addition, assessments must enable rapid feedback and
provide learners with instructions on how to overcome their
deficiencies or limitations. Imagine that an instructor needs
to train 120 people in geographically distributed teams. The
instructor provides an exercise in which the learner needs
to design 10 UML class diagrams. The instructor needs to
provide feedback on the 1,200 UML class diagrams two days
after delivery. The short time to evaluate a high number of
diagrams makes the teaching and learning process difficult.
Therefore, the manual assessment of UML models proves
to be a very costly and subjective activity, creating friction
in the practice-assessment-learning feedback loop involving
students and instructors. This reality is not exclusively found
in universities; on the contrary, it is found anywhere where
the teaching-learning cycle of UML models needs to happen
quickly and with a relatively high number of learners.
Some tools and approaches (Vesin et al., 2018; Bian et al.,

2019; Stikkolorum et al., 2019) have been proposed in re-
cent years. For example, SDMetrics6 presents a set of metrics
for UMLmodels but does not compute the differentiation be-
tween the rubric and the UML model created by the learner.
The ModelGuru approach7 goes a little beyond SDMetrics
when computing students’ grades using object-oriented mea-
sures of design size, coupling, and complexity. Vesin et al.
(2018) came up with a new integrated tool to support the
evaluation of UML models produced by students. Bian et al.
(2019) introduced a grading process based on syntactic, se-
mantic, and structural matching for computing grades by
comparing students’ models with the desired model. In a dif-
ferent approach, Stikkolorum et al. (2019) presented an ex-
ploratory study regardingmachine learning for grading UML
diagrams.
However, a streamlined approach for grading UML dia-

grams based on syntactic, semantic, and structural criteria is
still lacking. The use of machine learning also emerged as
a trend and a new avenue to be explored. Lastly, we outline
the need for the scientific community to explore three objec-
tives (Farias and Silva, 2020): (1) provide a tool to streamline
the process of managing rubrics for grading UML diagrams;
(2) allow students to get faster and more objective and item-
ized feedback for their submissions; and (3) ultimately, en-
hance the practicing-grading-learning feedback loop associ-
ated with designing UML diagrams.

5.5 Practical Implication
When software development teams constantly change source
code and revise UMLmodels to keep them up-to-date, the ef-
fort engineers put in can make the difference between adopt-
ing or not UMLmodels throughout the development process.
From our findings, updating and synchronizing models with
source code appears to be one of the major impediments to
the broader use of UML modeling. Rather than being easy
and intuitive, study participants point to model update and
synchronization as a highly time-consuming and error-prone
process.

6SDMetrics: https://www.sdmetrics.com/
7ModelGuru: http://modelguru.snotra.com.br/

Presenting the new SBC journal template Júnior et al. 2022

Still, the need to update and synchronize UML models at-
tracts the spotlight as organizations increasingly adopt De-
vOps and agile practices in globally distributed develop-
ment teams. Therefore, updating and synchronizing (Up-
Sync) UML models with source code emerges as a critical
requirement to leverageUML adoption in real-world settings.
The ability to “UpSync” UML models can be seen as the
mitigation with which modern development teams (adept to
DevOps and agile practices) can update the UML’s struc-
tural and behavioral models to accommodate new design
decisions, or requirements change. We conjecture that the
greater the UpSync, the better the quality of the source code.
This paves the way for the scientific community to propose
friendly round-trip engineering approaches— existing UML
models can be transformed into source code and then be con-
verted back — combined with the integrated development
environment used by development teams.
In that perspective, updating and synchronizing models

helps improve the software system under maintenance. Pre-
vious empirical studies (Dzidek et al., 2008) have shown
that using UML models improves source code quality and
reduces bugs. For this, not only robust round-trip engineer-
ing approaches are needed, but also improvements that span
the agile development process as a whole. For example,
SCRUM-based development processes can have automated
tasks at the end of each sprint to update and synchronize
UML models.

Practical Research Implication: Our findings high-
light that the adoption of UML modeling in practice
is affected by the difficulty of updating and synchro-
nizing models with the source code. Currently, devel-
opment processes adopt source code as a primary arti-
fact, thus demanding that new cost-effective updating
and synchronization approaches be proposed. Although
UpSync models sound like a promising trend, the scien-
tific community needs to evaluate future proposed tech-
niques and carry out empirical studies to investigate the
impact on the quality of UML models and source code,
as well as on the degree of practitioners’ satisfaction in
real-world settings.

6 Threats to validity
This section discusses the possible threats to the study’s va-
lidity.
Internal validity. Internal validity is related to issues that

may affect the causal relationship between treatment and out-
come. Threats to internal validity include instrumentation
and selection threats. The main points affecting our study’s
internal validity refer to the participants’ profiles and expe-
riences. When analyzing the profile of the participants, as
presented in Section 4.1, around 30% of them have low (up
to 4 years) general experience, low experience with software
modeling, and low experience with software development.
This is probably because the level of education of about 50%
of that 30% group is low compared to others, or they are still
attending undergraduate degrees. In addition, many of these
participants may not have studied UML yet during their un-
dergraduate degrees. Also, there was no option in the sur-

vey question corresponding to the time of 2 to 3 years of
experience. However, due to the sample size and also the
complementary interviews we conducted, we believe that the
data collected are not affected by this threat. Another inter-
nal threat is linked to the random process of selecting par-
ticipants for the interview, which may have caused a poten-
tial similarity in the profile of the interviewed participants.
Thus, a selection biasmay interfere with the potential validity
of completion. Although the interviewed participants work
on software development in the fields of education, agribusi-
ness, e-commerce, government, trade, product export, and fi-
nance, we recognize that qualitative data could be further ex-
plored if we had greater participation of professionals linked
to other sectors. Still, we have a wider variety of sectors from
the survey participants.
External validity. External validity concerns the ability

to generalize the results beyond the actual study. To perform
the correct interpretation of the survey results, although the
demographic data of our sample are diversified, we under-
stand that the generalization of them for the entire population
may not be adequate. In our study, participants belonged to a
geographic variety and worked in companies of different do-
mains and sizes. However, we cannot be sure that this sam-
ple is representative of the sector in general. We understand
that these threats are always present in industrial research.
Reliability focuses on the replicability of results by other re-
searchers. This study has a repository with the collected data
and an online form, both of free access.

7 Conclusions and Future Work
This article presented an exploratory survey on how practi-
tioners have used UML modeling in the Brazilian industry.
In total, 376 employees from 210 information technology
companies answered an online questionnaire about the fac-
tors affecting use, difficulty, and frequency of use, perceived
benefits, and contextual factors that prevent the adoption of
UML models. In addition, we interviewed 20 randomly cho-
sen participants from the survey pool using a semi-structured
interview protocol as a follow-up investigation to triangulate
with the survey data.

In summary, the results show that: 74.8% of the partici-
pants answered that they do not use UML frequently. Partic-
ipants who responded not to use UML models attributed fac-
tors such as continuous delivery practices, time constraints,
lack of knowledge about modeling, company culture, and the
always present difficulty of keeping the models up to date
and synchronized with each other and source code.
The results of this research reinforced some evidence

already found in the literature concerning the use of
UML (Gorschek et al., 2014; Petre, 2014). In general, most
people know UML but do not use it in their projects. These
results can help professionals understand how to invest to
avoid increased development spending and provide a foun-
dation to motivate software developers to design UML di-
agrams throughout development cycles. That would facili-
tate, for example, maintenance tasks. Future work should
focus effort on investigating more aspects related to UML
practice, such as the possibilities of using UML in ag-

Presenting the new SBC journal template Júnior et al. 2022

ile teams/organizations, whether teaching methodologies in
academia influence the practices in the software industry,
and how gamification can be applied to software modeling
practices. Finally, we hope that the issues outlined through-
out the article will encourage other researchers to replicate
our study in the future in different circumstances and that
this work represents a solid step in a more ambitious agenda
to improve software engineering practices.

References
Akdur, D., Demirörs, O., and Garousi, V. (2017). Character-
izing the development and usage of diagrams in embedded
software systems. In 2017 43rd Euromicro Conference on
Software Engineering and Advanced Applications (SEAA),
pages 167–175. IEEE.

Akdur, D., Say, B., and Demirörs, O. (2021). Modeling cul-
tures of the embedded software industry: feedback from
the field. Software and Systems Modeling, 20(2):447–467.

Bian, W., Alam, O., and Kienzle, J. (2019). Automated
grading of class diagrams. In 2019 ACM/IEEE 22nd
International Conference on Model Driven Engineering
Languages and Systems Companion (MODELS-C), pages
700–709. IEEE.

Böhm, W., Junker, M., Vogelsang, A., Teufl, S., Pinger, R.,
and Rahn, K. (2014). A formal systems engineering ap-
proach in practice: An experience report. In Proceedings
of the 1st International Workshop on Software Engineer-
ing Research and Industrial Practices, pages 34–41.

Bucchiarone, A., Ciccozzi, F., Lambers, L., Pierantonio, A.,
Tichy, M., Tisi, M., Wortmann, A., and Zaytsev, V. (2021).
What is the future ofmodeling? IEEE software, 38(2):119–
127.

Chaudron, M. R., Heijstek, W., and Nugroho, A. (2012).
How effective is uml modeling? Software & Systems Mod-
eling, 11(4):571–580.

Chen, L. (2015). Continuous delivery: Huge benefits, but
challenges too. IEEE Software, 32(2):50–54.

Chen, L. (2017). Continuous delivery: overcoming adoption
challenges. Journal of Systems and Software, 128:72–86.

Cicchetti, A., Ciccozzi, F., and Carlson, J. (2016). Soft-
ware evolutionmanagement: Industrial practices. InME@
MODELS, pages 8–13. Citeseer.

Ciccozzi, F., Malavolta, I., and Selic, B. (2019). Execution of
uml models: a systematic review of research and practice.
Software & Systems Modeling, 18(3):2313–2360.

Deterding, S., Dixon, D., Khaled, R., and Nacke, L. (2011).
From game design elements to gamefulness: defining”
gamification”. In 15th Int. Academic MindTrek confer-
ence: Envisioning future media environments, pages 9–15.

Dori, D. (2002). Why significant uml change is unlikely.
Communications of the ACM, 45(11):82–85.

Dzidek, W. J., Arisholm, E., and Briand, L. C. (2008). A real-
istic empirical evaluation of the costs and benefits of uml
in software maintenance. IEEE Transactions on software
engineering, 34(3):407–432.

Elazhary, O., Werner, C., Li, Z. S., Lowlind, D., Ernst, N. A.,
and Storey, M.-A. (2021). Uncovering the benefits and

challenges of continuous integration practices. IEEE
Transactions on Software Engineering.

Farias, K., Garcia, A., Whittle, J., von Flach Garcia Chavez,
C., and Lucena, C. (2015). Evaluating the effort of com-
posing design models: a controlled experiment. Software
& Systems Modeling, 14(4):1349–1365.

Farias, K., Gonçales, L., Bischoff, V., da Silva, B. C.,
Guimarães, E. T., and Nogle, J. (2018). On the uml use
in the brazilian industry: A state of the practice survey (s).
In SEKE, pages 372–371.

Farias, K. and Silva, B. C. d. (2020). What’s the grade of
your diagram? towards a streamlined approach for grad-
ing uml diagrams. In 23rd ACM/IEEE International Con-
ference on Model Driven Engineering Languages and Sys-
tems: Companion Proceedings, pages 1–2.

Fernández-Sáez, A. M., Caivano, D., Genero, M., and Chau-
dron, M. R. (2015). On the use of uml documentation in
software maintenance: Results from a survey in industry.
In 2015 ACM/IEEE 18th Int. Conf. on Model Driven Engi-
neering Languages and Systems (MODELS), pages 292–
301. IEEE.

Fernández-Sáez, A. M., Chaudron, M. R., and Genero, M.
(2018). An industrial case study on the use of uml in soft-
ware maintenance and its perceived benefits and hurdles.
Empirical Software Engineering, 23(6):3281–3345.

Fitzgerald, B. and Stol, K.-J. (2017). Continuous software
engineering: A roadmap and agenda. Journal of Systems
and Software, 123:176–189.

Forward, A. and Lethbridge, T. C. (2008). Problems and op-
portunities for model-centric versus code-centric software
development: a survey of software professionals. In Pro-
ceedings of the 2008 international workshop on Models in
software engineering, pages 27–32.

Gorschek, T., Tempero, E., and Angelis, L. (2014). On the
use of software design models in software development
practice: An empirical investigation. Journal of Systems
and Software, 95:176–193.

Heldal, R., Pelliccione, P., Eliasson, U., Lantz, J., Derehag,
J., andWhittle, J. (2016). Descriptive vs prescriptive mod-
els in industry. In Proceedings of the acm/ieee 19th in-
ternational conference on model driven engineering lan-
guages and systems, pages 216–226.

Ho-Quang, T., Hebig, R., Robles, G., Chaudron, M. R., and
Fernandez, M. A. (2017). Practices and perceptions of
uml use in open source projects. In 39th ICSE: Software
Engineering in Practice Track, pages 203–212. IEEE.

Huotari, K. and Hamari, J. (2017). A definition for gami-
fication: anchoring gamification in the service marketing
literature. Electronic Markets, 27(1):21–31.

Hutchinson, J., Rouncefield, M., and Whittle, J. (2011a).
Model-driven engineering practices in industry. In Pro-
ceedings of the 33rd International Conference on Software
Engineering, pages 633–642.

Hutchinson, J., Whittle, J., Rouncefield, M., and Kristof-
fersen, S. (2011b). Empirical assessment of mde in indus-
try. In Proceedings of the 33rd international conference
on software engineering, pages 471–480.

Jackson, D. (2019). Alloy: A language and tool for exploring
software designs. Commun. ACM, 62(9):66–76.

Presenting the new SBC journal template Júnior et al. 2022

Júnior, E., Farias, K., and Silva, B. (2021). A survey on the
use of uml in the brazilian industry. In Brazilian Sympo-
sium on Software Engineering, pages 275–284.

Khelladi, D. E., Kretschmer, R., and Egyed, A. (2019). De-
tecting and exploring side effects when repairing model
inconsistencies. In 12th ACM Int. Conf. on Software Lan-
guage Engineering, pages 113–126.

Kitchenham, B. A. and Pfleeger, S. L. (2008). Personal opin-
ion surveys. In Guide to advanced empirical software en-
gineering, pages 63–92. Springer.

Kobryn, C. (2002). Will uml 2.0 be agile or awkward? Com-
munications of the ACM, 45(1):107–110.

Kretschmer, R., Khelladi, D. E., Lopez-Herrejon, R. E., and
Egyed, A. (2021). Consistent change propagation within
models. Software and Systems Modeling, 20(2):539–555.

Kuhn, A., Murphy, G. C., and Thompson, C. A. (2012). An
exploratory study of forces and frictions affecting large-
scale model-driven development. In Int. Conf. on Model
Driven Engineering Languages and Systems, pages 352–
367. Springer.

Lange, C. F., Chaudron, M. R., and Muskens, J. (2006). In
practice: Uml software architecture and design description.
IEEE Software, 23(2):40–46.

Laukkanen, E., Itkonen, J., and Lassenius, C. (2017). Prob-
lems, causes and solutions when adopting continuous
delivery—a systematic literature review. Information and
Software Technology, 82:55–79.

Liebel, G., Marko, N., Tichy, M., Leitner, A., and Hansson,
J. (2018). Model-based engineering in the embedded sys-
tems domain: an industrial survey on the state-of-practice.
Software & Systems Modeling, 17(1):91–113.

Liu, D., Santhanam, R., and Webster, J. (2017). Toward
meaningful engagement: A framework for design and re-
search of gamified information systems. MIS quarterly,
41(4).

Mora, A., Riera, D., Gonzalez, C., and Arnedo-Moreno, J.
(2015). A literature review of gamification design frame-
works. In 2015 7th International Conference on Games
and Virtual Worlds for Serious Applications (VS-Games),
pages 1–8. IEEE.

Neto, J. C., Bento, L. H. T. C., OliveiraJr, E., and Souza, S.
D. R. S. (2021). Are we teaching uml according to what
it companies need? a survey on the são carlos-sp region.
In Anais do Simpósio Brasileiro de Educação em Com-
putação, pages 34–43. SBC.

OMG (2017). Uml: Infrastructure specification.
https://www.omg.org/spec/UML/2.5.1/PDF.

Ozkaya, M. and Erata, F. (2020). A survey on the practical
use of uml for different software architecture viewpoints.
Information and Software Technology, 121:106275.

Pedreira, O., García, F., Brisaboa, N., and Piattini, M. (2015).
Gamification in software engineering–a systematic map-
ping. Information and software technology, 57:157–168.

Petre, M. (2013). Uml in practice. In 2013 35th international
conference on software engineering (icse), pages 722–731.
IEEE.

Petre, M. (2014). No shit or oh, shit!: responses to observa-
tions on the use of uml in professional practice. Software
& Systems Modeling, 13(4):1225–1235.

Porto, D., Jesus, G., Ferrari, F., and Fabbri, S. (2020).
Initiatives and challenges of using gamification in soft-
ware engineering: A systematic mapping. arXiv preprint
arXiv:2011.07115.

Reder, A. and Egyed, A. (2013). Determining the cause of
a design model inconsistency. IEEE Transac. on Software
Engineering, 39(11):1531–1548.

Ren, W., Barrett, S., and Das, S. (2020). Toward gamifica-
tion to software engineering and contribution of software
engineer. In 4th Int. Conf. on Management Engineering,
Software Engineering and Service Sciences, pages 1–5.

Rubert, M. and Farias, K. (2022). On the effects of contin-
uous delivery on code quality: A case study in industry.
Computer Standards & Interfaces, 81:103588.

Scanniello, G., Gravino, C., Genero,M., Cruz-Lemus, J., and
Tortora, G. (2014). On the impact of uml analysis models
on source-code comprehensibility andmodifiability. ACM
TOSEM, 23(2):1–26.

Shpakova, A., Dörfler, V., and MacBryde, J. (2016). Gam-
ification and innovation: a mutually beneficial union.
In BAM 2016: 30th Annual Conference of the British
Academy of Management.

Stikkolorum, D. R., van der Putten, P., Sperandio, C.,
and Chaudron, M. (2019). Towards automated grad-
ing of uml class diagrams with machine learning. In
BNAIC/BENELEARN.

Störrle, H. (2017). How are conceptual models used in in-
dustrial software development? a descriptive survey. In
21st Int. Conf. on Evaluation and Assessment in Software
Engineering, pages 160–169.

Thomas, D. (2004). Mda: Revenge of the modelers or uml
utopia? IEEE software, 21(3):15–17.

Usman, M., Felderer, M., Unterkalmsteiner, M., Klotins, E.,
Mendez, D., and Alégroth, E. (2020). Compliance require-
ments in large-scale software development: An industrial
case study. In Int. Conf. on Product-Focused Software
Process Improvement, pages 385–401. Springer.

Vesin, B., Klašnja-Milićević, A., Mangaroska, K., Ivanović,
M., Jolak, R., Stikkolorum, D., and Chaudron, M. (2018).
Web-based educational ecosystem for automatization of
teaching process and assessment of students. In Proceed-
ings of the 8th International Conference on Web Intelli-
gence, Mining and Semantics, pages 1–9.

Webb, E. N. (2013). Gamification: when it works, when it
doesn’t. In International Conference of Design, User Ex-
perience, and Usability, pages 608–614. Springer.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M. C., Regnell,
B., and Wesslén, A. (2012). Experimentation in software
engineering. Springer Science & Business Media.

Xavier, A., Martins, F., Pimentel, R., and Carvalho, D.
(2019). Aplicação da uml no contexto das metodologias
ágeis. In Anais do VI Encontro Nacional de Computação
dos Institutos Federais. SBC.

	Introduction
	Related Work
	Analysis of Related Works
	Comparative Analysis and Opportunities

	Methodology
	Objective and Research Questions
	Experimental Process
	Questionnaire and Interviews

	Results
	Analysis of the participants' profile
	RQ1: What factors influence the effective use of the UML?
	RQ2: What makes UML modeling a challenging practice?
	RQ3: What benefits are realized when using UML?
	RQ4: How often is UML used?
	RQ5: How does the context of software projects in companies limit the use of UML?
	RQ6: How do practitioners view UML modeling?

	Additional Discussion
	Summary of Reflections
	Adoption of continuous modeling
	Gamification of modeling software
	Assessing and Grading UML Diagrams
	Practical Implication

	Threats to validity
	Conclusions and Future Work

