
Journal of Software Engineering Research and Development, 2022, 10:12, doi: 10.5753/jserd.2022.2576
 This work is licensed under a Creative Commons Attribution 4.0 International License.

Understanding and Analyzing Factors that Affect Merge
Conflicts from the Perspective of Brazilian Software Developers
Barbara Beato Ribeiro [Universidade Federal do Estado do Rio de Janeiro | barbara.ribeiro@edu.unirio.br]
Catarina Costa [Universidade Federal do Acre | catarina.costa@ufac.br]
Rodrigo Pereira dos Santos [Universidade Federal do Estado do Rio de Janeiro | rps@uniriotec.br]

Abstract
Merge conflicts are very common in collaborative software development, which is supported mainly by the use of

branches that can be potentially merged. In this context, several studies have proposedmechanisms to avoid conflicts
whenever possible and some identified factors that lead to conflicts. In this article, we report on an investigation of
factors that can lead to conflicts or that can somehow reduce the chances of conflict from the developers’ perspective.
To do so, based on related work, we conducted two empirical studies with Brazilian software developers to both
understand and analyze factors that affect merge conflicts. Firstly, we conducted survey research with 109 software
developers to understand how they use branches, the occurrence of conflicts and the resolution process, and factors
that can lead to or avoid conflicts. Results showed that the use of branches is very common and mostly has the
purpose of creating a new feature or fixing a bug. According to the participants, in most projects, developers have
the autonomy to create new branches and sometimes conflicts happen. The main factors that can lead to conflicts are
“the time a branch is isolated” and “lack of communication”. On the other hand, the factors cited as good practices to
avoid conflicts were “improve team communication” and “less branching duration”. Secondly, we conducted a field
study based on interviews with 15 software developers to analyze those factors to understand better what leads to or
avoids conflicts in a merge. Finally, this work allowed us to conclude that communication with the team, checking
code updates, shorter branch duration, and management are important for software developers, especially when they
think about what increases and decreases merge conflicts.

Keywords: Version Control, Merge Conflicts, Survey Research, Field Study, Software Developers

1 Introduction

Version Control Systems (VCS) allow the creation of paral-
lel branches in a simplified way. However, there is a cost
regarding merge conflicts, which are common in collabora-
tive software development. Developers usually combine the
work they have performed in parallel and may have changed
the same parts of a specific file. Although the solution is fre-
quently present in one or both conflicting versions, it does
not necessarily mean that it is a trivial task (Ghiotto et al.,
2018).
Conflict resolution might degrade the quality of the

merged code and requires a deeper understanding of the pro-
gram’s structure and goals (Shihab et al., 2012; Brindescu
et al., 2020a). The person in charge may not have all the
necessary knowledge to make the best decision or not feel
comfortablemaking decisions by himself/herself over source
code that was coded by other developers (Shihab et al., 2012;
Costa et al., 2014). In some cases, it may be necessary to ver-
ify the knowledge of developers in the changes made in the
branches to choose one or more developers to resolve the
conflict (Costa et al., 2019).
In this context, recent studies (Leßenich et al., 2018;

Owhadi-Kareshk et al., 2019; Dias et al., 2020; Menezes
et al., 2020, 2021; Vale et al., 2020) have investigated fac-
tors, indicators and attributes that can lead to merge conflicts.
Such studies have found evidence that some factors can im-
pact merge conflicts more than others. Therefore, we decided
to use this knowledge as a reference to verify the software
developer’s perspective in relation to factors that can lead or

help to avoidmerge conflicts. As such, based on relatedwork,
we conducted two empirical studies to both understand and
analyze factors that affect merge conflicts.
Firstly, we conducted survey research with 109 Brazilian

software developers to understand the way they use branches,
the occurrence of conflicts and the resolution process, and
factors that can lead to or avoid merge conflicts. The follow-
ing three research questions guided our survey:

• RQ1 (Branches): How often are branches created in soft-
ware projects?

• RQ2 (Merge Conflicts):What factors lead to merge con-
flicts?

• RQ3 (Resolve Conflicts): Which practices do develop-
ers generally adopt to avoid merge conflicts?

We found that the main factors that can lead to conflicts
are “the time a branch is isolated” and “lack of communi-
cation”. This communication refers to the awareness of par-
allel changes: sometimes developers forgot to communicate
what they were changing, resulting in two developers chang-
ing the same functionality or something very close. On the
other hand, the factors cited as good practices to avoid con-
flicts were “improve team communication” and “less branch-
ing duration”. Others mentioned by the participants were “di-
vide the work among the team”, “small changes”, and “fre-
quent commits”. We also identified that the main reasons to
create a branch are “create new features” and “bug fixes”,
and participants mentioned that developers create branches
“frequently”.

Secondly, we conducted a field study based on interviews

https://orcid.org/0000-0002-5215-2845
mailto:barbara.ribeiro@edu.unirio.br
https://orcid.org/0000-0002-8851-1563
mailto:catarina.costa@ufac.br
https://orcid.org/0000-0003-4749-2551
mailto:rps@uniriotec.br

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

with 15 Brazilian software developers to analyze those fac-
tors to obtain a better understanding of what leads to or
avoids merge conflicts. The following two new research
questions guided our field study:

• RQ4 (Produce conflicts): How do the factors identi-
fied in the survey research mostly contribute increasing
merge conflicts?

• RQ5 (Avoid conflicts): How do the factors identified in
the survey research mostly contribute decreasing merge
conflicts?

We deepened the factors highlighted in the survey and ob-
served that most software developers agree with them and
went through some situation that reinforces their opinion.
Furthermore, time of experience was mentioned, highlight-
ing that the experience can modify the software developer’s
perception regarding the question and, that the technology
itself could evolve in this time, improving the work.
This article is an extended version of a conference paper

(Costa et al., 2021) in which we answered the first three re-
search questions, focused on the characterization of software
developer’s perceptions of factors related to merge conflicts.
We complement our previous work by adding two new re-
search questions analyzing how developers see these factors
and if and how they contribute to increasing and/or decreas-
ing the chances of a merge conflict occurring.
This article is organized as follows. We explain the merge

conflict scenario and discuss related work in Section 2. In
Section 3, we describe the research method. We present the
studies conducted in this work, as well as their results and
findings in Sections 4 and 5. Discussion and implications are
presented in Section 6. Section 7 refers to threats to validity
and credibility. Finally, Section 8 concludes this paper with
some final remarks and opportunities for future work.

2 Background
In this section, we discussed the concepts of merge conflicts
and other works that also investigated factors or attributes
that can lead to conflicts.

2.1 Merge Conflicts

Textual or physical conflicts occur due to simultaneous mod-
ifications (e.g., addition, removal or editing) over the same
physical parts of a file (e.g., same line) by several developers.
Direct conflicts are detected by a VCS and require resolution
from a developer or a project team. Figure 1 shows an exam-
ple of a conflicting chunk detected by Git where each part of
the chunk has a version of a function to sum two values in
Python programming language. In this case, a developer in
charge must choose one of the versions, since they have the
same intention.
Ghiotto et al. (2018) verified how developers resolved con-

flicting chunks across 2,731 Java projects. The authors found
that the resolution of conflicting chunks is frequently present
in one of the versions and three quarters of the conflicting

Figure 1. Conflict detected by VCS

chunks were resolved by choosing one of the versions - ver-
sion 1 (50%) or version 2 (25%). In some cases, it was nec-
essary a concatenation (3%), or a combination (9%), or even
a new code (13%). This does not necessarily mean that it is a
trivial task, the person in charge must understand the conflict-
ing intentions and generate a single version. Vale et al. (2021)
investigated the influence of some factors on conflict resolu-
tion time and found that the number of chunks, lines of code,
conflicting chunks, developers involved, conflicting lines of
code, conflicting files, and the complexity of the conflicting
code influence the merge conflict resolution time.

Accioly et al. (2018) found that merge conflicts happened
in 9.38% of their data set. The authors also mentioned that
merging branches is not likely to be a simple task, since one
needs to understand and merge contributions performed by
different developers, probably working on different assign-
ments (Accioly et al., 2018). Menezes et al. (2020) found that
merge conflicts happened in 7.11% of their data set, but the
number of merge conflicts is more than 20% in some projects.
Kasi and Sarma (2013) analyzed a set of projects and found
that merge conflicts ranged from 7.6% to 19.3%. In the study
conducted by Brun et al. (2011), 17% of merge operations re-
quired human assistance to resolve a textual conflict.

As conflicts can be common, their consequences can be a
problem for the quality of some projects. As mentioned by
Brindescu et al. (2020a), this situation can affect the code
quality, given that developers can follow an established pro-
cess of peer review of code submissions. However, a solution
with a lower quality can be produced during the resolution of
the merge.

In fact, merge conflicts are widely discussed in the liter-
ature. Some works (Sarma et al., 2008; Brun et al., 2011;
Sarma et al., 2011; Guimarães and Silva, 2012; Estler et al.,
2013) aim to prevent conflicts by monitoring workspaces
and notifying developers of the potential conflicts. Such ap-
proaches are important initiatives, but they do not guarantee
conflict-free merges, mainly due to the adoption of branches.
Others (Cavalcanti et al., 2015; McKee et al., 2017; Accioly
et al., 2018; Ghiotto et al., 2018) try to characterize merge
conflicts in order to learn more about the topic and support
initiatives that help to reduce the number of conflicts. On
the other hand, researchers (Leßenich et al., 2018; Owhadi-
Kareshk et al., 2019; Dias et al., 2020; Menezes et al., 2020,
2021; Vale et al., 2020) have started looking at factors, at-
tributes and indicators that can lead to or avoid conflict more
recently.

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

Table 1. Related Work

Attributes (Leßenich
et al.,
2018)

(Owhadi-
Kareshk
et al.,
2019)

(Vale
et al.,
2020)

(Dias
et al.,
2020)

(Menezes
et al.,
2020)

(Menezes
et al.,
2021)

Abstract Syntax Tree (AST) nodes changed X – – – – –
Changed chunks X – X – – X
Changed files – X X X X X
Changed files in both branches (intersection) X X – – X X
Changed lines of code X – X X – X
Changes inside class declarations X – – – – –
Commit density X X – – – X
Commits X X X X X X
Communication measures – – X – – –
Developers X X X X X X
Duration X X X X X X
Files with merge conflict – – – X X X
Length of commit messages – X – – – –
Merge conflict occurrence X – X X X X
Modularity – – – X – –
Predefined keywords in commit messages – X – – – –
Programming language – – – – – X
Self-conflict – – – – X X

2.2 Related work

The studies (Leßenich et al., 2018; Owhadi-Kareshk et al.,
2019; Dias et al., 2020;Menezes et al., 2020, 2021; Vale et al.,
2020) that investigated factors, attributes or indicators that
may lead to conflicts analyze timing and size attributes of
merge scenarios, such as commits, committers, lines of code,
files, and others. These studies and the factors, attributes or
indicators are summarized in Table 1.
Leßenich et al. (2018) investigated indicators to predict

the number of merge conflicts. Such indicators were in-
ferred from a survey with 41 developers. In the survey, de-
velopers mentioned what causes merge conflicts: formatting
changes, large-scale refactoring, structural changes in long-
living forks, and import statements. Next, the authors con-
ducted an empirical study with 163 open source projects, in-
cluding 21,488 merge scenarios. They investigated the cor-
relation of some indicators (commits, files, chunks, lines of
code, developers, and others) with the number of conflicts.
For example, they explored the commit density, with the hy-
pothesis that “many commits within a small time span are
more likely to produce conflicts than the same number of
commits over longer time spans”. They did not observe any
strong correlation with the number of conflicts and rejected
this hypothesis. In fact, they found that no indicator analyzed
in work can predict the number of merge conflicts, as sug-
gested by the survey.
Owhadi-Kareshk et al. (2019) also investigated if conflict

prediction is feasible. So, they designed a classifier for pre-
dicting merge conflicts. The authors conducted an empiri-
cal study with 744 open source projects, including 267,657
merge scenarios, written in seven programming languages.
They created and used a set of potentially predictive features
for merge conflicts based on the literature on software merg-
ing. Similarly to the work of Leßenich et al. (2018), they

also investigated the commit density, with the intuition that
“lots of recent activity may increase the chance of conflicting
changes”. Moreover, they did not find a correlation between
their feature sets and conflicts, but they were able to indicate
merge scenarios that are not likely to have conflicts.

Dias et al. (2020) investigated the effect of modularity,
size, and timing of developer’s contributions on merge con-
flicts. The authors conducted an empirical study with 125
open source projects, including 73,504merge scenarios, writ-
ten in two programming languages. They found that “conflict
occurrence significantly increases when contributions to be
merged are not modular”. They also mentioned that “conflict
occurrence increases when contributions to be merged have
more developers, commits, and changed files” and “contribu-
tions developed over longer periods of time are more likely
associated with conflicts”.

In a previous study, we also investigated size and timing
attributes that can lead to conflicts (Menezes et al., 2020).We
conducted an empirical study with 80 open source projects,
including 182,273 merge scenarios, written in ten program-
ming languages. We performed statistical tests and mined as-
sociation rules. We found that some attributes in the branch
that is being integrated (branch 2) have more influence than
the same attributes in the other branch. For example, commit-
ters, commits, and changed files in branch 2 have a large im-
pact on the occurrence of merge conflicts. Timing attributes,
commits in branch 1, and changed files in branch 1 have a
small influence. It is relevant to mention that this work cal-
culated the metrics (except the timing attributes) by branch.
The timing attributes were calculated by merge scenario, as
well as the other attributes of the other works described
here. Menezes et al. (2021) verified more attributes (chunks,
changed lines of code, commit density, programming lan-
guage) in a second study. The attributes that presented a

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

higher relation to the occurrence of merge conflicts were
changed files, commits, and committers in the branch B2 (as
in the first study), and changed lines of code in B2.

Vale et al. (2020) investigated the role of communica-
tion activity in the occurrence or avoidance of merge con-
flicts. The authors conducted an empirical study with 30
open source projects involving 19,000merge scenarios. They
mined and linked contribution (Git) and communication
(Github) data. They quantified the amount of Github com-
munication in merge scenarios (the communication of all ac-
tive contributors - awareness-based, means of pull requests,
and related issues - pull-request-based, and the communica-
tion mapped to artifacts that have been changed in the merge
scenario - changed-artifact-based). The authors found no sig-
nificant relation between communication measures and num-
ber of merge conflicts. They also performed a multivariate
analysis using merge scenarios’ characteristics, such as size,
number of developers, and duration. Against their expecta-
tions, they did not find a strong correlation between the size
of merge scenario code changes and the occurrence of merge
conflicts.

Finally, related work investigated similar attributes, al-
though they reached different results. It is worth mentioning
that they used different analysis techniques, projects and lan-
guages, and some attributes are calculated differently as well.
However, the important implication of such related studies to
the present work is the possibility of gathering some knowl-
edge and investigating the developers’ perspective through a
qualitative method focused on empirical studies addressing
characteristics of open source projects.

3 Research Method

Based on related work identified as the first step of this
work (Section 2), we conducted two empirical studies to both
understand and analyze factors that affect merge conflicts.
Firstly, we conducted survey research with 109 software de-
velopers to understand the way they use branches, the occur-
rence of conflicts and the resolution process, and factors that
can lead to or avoid conflicts. Secondly, we conducted a field
study based on interviews with 15 software developers to an-
alyze those factors to obtain a better understanding of what
contributes to increase or decrease merge conflicts.

We conducted survey research with Brazilian software de-
velopers. The survey aimed to collect opinions on the actions
that software developers usually take when they need to cre-
ate or work in branches and merge code files. The study was
directed to software developers who used any VCS to coor-
dinate changes in their projects. Next, we performed a field
study with 15 developers based on conducting interviews.
The field study aimed to deepen and detail the answers ob-
tained in the survey research. These studies allowed us to or-
ganize a discussion and point out implications to researchers
and practitioners in the field.

4 Understanding Factors that Affect
Merge Conflicts

In this section, we present details on the survey planning and
execution, as well as information about the survey partici-
pants. Finally, we answer our first three research questions.

4.1 Planning and Execution
We adopted the following steps to run the survey based on
the principles presented by Pfleeger and Kitchenham (2001):
(1) setting specific and measurable objectives, (2) planning
and scheduling the survey, (3) preparing the data collection
instrument, (4) validating the instrument, (5) selecting partic-
ipants, (6) analyzing the data, and (7) reporting the results.
We planned and constructed our questionnaire from the

first three research questions presented in Section 1 and
based on the factors mentioned in related work (Leßenich
et al., 2018; Owhadi-Kareshk et al., 2019; Dias et al., 2020;
Menezes et al., 2020; Vale et al., 2020), mainly in the survey
provided by Leßenich et al. (2018). This questionnaire was
divided into three sections: (1) basic information and profes-
sional experience, (2) use of branches, and (3) merge con-
flicts. Our previous work and survey responses in Portuguese
are publicly available on Github1.
We performed a pilot with four software development

practitioners aiming at validating the questionnaire and es-
timating response time. Based on the answer and sugges-
tions, we adjusted and improved the questionnaire. We sent
out the questionnaire to developers via email, together with
some contextual information such as the research objective,
expected knowledge in version control, and estimated time
to answer (5 minutes). As we used mailing lists and asked
developers to share the survey with colleagues, we cannot
compute a response rate. Open and closed questions were
used in the survey. The questions included in the survey are:

1. Age (Less than 24 years old, Between 25 and 34 years
old, Between 35 and 44 years old, Between 45 and 54
years old, More than 55 years old);

2. Level of education (High school, Technical education,
Bachelor’s degree, Specialization degree, Masters’ de-
gree, PhD);

3. Job sector (Private Sector, Public Sector, Both, Self-
employed);

4. Experience (Between 1 and 5 years, Between 6 and 10
years, Between 11 and 15 years, Between 16 and 20
years, More than 20 years);

5. Average size of the project teams (Between 1 and 5 peo-
ple, Between 6 and 10 people, Between 11 and 15 peo-
ple, More than 15 people);

6. Version control tools (Clear Case, CVS, Git, Jazz, Mer-
curial, PVCSVersionManager, RSC, Subversion, Team
Foundation Server, Visual Source Safe, Others: <OPEN
FIELD>);

7. Branch creation frequency (Rarely, Sometimes, Fre-
quently, Very Frequently, Always);

1https://github.com/catarinacosta/macTool/blob/master/SurveyAnswers-
SBES2021.xlsx

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

8. Reason (Test, Bug fixes, Release, New features, Refac-
toring, Others: <OPEN FIELD>);

9. Branch creation policy (Developers have autonomy to
create new branches, Only the project manager or the
person who maintains the software, The team decides,
Others: <OPEN FIELD>);

10. Conflicts frequency (Rarely, Sometimes, Frequently,
Very Frequently, Always);

11. Factors that contribute to the occurrence of conflicts
(Number of changed files, Number of changed lines,
Number of commits, Number of developers, Branching
duration, Lack of communication, Developer working
in several branches, Others: <OPEN FIELD>);

12. Time to resolve a merge conflict (Some hours - less than
24 hours, Some days - 1 to 6 days, One week, More than
a week);

13. Difficulty in resolving amerge conflict (Very easy, Easy,
Medium, Difficult, Very difficult);

14. Practices to avoid conflicts (Team communication, Less
Branching duration, Small changes, Frequent commits,
Divide the work among the team, Others: <OPEN
FIELD>).

We adopted the card sorting approach (Spencer, 2009;
Zimmermann, 2016) to analyze the answers to the open-
ended questions (in this questionnaire, optional questions 6,
8, 9, 11, and 14, in which the participants could enter other
data) and obtained some answers not listed in the initial sur-
vey options. To do so, we grouped similar responses to the
open-ended questions into codes. The coding was performed
by two researchers who discussed the codes and categories
and then were reviewed by another researcher with 10 years
of experience in qualitative studies. An example of the cod-
ing is presented in Figure 2, in which the codes are first ex-
tracted and the categories emerge after checking the similar-
ity.

Figure 2. Example of coding

4.2 Results
From the 109 Brazilian software developers that answered
the questionnaire, 38.5% are between 25 and 34 years old,
and 33% are between 35 and 44 years old. Less than 24 years
old are 12.8%, and between 45 and 54 years old are 11%. Fi-
nally, more than 55 years old are only 5%. 35.8% have Bach-
elor’s degree, Masters’ degree (29.4%), or Specialization de-
gree (22%).
We asked participants where they worked and how much

experience in software development they had. Regarding the
experience as a developer, 27.5% have between 11 and 15

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Git Subversion Team
Foundation

Server

Mercurial CVS Visual
Source Safe

Figure 3. Experience with version control systems

years of experience, and also 27.5% have between 6 and 10
years of experience. Moreover, 23.9% have between 1 and
5 years of experience, 11% have more than 20 years of ex-
perience, and 10.1% have between 16 and 20 years years of
experience.
Additionally, we asked participants on the number of peo-

ple in the last project they participated (or on average in their
career). 38.5% answered that they worked in teams from 1
to 5 members, 36.7% worked in teams from 6 to 10 mem-
bers, and 15.6%worked with more than 15members. Finally,
9.2% answered that they worked in teams from 11 to 15mem-
bers.
We also wanted to identify which tools developers used

to adopt for version control. In this question, the participant
was allowed to mark more than one answer. 105 (96.3%)
developers marked that they have experience with Git, 39
(35.8%) have experience with Subversion, and 18 (16.5%)
have experience with Team Foundation Server. Mercurial,
CVS, and Visual Source Safe were also mentioned. The de-
velopers were free to include other types of VCS not listed
in the questionnaire, but no one answered anything different
from the list. The information is shown in Figure 3.

4.2.1 RQ1 (Branches): How often are branches created
in software projects?

We asked participants how often they create branches on
software development. In the case of named branches, we
believe that there is a scenario that may be more likely to
conflict and be more complex to resolve. We would like
to know the reason for the creation as well as the policies
adopted to do so. Respondents could answer: rarely, some-
times, frequently, very frequently, or always. The prevalent
answer was “always” (45.9%). Developers also chose “very
frequently” (19.3%), and “frequently” (15.6%). Therefore,
we can say branching is a very common practice among the
participants. Results are shown in Figure 4. We also verified
that developers create branches “always” in projects of pri-
vate companies (64.2%) more than in government projects
(26.5%).

We verified the main reasons for creating branches. In this
question, developers were allowed to mark more than one an-
swer. 94 (86.2%) participants answered that the main reason
is “to create new features”, 81 (74.3%) answered “to fix bug”,
and 46 (42.2%) mentioned “refactoring”. “Test” (35.7%) and
“Release” (35.7%) were also chosen by 39 respondents as

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

45.9%

19.3%

15.6%

11.9%

7.3%
Always

Very frequently

Frequently

Sometimes

Rarely

Figure 4. Frequency of branching

the main reasons. Participants could also use the open field
to write other reasons. Two developers mentioned “proof of
concept”, and onementioned “enable the collaboration of dif-
ferent people”. The results are shown in Table 2.
Some software developers (hereafter referred to as SD)

used the open field not to add a new reason, but to explain
the selected reasons:

“We usually want to implement new features and
this ends up generating a new branch, (...) many
times to make releases for the client we have to
use a new branch.” (SD48)

“Refactoring is what we do most in the private
company I work for.” (SD59)

Others developers also mentioned a different reason:

“Test new features and create proofs of concept.”
(SD06)

“For different people to be able to participate in
the collaborative development.” (SD83)

Moreover, we evaluated policies adopted by the partici-
pants’ projects for creating a new branch. They responded
that developers have “autonomy to create new branches”
(68.8%). In contrast, others answered that the “team decides
when a new branch will be created” (23.9%). Only 7.3%
marked “only the project manager or the person who main-
tains the software”. Participants could also use the open field
for other response options. Four developers mentioned the
“use of Git Flow”, a set of guidelines and a tool for creating
and standardizing the use and name of branches in a project.
One developer also pointed that “branches are automatically
created by code review and pipeline systems”, and another
mentioned that the policy is “not use branch”. The results
are shown in Table 3.
Some developers used the open field not to add a new pol-

icy, but to explain the selected policy, as exemplified in the
following:

“The developers create as many branches as they
think it is necessary, but each one is responsible
to constantly update the branch and integrate with
the work of the others or exclude it if it does not
have a well-defined purpose.” (SD48)

Table 2. Reasons for creating branches

Reasons # %
New features 94 86.2%
Bug fixes 81 74.3%
Refactoring 46 42.2%
Testing 39 35.7%
Release 39 35.7%

Reasons also mentioned # -
Proof of Concept 2 -
Enable the collaboration of different people 1 -

Table 3. Policies for creating branches

Policies # %
Developers have autonomy to cre-
ate new branches

75 68.8%

Team decides when a new branch
will be created

26 23.9%

Only the project manager or the per-
son who maintains the software

8 7.3%

Policies also mentioned # -
Git Flow 4 -
Automatically created (by code re-
view and pipeline/continuous deliv-
ery systems)

1 -

Commit to a master branch (no
branch)

1 -

“The team always discuss when it is really worth
creating a new branch, managing new branches is
difficult and if we are not in control something can
be wrong.” (SD87)

Two developers selected the “team decides when a new
branch will be created” and mentioned the “Git Flow strat-
egy”. Two developers selected that “the developers have au-
tonomy to create new branches”, and also mentioned the “Git
Flow”. As such, although the projects adopt a similar strategy
and tool, some projects give more autonomy to members and
others prefer to discuss each decision in depth:

“We use Git Flow, where both developers and
managers have responsibilities when creating
branches.” (SD108)

“A production and a development branch, based
on the concept of Git Flow.” (SD28)

Answer to RQ1: Branches are created frequently.
Developers have the autonomy to decide when to create

the branch. The main reasons are to create
new features and bug fixes.

4.2.2 RQ2 (Merge Conflicts): What factors lead to
merge conflicts?

We found that the use of branches is very common. However,
as mentioned by Shihab et al. (2012), such level of isolation
sometimes implies a cost of having to resolve integration con-
flicts. To measure how often merge conflicts occur, we asked

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

developers to estimate the frequency: rarely, sometimes, fre-
quently, very frequently, or “all the time”. For 45% of the
participants, conflicts occur “sometimes”. The second most
chosen option was “frequently” (24.8%). In turn, the third
most chosen option was “rarely” (16.5%). It is important to
mention that for 13.8%, conflicts occur “very frequently”.
This measure leads us to conclude that conflict occurrence is
common to be between “sometimes” and “frequently”. Re-
sults are shown in Figure 5. We also found that conflicts are
more common in government projects (52.9% of developers
working for the government scored “frequently” or “very fre-
quently”) than in projects of private companies (24% of de-
velopers working for private companies selected the option
“frequently” or “very frequently”).

13.8%

24.8%

45.0%

16.5% Always

Very frequently

Frequently

Sometimes

Rarely

Figure 5. Frequency of conflict occurrence.

We also checked the factors that lead to the occurrence of
conflicts. In this question, participants were allowed to mark
more than one answer. 76 (69.7%) developers marked the op-
tion “branching duration”, i.e., the time a branch is isolated.
The “lack of communication” among a team’s members was
also chosen by 64 (58.7%), and the “number of changed files”
was cited by 53 (48.6%). The “number of developers” was
also chosen by 42 (38.5%). Developers could also use the
open field for other response options. Five developers said
that “not synchronizing the repositories” can lead to conflicts.
Three developers mentioned the “difference in the code for-
matting” as a reason that can lead to conflicts and two devel-
opers mentioned “tasks not mapped correctly”. Results are
shown in Table 4.
Some developers used the open field to explain the se-

lected factors that can lead to conflicts and also to add more
factors. They selected and mentioned factors such as “time
between the branch and the merge” and “lack of communi-
cation”, but they rather mentioned the fact that “repositories
are not kept up to date” and “complex functionalities” can
lead to conflicts, as exemplified next:

“Generally the longer the time between the
branch and the merge, the more files tend to be
changed (...), resulting in greater possibilities of
conflicts. Another point that influences is the non-
practice of constant rebase, leaving the branch
out of date with respect to its origin (usually the
master).Complex functionality can also influence
branches that take longer to merge.” (SD04)

“The lack of communication is the worst of
them. Because if the team communicates daily, one

Table 4. Factors that lead to conflicts

Factors # %
Branching duration 76 69.7%
Lack of communication 64 58.7%
Number of changed files 53 48.6%
Number of developers 42 38.5%
Number of lines of code 31 28.4%
Same developers in many branches 28 25.6%
Number of commits 24 22.0%

Factors also mentioned # -
Do not keep repositories up to date 5 -
Code formatting 3 -
Tasks not mapped correctly 2 -
Coupling level of the code 1 -
Complex features 1 -
Long time to deploy 1 -
Many features in development 1 -
Tasks not correctly mapped/broken into
small pieces

1 -

Technical debt 1 -

knows what the others are up to, and conflicts are
mitigated/reduced. If conflicts are not easy, you
need more communication or more frequent inte-
gration (minor merge).” (SD55)

“Whenever there’s a conflict, it is because develop-
ers forgot to communicate what they were chang-
ing, resulting in two developers changing the same
functionality or something very close.” (SD16)

Some developers mentioned unlisted factors, such as the
difference in the “code formatting”, “tasks not mapped cor-
rectly” and “technical debt”. As conflicts occur in modifica-
tions in the same code region, criticism of minor issues such
as code writing and style is understandable:

“Lack of configuration in the editors, which
change between indentation with tab/space,
amount of space, line break... just opening and
saving the file, and lack of style in the code,
where each one writes the code in a different
way, and another developer adds/removes spaces,
parentheses (...) this causes a change in one line
to reflect the entire file.” (SD26)

“Tasks not mapped correctly/broken into small
enough parts correctly that lead to interfering with
the same pieces of code. Accumulated technical
debt that requires changes in many places, for ex-
ample regarding code formatting, use of depreci-
ated techniques, etc...” (SD76)

Answer to RQ2: Conflicts sometimes occur. The main
reasons that can lead to merge conflicts are the time a

branch is isolated and lack of communication.

4.2.3 RQ3 (Resolve Conflicts): Which practices do de-
velopers generally adopt to avoid merge conflicts?

As conflicts are common, we asked participants about the
difficulty in resolving a conflict and which practices they be-

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

lieve may contribute to avoiding merge conflicts. To verify
the time to resolve a conflict, we asked developers to estimate
the duration: some hours, some days, one week, or more than
a week. Most of them (80.7%) answered that they spent “less
than 24 hours” to resolve the conflict. Some of them (17.4%)
answered that they spend “some days” (1 to 6) to resolve the
conflict. Only 2 (1.9%) participants answered “one week”.
We verified the difficulty level in resolving a merge con-

flict from their perspective, as Greiler et al. (2022) cite: “fac-
tors may impact a specific developer’s experience and de-
pends on his/her personal, team, organization, and project
contexts”. Some developers answered “easy” (32.1%) and
“medium” (32.1%) and some of them answered “very easy”
(22.9%). The results about the time to resolve the conflict
and the level of difficulty are shown in Table 5.

Table 5. Time to resolve a conflict and difficulty level

Time to resolve conflict # Difficult level #
Very easy 25

Easy 31
Less than 24 hours 88 Medium 27

Difficult 5
Very difficult -

Very easy -
Easy 4

Some days (1-6) 19 Medium 6
Difficult 9

Very difficult -
Very easy -

Easy -
One week 2 Medium 2

Difficult -
Very difficult -

More than one week 0 - -

Finally, we investigated practices to avoid conflicts. Devel-
opers were allowed to mark more than one answer. The two
most frequent answers that may contribute to reducingmerge
conflicts occurrence were: “improve team communication”
by 78 (71.5%) participants and “less branching duration” by
75 (68.8%) participants. These factors really seem to be very
important, given that “branching duration” and “lack of com-
munication” were the most cited factors that can lead to con-
flicts. Participants also selected “divide the work among the
team” (57.7%), “small changes” (54.1%), and “frequent com-
mits” (52.2%) as good practices to avoid conflicts.
Developers could use the open field for other response

options. Some participants informed that they do “not use
new branches”, do commits directly on the main branch,
“adopt code style” and “Git Flow tool”, and always keep the
“workspace branch up to date with the remote repository”.
Results are shown in Table 6.
Moreover, some developers used the open field to explain

the selected factors that can avoid conflicts or even add un-
listed factors:

“Always check for code updates in the master /
trunk / main.” (SD34)

“Improve communication channels and also use

Table 6. Factors to avoid conflicts

Factors # %
Improve team communication 78 71.5%
Less branching duration 75 68.8%
Divide the work among the team 63 57.7%
Small changes 59 54.1%
Frequent commits 57 52.2%

Factors also mentioned # -
Do not use branches 3 -
Adopt code style tool 2 -
Keep the branch up to date with the mas-
ter/trunk/main

2 -

Git Flow 2 -
Adopt awareness tool 1 -
Architecture patterns (more cohesion and
less coupling)

1 -

Branch by task 1 -
Continuous integration 1 -
GUI to interact with repository 1 -
Frequent deploy 1 -
Feature flags 1 -
Keep only experts 1 -
Language syntax 1 -

other awareness tools to know what each one is
changing.” (SD68)

“I encourage people onmy team to avoid branches
as much as possible and implement techniques
such as feature flags for everyone to always work
at master/main. Rather than dealing with conflicts,
I would like ‘devs’ to become more experienced in
trunk based development.” (SD31)

“Use of techniques like Git Flow.” (SD77)

“Adopt a tool that validates the code style.”
(SD26)

Answer to RQ3: Developers take more than some hours
to resolve a conflict since it is usually easy to do.

The main factors to avoid conflicts refer to improve
team communication and less time of isolation.

5 Analyzing Factors that Affect
Merge Conflicts

The first study (survey research) was grounded (planned and
constructed) on the factors for merge conflicts mentioned
in solid related work, as mentioned previously, focusing on
the Brazilian software developers’ perceptions. Based on
the quantitative results, we decided to deepen the under-
standing of how the factors contribute to increasing or de-
creasing merge conflicts based on interviews in a qualitative
study (field study). In this section, we present details on the
planning and execution of this qualitative study with semi-
structured interviews and we answer the two additional re-
search questions.

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

5.1 Planning and Execution
We grounded this study on Singer et al. (2008)’s work. Ac-
cording to the authors, a field study aims to investigate prac-
titioners in the context of any task or activity and, based on a
specific technique, identify how they cope with their work in
practice or how they solve some problems in their contexts.
Based on Singer et al. (2008)’s recommendations, software
developers with at least one year of experience were invited
to answer a set of questions regarding twomajor aspects: how
the factors identified in the survey research contributes to
increasing or decreasing merge conflicts. These participants
were invited from the researchers’ networks and considered
their availability to participate in an interview session.
We planned and constructed our interview questions (IQ)

from the results of the first study (survey research) and fo-
cused on the last two research questions presented in Section
1. As such, we took the main factors pointed out by the soft-
ware developers in the survey research and designed eight
questions for the interview sessions for the field study: four
questions about factors that contribute to increase merge con-
flicts (Table 4) and four questions about those that contribute
to decrease merge conflicts (Table 6). The goal is to under-
stand why these factors are so important and how time of
experience (years of working, studying, dealing with merge
conflicts and collaborating with other developers) influences
and modifies the software developers’ perceptions over the
years. The eight grouped questions are listed below.
Regarding factors that contribute to increase merge con-

flicts, we asked the following questions:

• IQ1: Questions on the factors

– Do you agree with the table presenting the factors
that can lead to merge conflicts?

– How was your experience in coping with merge
conflicts early in your career?

– How about coping with merge conflicts nowa-
days?

• IQ2: In your opinion, what makes the branching dura-
tion so important?

• IQ3: Questions on lack of communication

– What is your opinion on the lack of communica-
tion?

– Does the lack of communication affect other fac-
tors presented in the table?

• IQ4: Questions on negative effects

– Which factor brings more negative effects? Why?
– Has the time of experience changed your answer?

Regarding factors that contribute to decrease merge con-
flicts, we asked the following questions:

• IQ5: What is your opinion on the factors “lack of com-
munication” and “branching duration” changing their
positions in the table?

• IQ6: Questions on the team influence

– How did communication with the team influence
the way to avoid these conflicts?

– Have you felt any improvement over time?

• IQ7: Questions on past experiences
– Have you been able to cite or work on a project
that covered any of these factors?

– Was it a successful experience or not?
• IQ8: How do you see that “less branching duration” con-
tributes to decrease merge conflicts?

A total of 15 software developers participated in the sec-
ond study (hereafter referred to as FD from field study de-
veloper identifier). They were only Brazilians and answered
about merge conflicts and their perceptions. The goal was to
deepen the understanding of how branches are adopted, as
well as conflict resolution in this context. With this in mind,
an interview session of about 30 minutes was conducted with
each software developer and recorded via the Zoom plat-
form. All data and information were collected anonymously
and treated specifically for academic purposes, as explained
to the participants in the email invitation, informed consent
form, and in the conversation before each interview.
As mentioned above, the interviewees were contacted by

email. The main selection criterion was to have used some
version control systems (e.g., Git, Subversion, Version Man-
ager), which means that he/she has probably already faced
some merge conflict. They were informed that they could
withdraw at any time, they were allowed to not answer some
questions (if they wanted to), and all video and sound data
that would be collected would not be public (just collected
to the study analysis purposes.
Before starting an interview, we asked about the devel-

oper’s time of experience, how long he/she has been deal-
ing with merge conflict situations (which is not necessarily
linked to professional experience), what kind of industry sec-
tor he/she works in (or has worked to). In Table 7, the inter-
viewees’ time of experience is presented. From the 15 devel-
opers interviewed, 7 (46.6%) have about ten or more years
of experience.
The first four questions of each interview referred to fac-

tors that contribute to increase merge conflict. From Tables
4 and 6, we could deepen this discussion by also understand-
ing if the interviewees agree with, and/or would like to add
more factors (or correlated factors). In turn, factors that con-
tribute to decrease merge conflicts were covered by the last
four questions. The goal was the same as the previous ques-
tion, but we also would like to know if the software develop-
ers’ time of experience affects their perceptions over time.
Firstly, a pilot was run with four software developers to

verify the interview session protocol and duration. The pilot
helped us to check the questions (if they were clear enough)
as well as to the how long a slot would last in average to avoid
stressing the interviewee and to lose the focus in complex
questions.

5.2 Results
This section presents the results obtained from the interviews
in the field study and the answers to the last two research
questions of our work, as mentioned in Section 1. To do so,
for each research question, we took as the main codes from
the interviewees’ answers the most frequent factors that con-
tribute to increasing and decreasing merge conflicts based on

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

those reported in the first study (survey research). This strat-
egy allowed us to get a better understanding of how those
factors have an impact on practice.

Table 7. Interviewees’ time of experience

Developer Time of experience
FD01 Almost 6 years
FD02 4 years
FD03 6 years
FD04 2.5 years
FD05 12 years
FD06 7 years
FD07 24 years
FD08 14 years
FD09 3 years
FD10 10 years
FD11 12 years
FD12 1 year
FD13 14 years
FD14 4 years
FD15 15 years

5.2.1 RQ4 (Produce conflicts): How do the factors iden-
tified in the survey research mostly contribute to
increase merge conflicts?

Regarding the factors that contribute to increase merge con-
flict and their order of importance, most of the software de-
velopers (9) agree (FD03, FD04, FD05, FD06, FD07, FD09,
FD10, FD12, and FD14) with the table presented during the
interview session (Table 4) and some (4) partly agree (FD01,
FD02, FD08, and FD13). Only two interviewees (FD11 and
FD15) declared that they do not completely agree with the
table with the factors. The interviewees who did not com-
pletely agree with the table mentioned that maybe a factor
should be considered as more meaningful for a specific con-
text or scenario. “Number of lines of code” was highlighted
by three software developers (FD03, FD10, and FD14) as
something of greater importance. One interviewee reported
an experience about one of the critical factors that contributes
to increase merge conflicts:

“I had a lot of problems when I worked, even when
the team was small (...) four people developing (...)
It was like parallel editing of the same code and
people did not have much experience in sharing
code (what they did, what they edited...).” (FD11)

We invited the interviewees to comment a little bit more
about their career in order to compare their beginning against
their current perception. Six software developers (FD01,
FD04, FD08, FD11, FD12, and FD14) explained that they
did not workwith either Git or other repositories early in their
career. Additionally, they were running academic projects
that were characterized as small and without merge prob-
lems:

“[starting with academic projects] is common
in our career. As far as your projects are more

and more scaling, even the culture of the company
where you work, you may havemerges that end up
being complicated to cope with.” (FD14)

Four developers (FD7, FD10, FD13, and FD15) with more
years of experience pointed out how important the evolution
of version control tools is, especially for assisting situations
regarding merge conflict resolution and for detecting con-
flicts as well. According to one of those interviewees:

“As time goes by (...), the existing tools started to
carefully address this kind of activity (merge) (...)
A diff not correctly done was complex for us at the
first years of research and practice in version con-
trol systems (...) There was a free tool, but it was
complicated to work with it considering a lot of ex-
isting bugs...” (FD07)

Team communication/behavior was mentioned by three
developers (FD02, FD03, and FD06) as something noticed
both early in their careers and also currently in their work.
FD03 even highlighted that the size of a project - a factor
mentioned direct and indirectly by more than one intervie-
wees - also affects merge conflicts. FD06 pointed out that
he noticed a programming language barrier in open source
projects. On the other hand, long branch duration was re-
ferred to as important due to the changes made over time,
i.e., how much code have been modified/moved in a project
(FD01, FD04, FD09, FD12, and FD13). According to one of
these interviewees:

“I believe that more long branches you have, more
changes and modifications of code you have to
cope with, implying in implementation of new fea-
tures, deprecating other functions of the program
and methods, and so on. As such, long branches
bring bigger merge conflict problems...” (FD04)

The interviewees often argue their concern on not only
what brings merge conflict problems in long branches, but
also on why small branches would be more convenient. They
mentioned some cases, such as a branch is outdated when it
is compared to the main branch/another branch (FD05 and
FD06), or a branch is associated with a sprint/short time in-
terval (FD1, FD14, and FD15), as presented next:

“I believe that shorter branches (...) can decrease
the number of merge problems.” (FD04)

“... if you are running an agile method and stories
that are better defined, broken into sub-tasks (...),
for example, you do not have this problem, because
(theoretically) you have a story in a certain sub-
scope of the development of your project that will
be somehow isolated.” (FD01)

“...If we have a branch with a very long, very exten-
sive time frame, (...) sometimes we cannot collect
such an accurate feedback from the business area
and this would be what we really need to change
for production.” (FD03)

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

Communicationwas called “essential” by one interviewee,
“important” by another, and “fundamental” by a third one.
The lack of communication was related to problems not only
previously described in Table 4, but also declared as a behav-
ioral problem, as exemplified next:

“(...) because it leads to merge conflicts and
frequently it makes some behaviors in the soft-
ware development keep happening throughout the
project and this affects code, functionalities, (...)
the implementation of the project as a whole.”
(FD02)

Some developers (FD01, FD03, and FD09)mentioned that
communication problems go beyond the technical aspect.
This fact is highlighted in the following fragment:

“The lack of communication will lead to conflicts,
not only in Git, but also any way of working.Here
it leads mainly (...) to cases in which you will end
up messing with something that someone else was
already working on...” (FD03)

Moreover, agile methodology was also cited by 2 intervie-
wees as a strategy to support communication in the software
development project. This is pointed in the next fragment:

“It is clear the difference between those who use
the [agile] methodology or not.” (FD06)

It is worth highlighting that the factors mentioned in Ta-
ble 4 were also reinforced by the interviewees. One of them
stated that:

“The lack of communication usually causes prob-
lems regarding the branching conflict, in merge,
(...)within the development team itself (...). This is
critical for the understanding the time the story is
started and that you are doing a part of a whole,
(...) for example, not keeping the repository up-
dated (...) will affect the parallel editing of the
same code.” (FD01)

Tools such as configuration management tools (FD10),
project management tools (FD10), task organization tools
(FD10), change tracking tool (FD05) and screen sharing tools
(FD13) were cited as kinds of support for communication:

“...depending on the tool for change tracking,
continuous change etc., I believe that (verbal)
communication (...) helps you eliminate the prob-
lem a little bit. You can see ‘someone’ (...) touching
exactly such and such point of the system (...) and
you can verify where you can touch or not, and I
believe that this impacts less on merge problems.”
(FD5)

Communication problems can also lead to rework (FD11,
FD12, FD13, and FD14), either by an added feature or by a
change not communicated to the team:

Figure 6. Factors that negatively affect merge conflicts

“Lack of communication (...) you end up having
to redo what you did. You thought it was right, but
it was not what was supposed to be done. This gen-
erates so much rework for the developer, stress for
the manager...” (FD11)

When we asked about which factors they consider the
most negative ones, nine different answers were obtained, as
shown in Figure 6. Communication was the most mentioned
factor in the opinion of six interviewees (FD02, FD04, FD06,
FD09, FD11, and FD14).

“...they [conflicts in merge] occur because the
distraction of several people, myself included of
course. It can lead to some error that will lead to
a headache until we can solve it” (FD09)

In this context, two problems were pointed out by two in-
terviewees each: outdated repository (FD03 and FD07) and
a long branch duration (FD8 and FD15). Some interviewees
selected other problems: many developers in the same branch
(FD05); long implementation time (FD07); number of com-
mits (FD08); and number of lines of code (FD12). Only one
of them (FD13) pointed out that it was hard to solve conflicts
in the beginning of his career, but he would not see it as a
problem at the present moment, but as something expected
from the learning process over the years.
When the interviewees were asked to remember their expe-

riences from the beginning of their career, only three of them
(FD02, FD10, and FD11) believe they did not respond to
the questions differently. The majority, 12 developers (FD01,
FD03, FD04, FD05, FD06, FD07, FD08, FD09, FD12, FD14,
and FD15), believe they would think differently on what con-
tributes to increase merge conflicts over time.
As a conclusion, seven factors were perceived as the main

problems regarding merge conflicts according to the intervie-
wees, but that they have been rethought over time: number of
modified files (FD01 and FD06); communication and dura-
tion of the branches (FD03); organization (FD04); tools used
in the projects (FD07); lack of attention (FD09); and number
of lines modified in the projects (FD14). When the intervie-
wees were asked to compare their perception at the beginning
of their career against their current perception, it is not clear if
there is a pattern of “X-answers from the beginning changed
to Y-answers at the present moment”. The interviewees men-
tioned situations they had experienced to justify the choice of

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

a factor that affected their work early in their career versus
others impacting their current projects.

Answer to RQ4: The interviewees mostly agree with the
factors that lead to merge conflicts, presented in Table 4.
Long branches, software development methodology and
communication problems were pointed out as some of the

main factors to be considered in this context.

5.2.2 RQ5 (Avoid conflicts): How do the factors identi-
fied in the survey researchmostly contribute to de-
crease merge conflicts?

Whenwe asked the interviewees if communication should be
in the first position in Table 4 (factors that lead to merge con-
flicts) as well as in the first position of Table 6) (factors that
avoid merge conflicts), 10 interviewees (FD02, FD03, FD04,
FD05, FD06, FD09, FD10, FD11, FD12, and FD13) agreed
with the greater importance of this factor. This relevance is
exemplified in the following fragment:

“...because communication is in fact very impor-
tant and it impacts on several factors...” (FD03)

In addition, the interviewee FD05 emphasizes the effec-
tive stimuli and use of communication tools (e.g., email,
chat, awareness-support systems etc.) contributes to decrease
merge conflicts. The interviewee FD09 argued that good
communication reduce rework and the interviewee FD6men-
tioned that the problems are more related to human aspects
in the software development process. As such, there was no
specific type of communication specifically recommended in
the interviews. The answers referred to talking more and bet-
ter before working on a project, using some computational
tools and applying agile methodology as a way to improve
and keep communication frequent.
Some interviewees (FD07, FD08, FD14, and FD15) be-

lieve that “branch duration” is a major factor even when the
goal is to decrease merge conflict. The interviewee FD08
mentioned that some factors in this context may be related
to inexperience or “post-conflict” thinking. The interviewee
FD14 raised a concern on to which extent we notice commu-
nication surrounding us:

“... I think it is normal to change your mind, and
I think what happens is that you start thinking
about the situations you have been through on
the team, then you start thinking ‘if that guy had
talked to me, it would be less torturous to resolve
the conflict’...” (FD14).

The interviewee FD01 reported that communication was
highlighted because of cultural reasons. In other words, it
refers to the idea of pointing out that there is a problem and
that “lack of communication” would be the main factor on
this subject, being similar to “pointing the finger” to some-
one. By indicating communication as a strategy to decrease
merge conflict, people feel more comfortable in communi-
cating to each other:

“the communication) as something to avoid a
problem rather than being the problem it-
self.”(FD01)

All interviewees mentioned the communication in the
team, either based on an previous project (past experience),
or on the one they are currently work on. In both scenarios,
nine of them (FD01, FD02, FD05, FD06, FD07, FD09, FD10,
FD11, and FD14) notices improvements regarding effective
communication and its positive effects. As some suggestions
for improving communication, some interviewees cited man-
agement, planning, and infrastructure:

“There are several factors that will influence that
aspect of improving communication. I think the
first one is management.” (FD03)

“There is also that question related to techno-
logical limitation. If we think about the current
pandemic scenario, (...) several companies have
adapted their infrastructure with resources to fos-
ter and ensure good communication.” (FD03)

“Communication works from the moment you
plan how that communication is going to be
done.” (FD04)

The improvements mentioned by the interviewees re-
sulted in problem-solving (FD01), collaboration between
team members (FD04), less rework (FD11) and less time do-
ing merge (FD13). An example of this report is presented
next:

“The fact that you have a person with more knowl-
edge helps a lot who is there working on that
project and who may not have enough knowledge,
especially related to the business in which that
project is inserted.” (FD04)

The interviewee FD15 mentioned that communication
would help to resolve, rather than avoid, a merge conflict.
This fragment is presented as follows:

“I don’t think there has been much change regard-
ing this topic in the last few years (...) I think all
of that is still a problem related to our inability to
clearly record or summarize the developer’s inten-
tion at the time he/she writes a particular piece of
code.” (FD15)

Finally, it is worth mentioning that not everyone may have
faced a situation in which they realized that communication
would be the key factor for avoiding a merge conflict. This
is indicated in the following fragment:

“I did not have maturity on this subject before
[i.e., thinking about communicating to avoid con-
flict]. So, if this ability is improved over time, I
could only have the notion of its importance to
avoid merge conflicts currently...” (FD04)

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

From the 15 software developers who were interviewed
in our field study, 12 have some experience in implement-
ing practices to address the factors they completely or par-
tially agree with. Based on the factors listed in Table 6, com-
munication (FD01, FD02, FD03, and FD09), task division
(FD01, FD02, FD11, and FD15), repository up to date (FD01
and FD05), task-based branch (FD01 and FD05), branching
strategy (FD01 and FD08), more frequent commits (FD01),
small changes (FD01) and short branches (FD15) were the
most prominent. DevOps culture was also mentioned (FD01
and FD13). Some interviewees also included some of the pre-
viously mentioned factors, e.g., training (FD04) and some
support tools (FD05, FD07, FD08, FD09, FD12, and FD13),
such as Trello, Discord, and VSCode. These tools were men-
tioned when the interviewees talked about aspects regarding
communication, change history, standardization, and task di-
vision, as exemplified next:

“We standardized vscode as our IDE. There
were many people who used other environments.”
(FD13)

“... it required improvements. Communication
should to be a frequent concern. You cannot have
communication only when there is a problem, i.e.,
it has to be a daily target.” (FD01)

Another factor mentioned by some interviewees was the
branching duration (FD03 and FD08), especially because of
the business. This was also mentioned by the interviewee
FD11:

“...branching duration is directly linked to the
business. What comes in and leaves depends on
the business, the owner of the company, the client
(...) and there is a little margin for negotiation.”
(FD08)

Factors that contribute to decrease merge conflicts also
mentioned by the interviewees refer to continuous integra-
tion (FD01 and FD08), project management environment
(FD10), and more frequent commits (FD14). Branching du-
ration was confirmed as an important factor to avoid con-
flicts by nine interviewees (FD04, FD05, FD06, FD07, FD10,
FD11, FD13, FD14, and FD15). Other three (FD02, FD09,
and FD12) did not know how to evaluate it, and the other
three (FD01, FD03, and FD08) commented that it is not re-
ally the duration of a branch itself that prevents conflict.
In this regard, we found arguments for a shorter branch-

ing duration, such as the repository being up to date (FD04,
FD07, and FD13), less time for code changing (FD05), less
divergence (FD06), memory of what has been done and what
is not affected (FD10), the speed of development (FD11),
less chance of conflicts (FD13), and faster merges (FD14).
The interviewee FD15 explained somehow the mentioned
factors:

“The longer you are isolated in a branch, the
more likely another developer will come and
change the code that is in parallel with you (...).
You will generally remember less and less about

it. Knowing how the code was before and having
fewer developers working in the same code area
as you are factors that help you solve (...) or avoid
a merge conflict.” (FD15)

Answer to RQ5: The interviewees mostly agree with the
factors that avoid merge conflicts, presented in Table 6.
Communication (from simply conversations to those
based on computational tools), team management, and

infrastructure were pointed out as some of the
main factors to be considered in this context.

6 Discussion and Implications
In this section, we present the main findings of this research
on factors that affect merge conflicts based on a quanti-
qualitative method.
1) Branches are very common and developers have the

autonomy to create new branches:
Most software developers create branches frequently or

all the time. The use of branches is very common accord-
ing to the developers’ perspective collected from the survey
questionnaire, but no participant in the field study interviews
mentioned if he/she did not use to do it. Only a few develop-
ers marked the option that they discuss the creation of new
branches with their teams. In a large study at Microsoft, Shi-
hab et al. (2012) identified that developers should be care-
ful about branch creation, since it may lead to an increase in
the likelihood of failures. They suggest aligning branching
structure according to architectural structure and with the or-
ganizational structure of their teams (Shihab et al., 2012). As
mentioned by Bird et al. (2011), branches do not come with-
out a price, given that it is normally integrated into others at
some point.
2) New features and fixing bugs are the main reasons

for creating branches:
Our results confirm the findings of other studies. Zou et al.

(2019) found similar results in their investigation with 2,923
projects developed on Github - branches are mainly used to
implement new features, conduct version iteration, and fix
bugs. Owhadi-Kareshk et al. (2019) and Vale et al. (2020)
address that developers often use branches to add features
or fix bugs. According to Bird et al. (2011), branches are
created to implement a feature, perform a maintenance exer-
cise, do continuedmaintenance on a subsystem, or fix several
related bugs. Premraj et al. (2011) mentioned that branches
help developers, architects, build managers, testers, and oth-
ers people to change software artifacts. Additionally, the ag-
ile methodology was cited by some software developers in
the field study interviews as one of the strategies to cope with
the creation of a new branch without contributing to increas-
ing or decreasing merge conflicts.
3) Branching duration and lack of communication are

the main problems:
Based on the related work (Table 1), attributes related to

the branching duration are very common, but only two stud-
ies mention the branch duration as an indicator of conflict.

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

Dias et al. (2020) and Menezes et al. (2020) found a rela-
tion between the duration of the merge scenario and the con-
flict occurrence. Dias et al. (2020) mentioned that “contribu-
tions developed over longer periods of time are more likely
associated with conflicts”. Menezes et al. (2020) found that
the timing attributes have a (small) impact on the conflicts.
Vale et al. (2020) verified the relation between Github com-
munication and the occurrence of merge conflicts. The au-
thors found no significant relation between communication
measures and number of merge conflicts. However, the com-
munication recorded by the authors was based only on the
communication extracted from Github. So, they extract the
communication of all active contributors, means of pull re-
quests, and related issues, and the communication mapped
to artifacts that have been changed in the merge scenario.
The communicationmentioned by the software developers

who responded to the survey questionnaire is regarding the
awareness of parallel changes. Sometimes developers forget
to communicate what they are changing, resulting in two de-
velopers changing the same functionality or something very
close. In the field study interviews, some software develop-
ers also suggested that keeping shorter branches is the best
decision to avoidmerging conflict problems, especially those
related to developers’ communication and lack ofmemory on
the changes performed in the project and team over time.
4) Most of the time, conflicts are not difficult:
Most conflicts offer no difficulty (medium or easy) and are

resolved in some hours. Accioly et al. (2018), Ghiotto et al.
(2018) and Pan et al. (2021) identified the most common con-
flict patterns and resolutions. Accioly et al. (2018) found that
84.57% of merge conflicts happen because developers mod-
ify the same lines or consecutive lines of the same method.
Ghiotto et al. (2018) found that conflicting chunks generally
contain all the necessary information to resolve them. Pan
et al. (2021) found in their study on conflict resolution that
28% of changes are of 1-2 lines for both main and forked
branches and 39.5% of the resolution strategies involved con-
catenating the main and the forked branch’s changes.
McKee et al. (2017) performed a survey and found nine

factors and developers attempting to determine if the con-
flict is difficult, the complexity of conflicting lines of code
and files, the knowledge in the area of conflicting code, and
the number of conflicting lines were most cited. It is interest-
ing to mention that some of these factors were used in some
related work to predict conflict occurrence.
Brindescu et al. (2020b) also investigated the characteris-

tics of merge conflicts that are associated with their difficulty.
The authors found a subset of ten factors that can predict the
difficulty of merging conflicts, including complexity, diffu-
sion, size, and development pattern. The more experienced
developers have appointed the improvement of the version
control tool over time as a factor that has improved conflict
resolution.
It is worth highlighting that the field study interviews also

raised that the project’s size somehow influences the resolu-
tion of merge conflicts, especially in large projects (and large
teams) where the chance of merge conflicts is higher. More-
over, when a developer is at the beginning of his/her career,
he/she does not use to pay attention to this kind of situation,
especially on the importance of communication in a project

(de Farias Junior et al., 2022).
5) Improve team communication and less branching

duration can avoid conflicts:
As mentioned previously, Dias et al. (2020) and Menezes

et al. (2020) found that timing measures have an influence
conflict occurrence. So, we believe that a good practice is to
pay attention to the isolation time and not postpone themerge
so much. When developers are less isolated, the repositories
are synchronized and people are aware of what other people
are doing. Software developers in the survey questionnaire
mentioned the importance of knowing what parts others are
working on to avoid conflicts.

Communication and relation withmerge conflict are inves-
tigated mainly in studies addressing awareness. Some spe-
cific studies (Sarma et al., 2008; Brun et al., 2011; Sarma
et al., 2011; Guimarães and Silva, 2012; Estler et al., 2013)
focus on the prevention of conflicts through awareness,
i.e, detecting conflicts early. Basically, these tools moni-
tor workspaces and inform developers of ongoing parallel
changes in other workspaces. As also mentioned by some
software developers in the field study interviews, it is rele-
vant to improve communication channels and also use aware-
ness tools to know what each one is changing. Moreover,
other points related to the factors referred to having more
and better conversations before starting a branch (or even a
project), based on computational tools, such as Trello, as well
as applying agile methodology as a strategy to reduce time
span.
6) Qualitative analysis findings:
The answers to our survey questionnaire and field study

interviews show that software developers also use a branch
to create proofs of concept and Git Flow seems to be a good
strategy to coordinate the use of branches. In addition, they
suggest that not keeping the repository up to date can cause
problems, so developers need to bring up the changes con-
stantly. Attention regarding the code formatting is important.
Accioly et al. (2018) noticed that part of the merge conflicts
is simply caused by changes to code indentation or consec-
utive line edits. Regarding this problem, some software de-
velopers suggest adopting a code style tool. Furthermore, as
good practices to avoid conflicts, some of them also men-
tion the option of not using branches and adopting techniques
such as feature flags. They also cited always communicat-
ing with the team and checking for code updates in the mas-
ter/trunk as a good practice, as noticed in the field study in-
terviews.

7 Threats to Validity and Credibility
This work applied a quanti-qualitative method. Therefore,
there are two different empirical studies (survey research and
field study) and each of them has specific threats and limita-
tions. Each subsection below informs their threads as well as
strategies to mitigate them.
1) Survey Research:
A) Protocol. We adopted some predefined answers to

some closed questions, given that they were grounded on
previous studies published in the literature (Owhadi-Kareshk
et al., 2019; Leßenich et al., 2018; Dias et al., 2020; Menezes

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

et al., 2020; Vale et al., 2020). Moreover, we also leave an
open field allowing a participant to comment on different
factors not listed in the question. We develop the question-
naire very carefully. As it would be our main source for all
sections of this study, we discussed and took a long time to
construct our questionnaire. In addition to our experience on
the subject, we spent a lot of time looking at the literature and
building our survey based on the pieces of evidence from
these studies and some similar initiatives (Condina et al.,
2020; Kamei et al., 2020). We also conducted a pilot with
four developers and asked for feedback on the questions, and
whether they were understandable and relevant to the study.
B) Sample. The software developers who responded to the

questionnaire were invited by email via contact lists and they
were asked to share with their colleagues with experience in
software development (snowballing invitation). We tried to
make sure that only people with experience in the use of VCS
answered the questionnaire, either in the invitation or in the
survey description, or even in the question specifically refer-
ring to the use of any VCS. Such approach was important to
avoid any participant with lack of experience or knowledge.
C) Context. We only had the participation of Brazilian

software developers in our study. Results may not be gen-
eralized to the context of all software developers all over the
world. Some results confirmed the findings presented in re-
lated work, but others require more in-depth investigation.
In addition, according to Smith et al. (2013), high-quality re-
search on the human side of software engineering requires
real software developers, but getting high levels of participa-
tion remains a challenge for researchers. Nonetheless, it is
relevant to emphasize that our results reflect the perspective
of a large group (109 participants).
2) Field Study:
A) Protocol. We used the results from the survey research

as the input for the questions prepared to the interview ses-
sions, considering the main factors that affect merge con-
flicts according to the Brazilian software developers who an-
swered the survey questionnaire. The developers who were
interviewed were invited by email and they were requested
to share with their colleagues with some experience in resolv-
ing merge conflicts (snowballing invitation). Only Brazilian
software developers participated in the field study interviews.
Therefore, the results may not be generalized, especially con-
sidering the interpretive validity of a qualitative study, i.e.,
the possibility, even without the researcher’s intention, to
put his/her perception instead of really understanding, to per-
ceive what the interviewee meant.
B) Sample. Our intention was to have at least 20 inter-

viewees, based on Guest et al. (2006)’s work regarding the
occurrence of saturation with at least 12 interviews given
that this research has “the aim is to understand common per-
ceptions and experiences among a group of relatively homo-
geneous individuals”. Moreover, Steglich et al. (2019) and
Greiler et al. (2022) conducted field studies with software de-
velopers considering Guest et al. (2006)’s work and reinforce
that the main important criteria is the saturation, i.e., when
any new interview with relatively homogeneous individuals
do not provide any new data or information. For example,
Steglich et al. (2019) reached saturation with 11 interviews.
In our study, 15 developers were able to participate in the pe-

riod when the field study was run. Based on the interviews,
the saturation was obtained with 12 interviews and this is in
accordance with Guest et al. (2006)’s work. It is important
to remark that the main goal of our field study was to col-
lect the Brazilian software developers’ perceptions on merge
conflicts in a qualitative setting and not through a large-scale,
quantitative study based on software repository analysis.
C) Context. The same concern point out by Smith et al.

(2013) is valid to the field study, i.e., “high-quality research
on the human side of software engineering requires real soft-
ware developers, but getting high levels of participation re-
main a challenge for researchers”. This includes the software
developers’ feeling on how to proceed with the interview
questions given the fear of leaking confidential information
from their own projects and/or companies inwhich theywork
on. It is a critical barrier faced in field studies, given its quali-
tative, in-person nature (Singer et al., 2008), especially when
requesting participation. Nonetheless, it is important to high-
light that the result of this study reflects the vision of a group
of Brazilian software developers and whose focus was on
deepening the understanding the results from the previous
survey research (Smith et al., 2013).

8 Conclusion
This research aimed to investigate factors that lead to or help
to avoid merging conflicts. To do so, based on related work,
we conducted two empirical studies to both understand and
analyze factors that affect merge conflicts. Firstly, we con-
ducted survey research with 109 software developers to un-
derstand the adoption of branches as well as the occurrence
and resolution of conflicts. Results suggest that the main fac-
tors that can lead to conflicts are “the time a branch is iso-
lated” and “lack of communication”. On the other hand, the
factors cited as good practices to avoid conflicts were “im-
prove team communication” and “less branching duration”.
“Divide the work among the team”, “small changes”, and
“frequent commits” were also marked many times by the par-
ticipants of the survey research. Communication here refers
to the awareness of parallel changes, considering the impor-
tance of knowing what others are working on. We also per-
formed a qualitative analysis to extract codes and categories
from open fields of five questions responded to the partic-
ipants. We identified that Git Flow is a common strategy
adopted to coordinate branches, synchronizing the repository
constantly and paying attention to the formatting of the code
to avoid conflicts.
Next, we conducted a field study based on interviews

with 15 software developers to analyze those factors to ob-
tain a better understanding of what contributes to increas-
ing or decreasing merge conflicts. Results show that com-
munication with the team, checking code updates, shorter
branch duration andmanagement (which comprises software
development methodology, communication strategies and
awareness-support systems) seem to be key policies, not only
to merge conflict resolution, but also to decrease conflict.
Moreover, the developers’ time of experience can change
their perception on the problems faced in this context and
helps to avoid or resolve a merge conflict, besides the fact

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

that version control systems have evolved to a greater extent,
being also an important support in this topic. Finally, this
study allowed us to conclude that most of the software devel-
opers agree with the factors that lead to and the factors that
avoid merge conflicts, and underlying problems and how to
resolve them are still a concern for all them.
In future work, we intend to evaluate the application of

some good practices suggested in this work. We could eval-
uate supporting processes and tools to improve communi-
cation, and reduce isolated work and other mentioned fac-
tors. Another opportunity is to perform a quantitative study
based on mining software repositories in order to analyze
some GitHub projects against some findings of this work,
for example, through a study on the projects’ branching du-
ration, communication tactics, and merge conflict resolution.
Finally, this work can be executed with software developers
from other contexts (e.g., different cultures, countries, gen-
ders etc.) to produce other indications and allow systemic
analyses.

Acknowledgements
We thank all the participants that answered our survey and interview.
The author also thanks UNIRIO and FAPERJ (grant: 211.583/2019)
for partial support.

References
Accioly, P., Borba, P., and Cavalcanti, G. (2018). Under-
standing semi-structured merge conflict characteristics in
open-source Java projects. Empirical Software Engineer-
ing, 23:2051–2085.

Bird, C., Zimmermann, T., and Teterev, A. (2011). A theory
of branches as goals and virtual teams. In Proceedings of
the 4th International Workshop on Cooperative and Hu-
man Aspects of Software Engineering, pages 53–56.

Brindescu, C., Ahmed, I., Jensen, C., and Sarma, A. (2020a).
An empirical investigation into merge conflicts and their
effect on software quality. Empirical Software Engineer-
ing, 25:562–590.

Brindescu, C., Ahmed, I., Leano, R., and Sarma, A. (2020b).
Planning for untangling: Predicting the difficulty of merge
conflicts. In 42nd International Conference on Software
Engineering (ICSE), pages 801–811.

Brun, Y., Holmes, R., Ernst, M. D., and Notkin, D. (2011).
Proactive detection of collaboration conflicts. In 19th
ACM Special Interest Group on Software Engineering
Symposium and the 13th European Conference on Foun-
dations of Software Engineering (SIGSOFT), pages 168–
178.

Cavalcanti, G., Accioly, P., and Borba, P. (2015). Assessing
semistructured merge in version control systems: A repli-
cated experiment. In 2015 ACM/IEEE International Sym-
posium on Empirical Software Engineering and Measure-
ment (ESEM), pages 1–10. IEEE.

Condina, V., Malcher, P., Farias, V., Santos, R., Fontão, A.,
Wiese, I., and Viana, D. (2020). An exploratory study on
developers opinions about influence in open source soft-

ware ecosystems. In Proceedings of the 34th Brazilian
Symposium on Software Engineering, pages 137–146.

Costa, C., Figueiredo, J. J., Ghiotto, G., andMurta, L. (2014).
Characterizing the problem of developers’ assignment for
merging branches. International Journal of Software En-
gineering and Knowledge Engineering, 24:1489–1508.

Costa, C., Figueiredo, J. J., Pimentel, J. F., Sarma, A., and
Murta, L. G. P. (2019). Recommending participants for
collaborative merge sessions. IEEE Transactions on Soft-
ware Engineering.

Costa, C., Menezes, J., Trindade, B., and Santos, R. (2021).
Factors that affect merge conflicts: A software developers’
perspective. In Brazilian Symposium on Software Engi-
neering, pages 233–242.

de Farias Junior, I., Marczak, S., dos Santos, R. P., Rodrigues,
C., and Moura, H. (2022). C2m: A maturity model for
the evaluation of communication in distributed software
development. Empirical Software Engineering.

Dias, K., Borba, P., and Barreto, M. (2020). Understanding
predictive factors for merge conflicts. Information and
Software Technology, 121:106256.

Estler, H. C., Nordio, M., Furia, C. A., and Meyer, B. (2013).
Unifying configuration management with merge conflict
detection and awareness systems. In 22nd Australian Soft-
ware Engineering Conference (ASWEC), pages 201–210.

Ghiotto, G.,Murta, L., Barros,M., and Hoek, A. V. D. (2018).
On the nature of merge conflicts: a study of 2,731 open
source Java projects hosted byGitHub. IEEE Transactions
on Software Engineering, 46:892–915.

Greiler, M., Storey, M.-A., and Noda, A. (2022). An action-
able framework for understanding and improving devel-
oper experience. IEEE Transactions on Software Engi-
neering.

Guest, G., Bunce, A., and Johnson, L. (2006). How many
interviews are enough? Field Methods, 18:59–82.

Guimarães, M. L. and Silva, A. R. (2012). Improving early
detection of software merge conflicts. In 34th Interna-
tional Conference on Software Engineering (ICSE), pages
342–352.

Kamei, F., Wiese, I., Pinto, G., Ribeiro, M., and Soares, S.
(2020). On the use of grey literature: A survey with the
brazilian software engineering research community. In
Proceedings of the 34th Brazilian Symposium on Software
Engineering, pages 183–192.

Kasi, B. K. and Sarma, A. (2013). Cassandra: Proactive con-
flict minimization through optimized task scheduling. In
35th International Conference on Software Engineering
(ICSE), pages 732–741.

Leßenich, O., Siegmund, J., Apel, S., Kästner, C., and Hun-
sen, C. (2018). Indicators for merge conflicts in the wild:
survey and empirical study. Automated Software Engi-
neering, 25:279–313.

McKee, S., Nelson, N., Sarma, A., and Dig, D. (2017). Soft-
ware practitioner perspectives on merge conflicts and res-
olutions. In 33rd IEEE International Conference on Soft-
ware Maintenance and Evolution (ICSME), pages 467–
478.

Menezes, J. W., Trindade, B., Pimentel, J. F., Moura, T., Plas-
tino, A., Murta, L., and Costa, C. (2020). What causes

Understanding and Analyzing Factors that Affect Merge Conflicts from the Perspective of Brazilian Software Developers Ribeiro et al. 2022

merge conflicts? In 34th Brazilian Symposium on Soft-
ware Engineering (SBES), pages 203–212.

Menezes, J. W., Trindade, B., Pimentel, J. F., Plastino, A.,
Murta, L., and Costa, C. (2021). Attributes that may raise
the occurrence of merge conflicts. Journal of Software
Engineering, 9:14.

Owhadi-Kareshk, M., Nadi, S., and Rubin, J. (2019). Pre-
dicting merge conflicts in collaborative software develop-
ment. In 13th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM),
pages 1–11.

Pan, R., Le, V., Nagappan, N., Gulwani, S., Lahiri, S., and
Kaufman, M. (2021). Can program synthesis be used to
learn merge conflict resolutions? an empirical analysis. In
2021 IEEE/ACM 43rd International Conference on Soft-
ware Engineering (ICSE), pages 785–796. IEEE.

Pfleeger, S. L. and Kitchenham, B. A. (2001). Principles
of survey research: part 1: turning lemons into lemonade.
ACM SIGSOFT Software Engineering Notes, 26:16–18.

Premraj, R., Tang, A., Linssen, N., Geraats, H., and van Vliet,
H. (2011). To branch or not to branch? In Proceedings of
the 2011 International Conference on Software and Sys-
tems Process, pages 81–90.

Sarma, A., Redmiles, D., and Van Der Hoek, A. (2008). Em-
pirical evidence of the benefits of workspace awareness
in software configuration management. In Proceedings
of the 16th ACM SIGSOFT International Symposium on
Foundations of software engineering, pages 113–123.

Sarma, A., Redmiles, D. F., and Hoek, A. V. D. (2011). Palan-
tir: Early detection of development conflicts arising from
parallel code changes. IEEE Transactions on Software En-
gineering, 38:889–908.

Shihab, E., Bird, C., and Zimmermann, T. (2012). The ef-
fect of branching strategies on software quality. In 12th
ACM/IEEE International Symposium on Empirical Soft-
ware Engineering and Measurement (ESEM), pages 301–
310.

Singer, J., Sim, S. E., and Lethbridge, T. C. (2008). Software
Engineering Data Collection for Field Studies, pages 9–
34. Springer London, London.

Smith, E., Loftin, R., Murphy-Hill, E., Bird, C., and Zim-
mermann, T. (2013). Improving developer participation
rates in surveys. In 2013 6th International Workshop on
Cooperative and Human Aspects of Software Engineering
(CHASE), pages 89–92.

Spencer, D. (2009). Card sorting: Designing usable cate-
gories. Rosenfeld Media.

Steglich, C., Marczak, S., De Souza, C. R., Guerra, L. P.,
Mosmann, L. H., Figueira Filho, F., and Perin, M. (2019).
Social aspects and how they influence mseco developers.
In 2019 IEEE/ACM 12th International Workshop on Co-
operative and Human Aspects of Software Engineering
(CHASE), pages 99–106.

Vale, G., Hunsen, C., Figueiredo, E., and Apel, S. (2021).
Challenges of resolvingmerge conflicts: Amining and sur-
vey study. IEEE Transactions on Software Engineering.

Vale, G., Schmid, A., Santos, A. R., Almeida, E. S. D., and
Apel, S. (2020). On the relation between GitHub commu-
nication activity and merge conflicts. Empirical Software

Engineering, 25:402–433.
Zimmermann, T. (2016). Card-sorting: From text to themes.
In Perspectives on data science for software engineering,
pages 137–141. Elsevier.

Zou, W., Zhang, W., Xia, X., Holmes, R., and Chen, Z.
(2019). Branch use in practice: A large-scale empirical
study of 2,923 projects on github. In 2019 IEEE 19th Inter-
national Conference on Software Quality, Reliability and
Security (QRS), pages 306–317. IEEE.

	Introduction
	Background
	Merge Conflicts
	Related work

	Research Method
	Understanding Factors that Affect Merge Conflicts
	Planning and Execution
	Results
	RQ1 (Branches): How often are branches created in software projects?
	RQ2 (Merge Conflicts): What factors lead to merge conflicts?
	RQ3 (Resolve Conflicts): Which practices do developers generally adopt to avoid merge conflicts?

	Analyzing Factors that Affect Merge Conflicts
	Planning and Execution
	Results
	RQ4 (Produce conflicts): How do the factors identified in the survey research mostly contribute to increase merge conflicts?
	RQ5 (Avoid conflicts): How do the factors identified in the survey research mostly contribute to decrease merge conflicts?

	Discussion and Implications
	Threats to Validity and Credibility
	Conclusion

