

Journal of Software Engineering Research and Development, 2023, 11:3, doi: 10.5753/jserd.2023.2581

 This work is licensed under a Creative Commons Attribution 4.0 International License.

Investigating the Relationship between Technical

Debt Management and Software Development Issues

Clara Berenguer [Salvador University | claraberenguerledo@gmail.com]

Adriano Borges [Salvador University | arborges.12@gmail.com]

Sávio Freire [Federal Institute of Ceará and Federal University of Bahia | savio.freire@ifce.edu.br]

Nicolli Rios [Federal University of Rio de Janeiro | nicolli@cos.ufrj.br]

Robert Ramač [University of Novi Sad | ramac.robert@uns.ac.rs]

Nebojša Taušan [University of Novi Sad | nebojsa.tausan@ef.uns.ac.rs]

Boris Pérez [Francisco de Paula Santander University | br.perez41@uniandes.edu.co]

Camilo Castellanos [University of Los Andes | cc.castellanos87@uniandes.edu.co]

Darío Correal [University of Los Andes | dcorreal@uniandes.edu.co]

Alexia Pacheco [University of Costa Rica | alexia.pacheco@ucr.ac.cr]

Gustavo López [University of Costa Rica | gustavo.lopezherrera@ucr.ac.cr]

Manoel Mendonça [Federal University of Bahia | manoel.mendonca@ufba.br]

Davide Falessi [University of Rome Tor Vergata | d.falessi@gmail.com]

Carolyn Seaman [University of Maryland Baltimore County | cseaman@umbc.edu]

Vladimir Mandić [University of Novi Sad | vladman@uns.ac.rs]

Clemente Izurieta [Montana State University and Idaho National Laboratories | clemente.izurieta@montana.edu]

Rodrigo Spínola [Virginia Commonwealth University and Salvador University | spinolaro@vcu.edu]

Abstract

Context: The presence of technical debt (TD) brings risks to software projects. Managers must continuously

find a cost-benefit balance between the benefits of incurring in TD and the costs of its presence in a software

project. Much attention has been given to TD related to coding issues, but other types of debt can also have

impactful consequences on projects. Aims: This paper seeks to elaborate on the growing need to expand TD

research to other areas of software development, by analyzing six elements related to TD management, namely:

causes, effects, preventive practices, reasons for non-prevention, repayment practices, and reasons for non-

repayment of TD. Method: We survey and analyze, quantitatively and qualitatively, the answers of 653 software

industry practitioners on TD to investigate how the previously mentioned elements are related to coding and non-

coding issues of the software development process. Results: Coding issues are commonly related to the investigated

elements but, indeed, they are only part of the TD Management stage. Issues related to the project planning and

management, human factors, knowledge, quality, process, requirements, verification, validation, and test, design,

architecture, and the organization are also common sources of TD. We organize the results in a hump diagram and

specialize it considering the point of view of practitioners that have used agile, hybrid, and traditional process

models in their projects. Conclusion: The hump diagram, in combination with the detailed results, provides

guidance on what to expect from the presence of TD and how to react to it considering several issues of software

development. The results shed light on TD management of software elements, beyond source code related artifacts.

Keywords: Technical Debt, Technical Debt Management, Causes of Technical Debt, Effects of Technical Debt,

Process Model

1 Introduction

Technical debt (TD) refers to postponed tasks or immature

artifacts in software projects that can bring short-term

benefits (e.g., higher productivity and lower costs), but may

have harmful impacts in the long run (Izurieta et al. 2012).

By managing TD items, software teams can reduce the risks

associated with these items, such as unexpected delays in

system evolution or difficulty in achieving quality criteria

defined for the project (Rios et al. 2020).

Technical debt management (TDM) is a challenging

endeavor. Successful TDM is about reaching a balance

between the benefits of incurring in TD and the later impacts

of its presence in a software project (Lim et al. 2012, Guo et

al. 2016). TDM must seek to define preventive practices to

avoid potential TD items and the appropriate actions to

repay incurring debt (Li et al. 2015, Ribeiro et al. 2016,

Freire et al. 2020a, Freire et al. 2020b). TDM requires

knowledge of the causes that lead software teams to incur

debt items and the effects of their presence in software

projects (Rios et al. 2020, Besker et al. 2020). Knowing the

causes of TD can support software teams in understanding

their project context and define preventive practices to avoid

the debt. Having information on TD effects can aid in the

prioritization of TD items to be paid off, supporting a more

precise impact analysis and the identification of corrective

actions to minimize possible negative consequences of TD

items for the project.

Although it was initially associated with code level issues,

TD can impact any type of software artifact and activity

(Alves et al. 2016, Rios et al. 2018). For example, outdated

requirement documentation can lead to a code that does not

meet user requirements.

Despite the growing number of studies on TD, there is a

clear concentration of studies investigating it from the

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

source code and its related artifacts perspective (Zazworka

et al. 2014, Alves et al. 2016, Rios et al. 2018). Focusing

solely on coding is risky business, because TD can affect

many other software activities. But, how can one identify

and manage TD related to different software activities?

This paper elaborates on the growing need to expand TD

research to other areas of software development. It analyzes

six elements related to TDM: causes, effects, preventive

practices, reasons for non-prevention, repayment practices,

and reasons for non-repayment of TD, for several types of

software artifacts and activities. The paper uses a subset of

the data collected by the InsighTD project, a family of

surveys globally distributed on causes, effects, and

management of TD (Rios et al. 2020). This data set consists

of data from six countrywide replications of the survey,

totaling 653 responses from software practitioners. By

investigating how practitioners face TD in their projects, we

gain insight into the state of practice regarding TDM, which

allow us to identify existing gaps in TDM theory. The data

are analyzed qualitatively and quantitatively to investigate

whether the above listed TDM elements are more related to

coding or to non-coding issues (e.g., planning and

management, requirements engineering, human factors) of

the software development.

This paper is based on our previous work by Berenguer et

al. (2021), extending it by including:

• A more comprehensive analysis of the relation between

TD and non-coding activities,

• Specializations of the hump diagram by process model

(agile, hybrid, and traditional), and

• An analysis between TD, coding and non-coding

activities by process model.

Our results indicate that both coding and non-coding

activities are commonly affected by TD, but causes, effects,

preventive practices, reasons for non-prevention, and

reasons for non-repayment, affect non-coding activities

more than coding activities. For repayment practices, we

found similar behaviors between the two groups (coding and

non-coding activities).

Given all the investigated TDM elements, some software

development issues are more commonly reported by

practitioners. Planning and management issues and human

factors stand out, but there are several issues related to debt

items such as process, knowledge, TD management, and

requirement engineering issues.

Concerning the analysis per process models, we found

that practitioners following agile, hybrid, or traditional

process models shared a similar view on TD elements

affecting coding activities. On the other hand, practitioners

who use traditional process models have a different view of

those using agile and hybrid process models on TD elements

affecting non-coding activities. Results are presented with a

hump diagram that, in combination with the analyses of each

of the investigated TD management elements, provides

guidance on what to expect from the presence of TD and

how to react to them considering several issues of the

software development process.

In addition to this introduction, this paper has seven

additional sections. Section 2 presents background

information on TD research and related work. Section 3

describes the methodology used. Section 4 presents the

results of this work. And Section 5 presents the hump

diagram and its specializations by process models. Section

6 summarizes the results and discusses their implications for

researchers and practitioners. Section 7 discusses the threats

to validity. Lastly, Section 8 presents our concluding

remarks.

2 Background

TD can be incurred at any time and in several artifacts

throughout the software development process. As such, it has

different characteristics depending on the time it was

incurred and the activities it is related to, such as testing,

code, build, documentation, and so on (Alves et al. 2016).

Although TD is a rising research topic, many studies focus

solely on its relationship to source code.

Li et al. (2015) investigated studies on TD and its

management (TDM), in addition to carrying out

classification and thematic analysis on it, comprehensively

understanding the concept of TD and presenting an

overview of the current state of research in TDM. In their

results, it was observed that code debt was the most cited

type among the primary articles that were analyzed. In Alves

et al. (2016), the authors also reported the focus on

approaches to identify TD items from source code. The

authors suggested that a possible explanation for this is that

there is a plethora of tools that perform the analysis of

source code that can be used to support the detection of TD.

In another study, Rios et al. (2018) presented fifteen types

of TD. The authors also indicated that there is a

concentration of studies focusing on source code. The

authors gave some explanations for this phenomenon. The

term TD was first coined by Cunningham (1992), who

directly related it to source code, which may have influenced

subsequent studies. Furthermore, the types related to code

tend to cause effects that can be felt more quickly by

development teams.

More recently, Saraiva et al. (2021) performed a

systematic mapping study to investigate the current state of

the art of TD tools, identifying which activities,

functionalities and types of debt are handled by the existing

tools to support TD management. The study identified 50

tools, 42 of which are new tools, and 8 tools extend an

existing one. The main TD types addressed by tools deal

with source code (60% - 30/50), architectural issues (40% -

20/50) and design issues (28% - 14/50). The distribution of

tools over the categories was mainly: quantifying code

properties, architectural smell detection, pattern matching,

cost benefit analysis, project management, and code smell.

The authors also reinforce that this trend is in line with the

original definition of TD, which is heavily defined by

concepts coming from source code and related issues.

Lenarduzzi et al. (2021) also performed a systematic

mapping study to understand which TD prioritization

approaches have been proposed in research and industry.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

The results showed that code debt (38%), architecture debt

(24%) and design debt (10%) are by far the most frequently

investigated types of debt when considering TD

prioritization, although there is scant evidence on other

types like test and requirement debt. Thus, the approaches

mainly involve models that reduce TD by acting on source

code, removing or refactoring code smells or other metrics.

Such concentration of studies at the code level is a

worrying scenario because other types of debt can also have

impactful or even worse consequences on projects. We

claim that it is necessary to go beyond the source code and

investigate other facets of TD. We do it under the

perspective of TD causes, effects, prevention, and

repayment, and use data collected from InsighTD project,

presented in the next section.

3 Research Method

This section presents the InsighTD project in which this work

is contextualized, our research questions, and the data

collection and analysis procedures.

3.1 The InsighTD project

InsighTD is a family of globally distributed industrial

surveys, present in countries such as Brazil, Chile,

Colombia, Costa Rica, the United States, and Serbia. It aims

to investigate the causes, effects, and management of TD in

software projects. Several results of the project have been

disseminated so far, for example: the empirical design of the

InsighTD and the results of its Brazilian replication on

causes and effects of TD (Rios et al. 2020), probabilistic

diagrams of causes and effects of TD (Rios et al. 2019), the

set of causes and effects of TD collected from six InsighTD

replications (Ramač et al. 2022, Freire et al. 2021b), the

relation between TD and process models (Rios et al. 2021),

TD prevention (Freire et al. 2020a, Freire et al. 2021a), and

practices and impediments to repay TD items (Freire et al.

2020b, Perez et al. 2020, Freire et al. 2021a, Freire et al.

2021c). Other results from the project can be found at

http://www.td-survey.com/publication-map/.

Concerning the relation between TD and development

issues related to coding or other development issues, we

previously investigated it in our previous work (Berenguer

et al. 2021). In this paper, we further investigated it by

including:

• A more comprehensive analysis of the relation between

TD and non-coding activities, as shown in Section 4,

• Specializations of the hump diagram by process model

(agile, hybrid, and traditional), as presented in Section

5, and

• An analysis between TD, coding, and non-coding

activities by process model, as discussed in Subsection

5.2.

3.2 Research questions

In this work, we investigate whether TD management

elements (causes, effects, prevention, and repayment) are

more related to coding issues or to other software

development issues. To this end, we consider the following

research questions:

• RQ1: Are the causes of TD more related to coding

issues or other software development issues?

• RQ2: Are the effects of TD more felt in coding issues

or other issues in the software development process?

• RQ3: Is TD prevention more related to coding issues

or other issues in the software development process?

• RQ4: Are the reasons for not preventing TD more

related to coding issues or other development issues?

• RQ5: Is TD repayment more associated with coding

issues or other issues in the software development

process?

• RQ6: Are the reasons for not paying TD more related

to coding issues or other development issues?

3.3 Data collection

This study uses a subset of available data from 18 questions

from the InsighTD questionnaire. Table 1 shows these

questions, reports their type and the RQ they refer to.

Questions Q1 through Q8 document the characteristics of

the survey respondents. More specifically, in Q8, the

respondents inform the process model adopted in their

projects, choosing one of the following options: Agile (a

lightweight process that promotes iterative development,

close collaboration between the development team and

business side, constant communication, and tightly-knit

teams); Hybrid (is the combination of agile methods with

other non-agile techniques. For example, a detailed

requirements effort, followed by sprints of incremental

delivery); and Traditional (conventional document-driven

software development methods that can be characterized as

extensive planning, standardization of development stages,

formalized communication, significant documentation and

design up front). More information on the closed questions’

options is available in Rios et al. (2020).

In Q13, respondents provide an example of a TD item that

occurred in their projects. Participants discuss causes of TD

in Q16 thru Q18 and effects in Q20. We use the answers

given to these questions for answering RQ1 (Q16-Q18) and

RQ2 (Q20). Concerning TD prevention, participants give

their responses in Q22 and Q23, and address TD repayment

in Q26 and Q27. The answers given in these questions are

used for answering RQ3-4 (Q22 and Q23) and RQ5-6 (Q26

and Q27).

We invite only software practitioners from the Brazilian,

Chilean, Colombian, Costa Rican, North American, and

Serbian software industries through LinkedIn, industry-

affiliated member groups, and industry partners for

answering the survey.

http://www.td-survey.com/publication-map/

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

3.4 Data analysis procedures

The analysis procedures are divided into three steps:

demographics, preparing data for analysis, and data

classification and analysis.

3.4.1 Demographics

We calculate the quantity of respondents choosing an option

available through the closed questions of the survey.

Subsequently, we sum up the participants’ characterization.

3.4.2 Preparing data for analysis

For the open-ended questions, we applied coding process

(Strauss and Corbin 1998). In answers given to Q16 thru Q18

and Q20, we used the coding process described in Rios et al.

(2020) to identify a set of causes and effects, as well as the

number of occurrences for each. To exemplify, let us

consider the answers given by two respondents in Q16:

“poorly developed code” and “low quality code”. As these

answers are associated with problems in source code, they

were unified under the cause sloppy code.

We used the coding process described in Freire et al.

(2020a) to code the responses to Q23. We identified

practices for TD prevention from this process when Q22

received a positive response; otherwise, we identified

reasons for TD non prevention. An example of this process

is as follows: two respondents provided the following

answers in Q23 when Q22 has a negative answer:

“requirements are always going to change during

development...” and “because when the client asks for

features abruptly, no matter how generalized the architecture

is towards the problem, with an outlier there may be, that can

mean a refactor of the code, and that could dirty the code,

reducing its maintainability”. As these answers are

associated with requirements change requests, they were

unified under the reason for TD non-prevention

requirements change.

Finally, we coded the responses to Q27 using the coding

procedure described in Freire et al. (2020b). Similarly, if

Q26 received a positive response, we identified TD

repayment practices; otherwise, we identified non-

repayment reasons. For both prevention and repayment, we

also had a list of practices and reasons, and their

corresponding number of occurrences. For example, two

respondents provided the following answers in Q27 when

Q26 has a positive answer: “we rewrote the offending code”

and “it was fixed, code was refactored and greatly

simplified”. These answers were unified under the

repayment practice code refactoring.

At least two researchers from each replication team

participated in the coding process. The Brazilian replication

team created the first codified list of causes, effects,

prevention practices, reasons for not preventing, repayment

practices, and reasons for not repaying, which was

distributed to the other replication teams in order to

standardize the used nomenclature. The consistency was

verified by the Brazilian replication team.

3.4.3 Data classification and analysis

We began by analyzing the codes of each TD management

element to determine whether they are related to coding

issues or other software development issues. Repayment

Table 1. Subset of the InsighTD survey’s questions (adapted from Rios et al. (2020)).

RQ No. Question (Q) Description Type

- Q1 What is the size of your company? Closed

- Q2 In which country are you currently working? Closed

- Q3 What is the size of the system being developed in that project? (LOC) Closed

- Q4 What is the total number of people of this project? Closed

- Q5 What is the age of this system up to now or to when your involvement ended? Closed

- Q6 To which project role are you assigned in this project? Closed

- Q7 How do you rate your experience in this role? Closed

- Q8 Which of the following most closely describes the development process model you follow

on this project?

Closed

- Q10 In your words, how would you define TD? Open

- Q13 Please give an example of TD that had a significant impact on the project that you have

chosen to tell us about:

Open

RQ1 Q16 What was the immediate, or precipitating, cause of the example of TD you just described? Open

RQ1 Q17 What other cause or factor contributed to the immediate cause you described above? Open

RQ1 Q18 What other causes contributed either directly or indirectly to the occurrence of the TD

example?

Open

RQ2 Q20 Considering the TD item you described in question 13, what were the impacts felt in the

project?

Open

RQ3-4 Q22 Do you think it would be possible to prevent the type of debt you described in question 13? Closed

RQ3-4 Q23 If yes, how? If not, why? Open

RQ5-6 Q26 Has the debt item been repaid (eliminated) from the project? Closed

RQ5-6 Q27 If yes, how? If not, why? Open

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

practices such as bug fixing, code refactoring, and code

reuse, for example, were classified as practices related to

coding issues. However, the repayment practices prioritizing

TD items and updating system documentation were linked to

other software development issues. This procedure was

carried out independently by the first and second authors.

The third (prevention and repayment) and fourth (causes and

effects) authors reached an agreement. The final

classification was also reviewed by the last author.

Next, we classified the TD management elements related

to the other software development issues using the grouping

process defined by Strauss and Corbin (1998). The

categories show the relationship between software

development process issues (for example, requirement

engineering issues, planning and management issues, and

human factors issues) and each TD management element.

The names of the categories are derived from the ongoing

process of grouping the TD management elements around

the central concern to which they are related. The causes

deadline and inappropriate planning, for example, are part

of the category planning and management issues, whereas

the effects team demotivation and dissatisfaction of the

parties involved are part of the category human factors. This

procedure was carried out independently by the first and

second authors. The third (prevention and repayment) and

fourth (causes and effects) authors reached a consensus, and

the final result was reviewed by the last author.

4 Results

Participants were asked to provide a definition of TD (Q10)

and then an example of a significant TD item in their

professional experience (Q13). As detailed in (Rios et al.

2020), the answers to the questions provided in Q13 were

used as a criterion for the inclusion of participants. If they

did not provide a valid example, their responses were

discarded. In total, we considered the responses of 653

professionals from six countries (Brazil = 107, Chile = 89,

Colombia = 134, Costa Rica = 145, Serbia = 79, US = 99).

Next, we will present the characterization data of the

participants, as well as the answers to the research questions

posed in this study.

4.1 Demographics

Figure 1 presents the demographic information. Half of the

participants identified themselves as developers, but

managers (17%), testers (7%), software architects (13%), and

other roles (13%) also answered the questionnaire. Besides,

the participants described their experience level in their role.

The majority of them is competent (good working and

background knowledge of area of practice, with 34% of the

total of participants), followed by proficient (depth of

expertise of discipline and area of practice, 31%), expert

(authoritative understanding of discipline and deep tacit

information throughout area of practice, 21%), beginner

(working information of key factors of practice, 12%), and

novice (Minimal or “textbook” knowledge without

connecting it to practice, 2%).

The majority of the participants worked in middle-sized

companies (39%), followed by small (32%) and large (29%)

ones. Further, participants normally worked in teams

composed of 5-9 people (34%), but participants working in

teams with 10-20 people (22%), less than five people (20%),

more than 30 people (16%), and 21-30 people (8%) also

answered the questionnaire. Concerning the process models

adopted, the participants followed hybrid (45%), agile

(42%), and traditional (13%) process models.

Regarding the systems, the respondents normally worked

with systems with 10-100KLOC (35%), followed by ones

with 100KLOC-1MLOC (30%), less than 10KLOC (14%),

1-10MLOC (14%), and more than 10MLOC (7%). Lastly,

the majority of the systems is 2-5 years old, followed by 1-

2 (23%) years old, less than one year old (17%), 5-10 years

old (15%), and more than 10 years old (11%).

In summary, our data set is composed of answers from

practitioners from different organization and team sizes,

Figure 1. Participants’ demographics.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

system ages and sizes, roles, experience levels, and adopted

process models.

In the following subsections, we present the detailed

results of each investigated TD management element. We use

the same structure when describing the results. For example,

for the element TD cause, initially we (i) present the overall

result. Next, we (ii) discuss the causes related to coding

issues. Then, we (iii) present the causes related to the other

software development issues, and (iv) analyze which are the

types of those issues (e.g., planning and management, human

factors, knowledge issues).

4.2 RQ1: Are the causes of TD more related to

coding issues or other software development

issues?

In total, 96 causes1 that lead to the occurrence of TD were

identified, totaling 1695 citations. Of this total, ~92% were

related to other development issues, while only ~8% were

related to code. This indicates a significant difference

between the two subsets, representing a tendency of other

software development issues to have an influence on the

occurrence of TD items.

There are 13 causes related to coding. The ten most

commonly cited are presented in the second column of

Table 2. The complete list is available at

https://bit.ly/37BopIF. The causes non-adoption of good

practices, sloppy code, and lack of refactoring stand out. All

of them indicate issues that compromise the internal quality

of the product.

Alternatively, we identified 83 causes related to other

software development issues. The three most commonly

(third column of Table 2) cited reflect concerns focused on

project management and planning: deadline, not effective

project management, and inappropriate planning. Other

issues related to the team's lack of technical knowledge and

experience, pressure, and processes were also commonly

mentioned.

We observed that those causes were related to each other

and grouped them, identifying 14 categories of causes that

reflect the main concerns that practitioners have during the

development of software projects:

• Planning and management: refers to causes related to

the project's planning and management issues. Some

examples are deadline, inappropriate planning, and

not effective project management;

1 Some causes seem to overlap among them. For example, non-adoption

of good practices could cover the causes lack of refactoring or lack of reuse

practices. However, the cause non-adoption of good practices refers to the

non-use of good practices that would facilitate the accomplishment and

maintenance of activities in the project, as can be observed in the following

responses from participants: “employment of bad design practices” and

“lack of use of good software development practices”. On the other hand,

lack of refactoring refers to situations in which the team does not perform

the improvement of the internal structure of the code without changing its

external behavior, as exemplified in “lack of code refactoring” and “there

was no code refactoring at the beginning of the problem”. On its turn, lack

Table 2. The 10 most cited causes related to coding and other

software development issues.
 Coding Other development

issues

Cause # Cause #

1st Non-adoption

of good

practices

54 Deadline 169

2nd Sloppy code 21 Not effective

project

management

98

3rd Lack of

refactoring

17 Inappropriate

planning

83

4th External

component

dependency

12 Lack of

technical

knowledge

80

5th Adoption of

contour

solutions as

definitive

11 Producing

more at the

expense of

quality

67

6th Lack of reuse

practices

5 Inappropriate /

poorly planned

/ poorly

executed test

59

7th Lack of

automated

testing

5 Lack of

experience

58

8th Discontinued

component

4 Inaccurate

time estimate

56

9th Concern with

just back-end

development

4 Lack of

qualified

professional

54

10th Inadequate

data model

3 Pressure 53

• Human factors: groups causes related to people's

participation in project issues. Some examples are lack

of experience and lack of commitment;

• Knowledge issues: groups items originating from

concerns around the knowledge of team members. Two

examples are lack of technical knowledge and lack of

domain knowledge;

• Requirements engineering: encompasses the causes

related to requirements issues. Examples are: change of

requirements and requirements elicitation issues;

• Verification, validation, and testing: encompasses the

causes related to the execution of quality assurance

activities. Two examples are inappropriate/poorly

planned/poorly executed test and lack of code review;

of reuse practices occurs when existing software component or software

component knowledge is not used for the construction of a new software,

for example, “need to create the culture of reusability”. Another example

of overlapping encompasses the causes not effective project management

and inappropriate planning. However, the cause not effective project

management refers to inadequate management during project development,

as reported in: “not following planning” and “lack of understanding of

managers”. Differently, the cause inappropriate planning refers to issues

in project planning, for example, “lack of prioritization of activities” and

“deficiency in project planning (disorganization)”.

https://bit.ly/37BopIF

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

• Architectural issues: groups causes related to decisions

made regarding software architecture. Examples are:

inadequate technical decisions and problems in

architecture;

• Process issues: refers to causes related to the definition

or execution of the processes used in the development

of the software. Two examples are lack of a well-

defined process and lack of traceability of bugs;

• Design issues: encompasses causes related to the

design of the software. There are two causes in this

category: poor design and changes in design;

• Documentation: groups causes related to

documentation. Example of causes in this category are

nonexistent documentation and outdated/incomplete

documentation;

• External factors: refers to causes associated with

external factors, such as customer does not listen the

project team and structural change in the involved

organizations;

• Infrastructure issues: encompasses causes related to

problems in the software development infrastructure,

such as required infrastructure unavailable and

updating existing tools;

• Organizational issues: groups causes from the

organizational context, such as lack of awareness of the

importance of testing and refactoring and

organizational misalignment;

• Quality issues: refers to causes (lack of quality)

associated with lack of quality in software artifacts;

• TD Management: encompasses causes related to

management of TD items. This category has only the

cause lack of perception of the importance of dealing

with TD.

Table 3 shows the categories together with the

corresponding number of causes, number of citations, and

percentage of the causes cited in relation to the other

categories. The category planning and management stood

out with ~47% of citations, representing more than three

times the citations of the second ranked category. This is an

indication that the causes of the occurrence of TD are

strongly related to project management issues. The results

also highlight the importance that human factors have,

occupying the second position with ~13% of citations. This

result is somehow aligned with previous work on social debt

(Tamburri et al. 2015, Martini et al. 2019). Concerns related

to requirements engineering and issues related to knowledge

were also commonly mentioned.

4.3 RQ2: Are the effects of TD more felt in

coding issues or other issues in the software

development process?

The participants reported a total of 73 TD effects, totaling

980 citations. Among them, ~64% are related to other

development issues and ~36% are related to coding.

Table 3. Categories of causes related to other software development

issues.

Categories of

causes

#causes #cited

causes

~%cited

causes

Planning and

Management

22 733 47%

Human Factors 10 206 13%

Knowledge Issues 7 128 9%

Requirement

Engineering

7 120 8%

VV&T 6 91 6%

Architectural Issues 6 63 5%

Process Issues 6 54 4%

Design Issues 2 45 3%

Documentation 4 37 2%

External Factors 4 25 2%

Organizational

Issues

3 25 2%

Infrastructure Issues 4 15 1%

Quality Issues 1 12 1%

TD Management 1 1 0.1%

There are 18 coding-related effects experienced by the

participants. The 10 most commonly cited are presented in

Table 4 (second column). The full list is available at

https://bit.ly/37BopIF. Concerns about the capacity of the

team to evolve the code, rework, and the need of employing

refactoring practices to improve the internal quality of the

software are common. Other common effects are: bad code,

low performance, and stop development for debt repayment.

Table 4. The 10 most cited effects related to coding and other

development issues.

 Coding Other development

issues

Effects # Effects #

1st Low

maintainability

97 Delivery delay 141

2nd Rework 86 Low external

quality

78

3rd Need of

refactoring

35 Financial loss 55

4th Bad code 31 Increased

effort

41

5th Low

performance

28 Stakeholder

dissatisfaction

34

6th Stop dev.

activities for

debt

repayment

14 Team

demotivation

24

7th Increase in the

amount of

maint.

activities

13 Stress with

stakeholders

23

8th Difficulty in

impl. the

system

10 Team overload 16

9th Low code

reuse

8 Fall in

productivity

13

10th Low reliability 7 Project not

completed

13

https://bit.ly/37BopIF

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

We identified 55 effects related to other development

issues. The four most commonly (third column of Table 5)

cited reflect concerns on the project management and

planning (delivery delay, increased effort, financial loss)

and external quality of the product (low external quality).

Issues related to human factors were also commonly cited,

with emphasis on stakeholder dissatisfaction, team

demotivation, and stress with stakeholders.

Table 5 shows the categories of effects related to other

software development issues. The category planning and

management has ~47% of citations, revealing that

managerial aspects of software development are commonly

affected by the presence of debt items. Next is the human

factor category, with ~18% of the effects cited, showing that

TD also impacts human aspects of software development.

Quality issues are also a common concern. The other

categories are less commonly cited.

Table 5. Categories of effects related to other software development

issues.

Categories of

effects

#effects #cited

effects

~%cited

effects

Planning and

Management

15 297 47%

Human Factors 7 110 18%

Quality issues 6 110 18%

VV&T 3 23 4%

Design Issues 2 21 3%

Knowledge issues 8 21 3%

Architectural Issues 4 18 3%

Organizational

issues

3 10 2%

Documentation 1 6 1%

Process Issues 2 4 1%

Requirement

Engineering

2 4 1%

Infrastructure Issues 1 3 0.5%

TD Management 1 2 0.3%

4.4 RQ3: Is TD prevention more related to

coding issues or other issues in the software

development process?

The data shows a total of 89 practices to support the

prevention of TD items, resulting in 819 citations. From this,

~84% are items related to other development issues, while

only ~16% are associated with code. This result indicates a

tendency for other development issues to play a key role in

the prevention of TD.

We identified a total of 13 TD prevention practices related

to coding. Table 6, second column, presents the 10 most

cited items. The complete list is available at

https://bit.ly/37BopIF. Adoption of good practices, using

good design practices, refactoring, code review, increasing

time for analysis and design, use the most appropriate

version of the technology, and appropriate reusing of code

are the prevention practices most cited by the participants.

The adoption of good practices and using good design

practices reflect concerns that practitioners should have

when carrying out their coding and design activities. The

practices refactoring and code review are related to the

continuous improvement of the code under development.

Lastly, increasing time for analysis and design, use of the

most appropriate version of the technology, and appropriate

reusing of code are related to concerns that teams must have

around an adequate analysis of the functionalities,

implementation of the software structure, and software

reuse, respectively.

Table 6. Top 10 most commonly cited TD prevention practices

related to coding or other development issues.

 Coding Other development

issues

Prevention

Practices

Prevention

Practices

1st Adoption of

good practices

49 Well-defined

requirements

57

2nd Using good

design

practices

26 Better Project

Management

43

3rd Refactoring 12 Providing

training

36

4th Code review 10 Follow the

proj. planning

34

5th Increasing

time for

analysis and

design

7 Improving

software

development

process

33

6th Use the

appropriate

version of the

tech.

7 Improve

documentation

26

7th Appropriate

reusing of

code

6 Well planned

deadlines

26

8th Version

control

5 Better project

planning

24

9th Considering

technical

constraints

4 Creating tests 24

10th Improving the

project

maintainability

4 Allocation of

qualified

professionals

23

On the other hand, we found 76 prevention practices

related to other development issues. Table 6 (third column)

shows the ten most cited. Interestingly, five of them reflect

different concerns through the software development

process, such as management (following the project

planning and better project management), the process itself

(improving software development process), the

documentation (well-defined requirements), and the

qualification of the team (providing training). We see in

Table 7 that TD prevention practices are commonly related

to project management issues (~34%). The results also

highlight the importance that the process followed by the

team has, ranking second (~12%) among the most cited

categories. Concerns related to requirements, VV&T, TD

management, and human factors were also commonly

mentioned.

https://bit.ly/37BopIF

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Table 7. Categories of prevention practices related to other software

development issues.

Categories of

prevention

practices

#practices #cited

practices

~%cited

practices

Planning and

Management

21 232 34%

Process Issues 8 80 12%

Requirement

Engineering

5 69 11%

VV&T 11 67 10%

TD

Management

7 64 10%

Human Factors 11 61 9%

Knowledge

Issues

4 51 8%

Documentation

Issues

2 28 4%

Architectural

Issues

3 27 4%

Organizational

Issues

2 4 1%

Infrastructure

Issues

2 3 1%

4.5 RQ4: Are the reasons for not preventing TD

more related to coding issues or other

development issues?

Participants reported 25 reasons that lead to the non-

prevention of TD items, resulting in 63 citations. Of them,

~87% are related to other development issues, while only

eight ~13% are related to coding. Again, other development

issues have an important role in preventing TD.

There are only four reasons related to code leading teams

not to prevent the occurrence of debt items: lack of technical

knowledge, lack of good technical solutions, lack of concern

about maintainability, and continuous change of coding

standards. On the other hand, we found 21 reasons (the 10

most cited are presented in Table 8) related to other

software development issues. Short deadline was the most

cited.

Table 8. Top 10 most cited reasons for not preventing TD related to

other development issues.

Other Development Issues

 Reason # Reason #

1st Short

deadline

14 6th Documentation

issues

2

2nd Ineffective

management

7 7th Lack of process

maturity

2

3rd Lack of

predictability

in the soft.

development

5 8th Lack of

qualified

professionals

2

4th Requirements

change

5 9th Legacy system

difficult to heal

2

5th Pressure for

results

4 10th Accepting the

TD

1

Table 9 shows the categories identified. Planning and

management once again stands out with ~38% of citations.

The other categories were less commonly cited, with less

than seven citations. Although not too mentioned, the result

suggests that other issues related to the software

development can also negatively influence teams in TD

prevention.

Table 9. Categories of reasons for TD non-prevention related to

other software development issues.
Categories of

reasons

#reason #cited

reasons

~%cited

reasons

Planning and

Management

2 21 38%

Requirement

Engineering

2 6 11%

Coding 1 5 9%

External Factors 2 5 9%

Human Factors 4 4 8%

Process Issues 2 3 6%

Design Issues 1 2 4%

Documentation

Issues

1 2 4%

Knowledge

Issues

1 2 4%

TD Management 2 2 4%

Architectural

Issues

1 1 2%

Infrastructure

Issues

1 1 2%

Organizational

Issues

1 1 2%

4.6 RQ5: Is TD repayment more associated

with coding issues or other issues in the

software development process?

We identified 32 TD repayment practices, resulting in 315

citations. Of them, ~56% are related to other development

issues, while ~44% are associated with code. Unlike the

other TD management elements, these percentages differ

slightly, indicating that coding issues play a key role in TD

repayment initiatives.

We recognized eight TD repayment practices related to

coding, presented in Table 10. Code refactoring and design

refactoring are the most cited practices. Both are associated

with changes in the internal structure of the system without

changing its external behavior. The practices solving

technical issues and bug fixing focus on fixing open issues

in the code. Lastly, the practices using code analysis, code

reviewing, and using code reuse can support teams

implementing TD repayment initiatives, i.e., although these

practices did not repay the debt, they increase the capacity

for better repayment.

The remaining 24 repayment practices are related to other

development issues. Table 10 (third column) shows the ten

most cited ones. These practices evidence several concerns

in software development processes: documentation (update

system documentation), organizational decisions (hiring

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

specialized professionals), project management (increasing

the project budget, monitoring and controlling project

activities, negotiating deadline extension, investing effort on

TD repayment, and prioritizing TD items), process

(improving the development process and using short

feedback iterations), and software quality (investing effort

in testing activities).

Table 10. Top 10 most commonly cited TD repayment practices

related to coding or other development issues.
 Coding Other Development

Issues

Repayment

practices

Repayment

practices

1st Code

refactoring

80 Investing effort

on TD repayment

activities

33

2nd Design

refactoring

25 Investing effort

on testing

activities

22

3rd Adoption of

good practices

10 Prioritizing TD

items

15

4th Solving

technical

issues

9 Negotiating

deadline

extension

14

5th Bug fixing 6 Update system

documentation

9

6th Using code

analysis

3 Monitoring and

controlling

project activities

9

7th Code

reviewing

3 Increase the

project budget

9

8th Using code

reuse

2 Improving the

development

process

8

9th - Hiring

specialized

professionals

8

10th - Using short

feedback

iterations

7

Table 11 presents the categories of repayment practices.

TD management and planning and management stand out

with ~32% and ~27% of the total of citations. The categories

verification, validation and test, and process issues were

both cited by ~12% of participants, while the others were

less commonly reported.

4.7 RQ6: Are the reasons for not paying TD

more related to coding issues or other

development issues?

We identified 27 reasons for not repaying TD items, totaling

319 citations. From these, 99.7% are related to other

development issues and only lack of access to the

component code (0.3%) is associated with code. The reasons

for TD non-repayment arise from development issues other

than coding.

Table 11. Categories of repayment practices related to other

software development issues.

Categories of

repayment

practices

#practices #cited

practices

~%cited

practices

TD

Management

4 56 32%

Planning and

Management

8 47 27%

VV&T 1 22 13%

Process Issues 5 21 12%

Documentation 1 9 6%

Organizational

issues

1 8 5%

Human Factors 1 6 4%

Requirement

Engineering

1 3 2%

Infrastructure

Issues

1 3 2%

Design Issues 1 2 1%

Table 12 shows the ten best-positioned reasons for not

repaying TD. The complete list is available at

https://bit.ly/37BopIF. We notice that the majority of the

reasons (focusing on short-term goals, lack of time, cost,

lack of resources, effort, the project was discontinued,

complexity of the TD item, and insufficient management

view about TD repayment) are associated with project

planning and management. The others refer to external

(customer decision) and human (team overload) factors.

Table 12. Top 10 most cited reasons for not paying off TD related to

other development issues.

Other Development Issues

 Reason # Reason #

1st Focusing

on short

term goals

69 6th Customer

decision

13

2nd Lack of

org.

interest

48 7th Complexity

of the TD

item

12

3rd Lack of

time

41 8th Effort 11

4th Cost 34 9th Insufficient

mgmt. view on

TD repayment

10

5th Lack of

resources

19 10th Complexity

of the project

10

The reasons were also grouped into categories. Planning

and management issues stand out with ~58% of citations, as

shown in Table 13, pointing out that the reasons for this

category are categorical for TD non-repayment. The

categories organizational issues and TD management were

also commonly cited by ~16% and ~11% of the participants.

https://bit.ly/37BopIF

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Table 13. Categories of reasons for TD non-repayment related to
other software development issues.

Categories of

reasons

#reason #cited

reasons

~%cited

reasons

Planning and

Management

7 185 58%

Organizational

issues

2 50 16%

TD Management 7 34 11%

External Factor 1 13 5%

Knowledge issues 3 12 4%

Human Factors 3 11 4%

Architectural

Issues

2 11 4%

VV&T 1 2 1%

5 Organizing the TD Management

Elements into Hump Diagrams

We represent the relationship between the investigated TD

management elements (causes, effects, prevention practices,

reasons for TD non-prevention, repayment practices, and

reasons for TD non-repayment) and software development

issues in hump diagrams (Figure 2).

To plot results for coding and for other issues in the same

hump diagram, we normalized the number of citations for

an element of a specific software development issue with the

total number of citations for that element. For example,

prevention practices have in total 819 citations, but 232

citations for the issue planning and management. Thus, the

hump value for planning and management issues of

prevention practices is 28% (232/819*100). This count is

slightly different from the ones we used in Tables 3, 5, 7, 9,

11, and 13 because now we consider coding as another

software development issue.

5.1 Using the diagram

We can read the hump diagram horizontally and vertically.

Horizontally, we have a broad view on the impact of each

software development issue through the TD management

elements. For example, in Figure 2, we can notice that

coding plays an important role for all the analyzed TD

elements, but mainly for TD repayment. There is a high

concentration of practices related to TD repayment and, at

the same time, almost none of reasons for the non-repayment

of debt items is due to coding issues.

We also perceive that there are many other issues we need

to be aware of when dealing with TD in software projects,

mainly, planning and management. Indeed, this is even

stronger when combined with TD management concerns.

Much about the non-repayment of TD can be understood by

looking at these issues.

Human factors also call our attention, clearly indicating

that TD, more than technical aspects of the software

development, is also about team morale, satisfaction,

motivation, communication, and commitment. Other

commonly found issues in several elements of the TD

management are architectural issues, design issues,

documentation, knowledge issues, process issues,

requirement engineering, and VV&T.

Figure 2. The hump diagram for TD management elements and software development issues.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

By reading the diagram vertically, we can observe the

impact of all identified software development issues on each

TD management element. In Figure 2, for example, we can

observe that planning and management, organizational, and

TD management issues are decisive for the non-repayment of

debt items. We also notice that the presence of debt items

mainly impacts (effect) planning and management, quality

issues, maintenance issues, human factors, and coding.

Practitioners can use the hump diagram to have a

comprehensive view on how TD relates to several issues of

their software projects, ranging from organizational to coding

level issues. Moreover, for each TD management element,

they can go through the detailed results presented in Section

4 and the auxiliary material to understand how to deal with

them. For example, by looking at Figure 2, a practitioner can

see that the effects of TD are commonly related to coding,

human factors, maintenance, quality, and planning and

management issues. If (s)he is interested in discovering more

about the human factors issues, then (s)he can observe in the

results and auxiliary material that team demotivation,

dissatisfaction of the parties involved, and stress with

stakeholders are the main concerns to be mitigated.

5.2 Specializing the diagram by process models

Practitioners can specialize the hump diagram for their

context. To illustrate it, we organize the TD management

elements considering the process model used by the

participants who answered the InsighTD questionnaire

choosing one of the following options: agile, hybrid, and

traditional.

Figures 3, 4, and 5 present the hump diagram for agile,

hybrid, and traditional process models, respectively.

Comparing them, we can notice that the diagrams for agile

and hybrid process models are just slightly different from

each other. It indicates that the view on the TD management

elements goes in the same direction to these process models.

Conversely, traditional process model presents some

particularities against the other models. For example,

prevention practices are more affected by architectural,

infrastructure, organizational, and requirement engineering

issues in traditional process model than the others. Reasons

for TD non-prevention are less affected by coding, design,

documentation, human factors, knowledge, maintenance,

requirement engineering, and TD management in traditional

process model, while external factors and planning and

management affect mainly this model.

To further understand the possible impact of different

process models in the TD management elements, we

organized ranked lists of each TD management element

considering its number of citations by process models (agile,

hybrid, and traditional). To verify if there are differences

between the lists, we adopted the RBO (rank-biased

overlap) analysis (Webber et al. 2010), which quantitatively

measures how similar the ranked lists are.

Figure 3. The hump diagram for agile model process.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Figure 4. The hump diagram for hybrid model process.

Figure 5. The hump diagram for traditional model process.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

RBO gives a value ranging from 0 to 1. The closer this

value is to 1, the greater the similarity between the lists. As

RBO supports top-weighted ranked lists, the first elements of

a list have more impact on the similarity index than the last

ones. We can configure what elements will be compared by

setting the p-value, which, differently than the p statistic,

refers to a level of overlapping and the degree of top-

weightedness. In the analysis, we chose p-value ranging from

0.5 (only the very initial elements of a rank are considered)

to 0.9 (almost all elements are considered). The results of the

comparison for each of the TD management elements are

presented in the following subsections.

5.2.1 Comparing TD causes between agile, hybrid, and

traditional process models

Figure 6 shows the results of the comparison between the

ranked lists of causes for each process model considering (A)

causes related to coding issues and (B) causes related to

other software development issues. The RBO analysis for

causes related to coding (Figure 6 (A)) reveals that the

similarity level is about 80-90% between the three lists. It

indicates that the lists are quite similar with little variation

when more causes are included, i.e., the p-value increases.

This similarity can be perceived when we observe the top-

5 ranked causes for each process model (Table 14). The

cause non-adoption of good practices was the most cited

cause for all process models, while lack of refactoring,

sloppy code, adoption of contour solutions as definitive

were perceived, but in different positions. For example, lack

of refactoring (agile: 2nd, hybrid: 4th, and traditional: 3rd) and

sloppy code (agile: 3rd, hybrid and traditional: 2nd). Further,

we can see that the cause external component dependency is

not perceived in traditional process model while lack of

reuse practices is only perceived in this process model.

For causes related to other software development issues

(Figure 6 (B)), we can see that the RBO value is almost

constant with similarity level about 80-90% for agile and

hybrid process models. Differently, the similarity level is

about 65-80% when comparing traditional with

agile/hybrid. In Table 15, we can see that the cause deadline

was the most cited cause for each process model. Regarding

agile and hybrid process models, they did not share the

causes focus on producing more at the expense of quality

and lack of experience. However, the causes inaccurate time

estimate, inappropriate planning, and lack of qualified

professional were perceived only in the context of

traditional process model.

Table 14. Top 5 most cited causes related to coding issues per

process model.

 Agile Hybrid Traditional

1 Non-adoption

of good

practices (25)

Non-adoption

of good

practices (23)

Non-adoption

of good

practices (6)

2 Lack of

refactoring (10)

Sloppy code (8) Sloppy code

(5)

3 Sloppy code (8) External

component

dependency (7)

Lack of

refactoring (2)

4 Adoption of

contour solutions

as definitive (6)

Lack of

refactoring (5)

Lack of reuse

practices (2)

5 External

component

dependency (4)

Adoption of

contour

solutions as

definitive (4)

Adoption of

contour

solutions as

definitive (1)

Table 15. Top 5 most cited causes related to other development

issues per process model.

 Agile Hybrid Traditional

1 Deadline (66) Deadline (85) Deadline (18)

2 Inappropriate

planning (35)

Not effective

project

management

(53)

Inaccurate

time estimate

(14)

3 Not effective

project

management (35)

Inappropriate

planning (38)

Inappropriate /

poorly planned /

poorly executed

test (13)

4 Lack of

technical

knowledge (34)

Lack of

technical

knowledge (38)

Inappropriate

planning (10)

5 Focus on

producing

more at the

expense of

quality (30)

Lack of

experience

(32)

Lack of

qualified

professional

(10)

Figure 6. RBO comparing causes related to (A) coding and (B) other software development issues.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

In summary, coding-related causes are perceived in the

same way in agile, hybrid, and traditional process models,

while non-coding related causes are differently perceived by

those who follow traditional process models.

5.2.2 Comparing TD effects between agile, hybrid, and

traditional process models

Figure 7 shows the results of the comparison between the

ranked lists of effects by process model considering (A)

coding related effects and (B) effects related to other

software development issues. The RBO analysis for effects

related to coding (Figure 7 (A)) reveals that the lists are

quite similar, as the similarity level is about 90% between

the three lists.

Analyzing the top 5 ranked effects of each process model

(Table 16), we can see this similarity. For example, the

effects low maintainability and rework were the most cited

effects for all process models, occupying the same position

in the lists. Further, the effect difficulty in implementing the

system is only perceived by the traditional process model

while it did not perceive the effect need for refactoring.

Table 16. Top 5 most cited effects related to coding issues per

process model.

 Agile Hybrid Traditional

1 Low

maintainability

(40)

Low

maintainability

(43)

Low

maintainability

(14)

2 Rework (39) Rework (35) Rework (12)

3 Need for

refactoring

(19)

Bad code (17) Bad code (5)

4 Low

performance

(14)

Need for

refactoring

(14)

Low

performance

(4)

5 Bad code (9) Low

performance

(10)

Difficulty in

implementing

the system (3)

Regarding the effects related to other software

development issues (Figure 7 (B)), the similarity level is

almost 100% for the first effects in the agile and hybrid lists.

It means that these process models have the same view on

the most critical effects of TD, but this similarity level

decreases when more effects are considered.

Table 17 presents the top 5 ranked effects by process

models. We can see that the effect delivery delay was the

most perceived effect by the process models. Besides, the

effects from the list of agile and hybrid process models are

quite the same, except team demotivation and stakeholder

dissatisfaction. Although the effect design problems is only

perceived in the context of traditional process models, the

other effects (financial loss, low external quality, and team

demotivation) are also present in the other two lists.

In conclusion, agile, hybrid, and traditional process

models are related to almost the same coding-related effects.

This also applies for non-coding related effects.

Table 17. Top 5 most cited effects related to other development

issues per process model.

 Agile Hybrid Traditional

1 Delivery delay

(51)

Delivery delay

(69)

Delivery delay

(21)

2 Low external

quality (34)

Low external

quality (36)

Financial loss

(10)

3 Financial loss
(20)

Financial loss
(25)

Low external
quality (8)

4 Increased effort

(18)

Increased

effort (20)

Team

demotivation

(5)

5 Team

demotivation

(13)

Stakeholder

dissatisfaction

(19)

Design

problems (3)

5.2.3 Comparing TD preventive practices between agile,

hybrid, and traditional process models

Figure 8 shows the results of the comparison between the

ranked lists of preventive practices by process model

considering (A) preventive practices related to coding and

(B) those related to other software development issues. The

RBO analysis for preventive practices related to coding

(Figure 8 (A)) reveals that the lists are different. The

similarity level is about 60-80% between the three lists.

In Table 18, we can see that while the preventive practice

adoption of good practices was the most used practice in the

process models, the other practices were not shared by all

Figure 7. RBO comparing effects related to (A) coding and (B) other software development issues.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

process models. For example, using good design practices,

refactoring and considering technical constraints are only

present in the context of agile process model, while use the

most appropriate version of the technology and bug tracking

are only related to traditional process model.

Table 18. Top 5 preventive practices related to coding issues per

process model.

 Agile Hybrid Traditional

1 Adoption of

good practices

(18)

Adoption of

good practices

(25)

Adoption of

good

practices (6)

2 Using good

design

practices (13)

Appropriate

reusing of code

(3)

Increase time

for analysis

and design (2)

3 Refactoring (8) Code review (2) Use the most

appropriate

version of

the

technology

(2)

4 Code review (7) Improving the

maintainability

of the project

(4)

Appropriate

reusing of

code (1)

5 Considering

technical

constraints (4)

Increase time for

analysis and

design (3)

Bug tracking

(1)

Concerning the preventive practices related to other

software development issues, the similarity level is 70-80%

(Figure 8 (B)), indicating that the lists are also different. In

Table 19, we can see that the preventive practice well-

defined requirement was present in all process models, but

the others were not shared by all process models. For

instance, well-defined architecture, creating tests, and

improve documentation were only used by traditional

process models.

In summary, agile, hybrid, and traditional process models

did not share the same view on preventive practices

regardless they are related to coding or not.

Table 19. Top 5 most cited preventive practices related to other

development issues per process model.

 Agile Hybrid Traditional

1 Well-defined

requirement

(21)

Well-defined

requirement

(26)

Well-defined

requirement (10)

2 Following the

project

planning (17)

Better Project

Management

(22)

Well-defined

architecture (6)

3 Better Project

Management

(16)

Training (18) Better Project

Management (5)

4 Training (13) Improving

software

development

process (17)

Creating tests

(5)

5 Better project

planning (12)

Well planned

deadlines (14)

Improve

documentation

(5)

5.2.4 Comparing reasons for TD non-prevention between

agile, hybrid, and traditional process models

Figure 9 (A) shows the RBO result considering the lists of

coding-related reasons for TD non-prevention of agile and

hybrid process models. We did not consider traditional

process models because their practitioners did not mention

any reason for TD non-prevention. Analyzing the figure, we

can see that the similarity level is 10-30%, indicating that

agile and hybrid did not share the same vision on reasons for

TD non-prevention. This low similarity level is also

perceived when we compared the list of reasons for TD non-

prevention, as shown in Table 20.

Table 20. Top 5 most cited reasons for TD non-prevention related to

coding issues per process model.

 Agile Hybrid

1 Lack of technical

knowledge (2)

Lack of good technical

solutions (2)

2 Lack of concern about

maintainability (1)

Continuous change of

coding standards (1)

3 - Lack of concern about

maintainability (1)

4 - Lack of technical

knowledge (1)

Figure 8. RBO comparing preventive practices related to (A) coding and (B) other software development issues.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

About the reasons for TD non-prevention related to other

software development issues, Figure 9 (B) shows that the

similarity level is about 80-90% for the most cited reasons

in agile and hybrid process models. But this value decreases,

reaching about 55%, when considering the full list of

reasons.

Traditional process models did not share the same view

on reasons for TD non-prevention as the similarity level is

about 30-50%. This low similarity level can be perceived

when we analyze the five most cited reasons for TD non-

prevention (Table 21).

In conclusion, agile and hybrid process models did not

share the same vision on coding-related reasons for TD non-

prevention, but these models have the same view on the

most cited non-coding-related reasons. Traditional process

models did not share the same non-coding-related reasons

with agile and hybrid process models.

5.2.5 Comparing TD repayment practices between agile,

hybrid, and traditional process models

Figure 10 (A) and Table 22 show the RBO result

considering the lists of repayment practices related to coding

for each process model. We can see that agile, hybrid, and

traditional process models share the same view in repayment

practices. The similarity level varies between 80-90%.

Table 21. Top 5 most cited reasons for TD non-prevention related to

other development issues per process model.

 Agile Hybrid Traditional

1 Short deadline

(7)

Short deadline

(5)

Pressure for

results (2)

2 Ineffective

management (3)

Ineffective

management (3)

Short deadline

(2)

3 Lack of

predictability in

the software

development (3)

Lack of

predictability in

the software

development (2)

Ineffective

management

(1)

4 Requirements

change (3)

Legacy system

difficult to heal (2)

Lack of process

maturity (1)

5 Architectural

evolution (1)

Requirements

change (2)

-

Concerning the repayment practices related to other

software development issues, Figure 10 (B) shows the

comparison for the three process models. Agile and hybrid

process models have used almost the same practices

(similarity level is about 80-90%). On the contrary, the

similarity level when comparing traditional process model

with the other two is slightly low, almost 70-80%, for the

top 5 ranked elements of their lists as noticed in Table 23.

Figure 9. RBO comparing reasons for TD non-prevention related to (A) coding and (B) other software development issues.

Figure 10. RBO comparing repayment practices related to (A) coding and (B) other software development issues.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Table 22. Top 5 most cited repayment practices related to coding

issues per process model.

 Agile Hybrid Traditional

1 Code

Refactoring (38)

Code

Refactoring (37)

Code

Refactoring (5)

2 Design

Refactoring (14)

Design

Refactoring (7)

Design

Refactoring (4)

3 Adoption of Good

Practices (6)

Adoption of Good

Practices (4)

Bug Fixing (1)

4 Solving Tech.

Issues (6)

Bug Fixing (3) Solving Tech.

Issues (1)

5 Code

Reviewing (3)

Solving Tech.

Issues (2)

-

Table 23. Top 5 most cited repayment practices related to other

development issues per process model.

 Agile Hybrid Traditional

1 Investing Effort

on TD

Repayment

Activities (13)

Investing

Effort on TD

Repayment

Activities (16)

Investing Effort

on TD

Repayment

Activities (4)

2 Investing Effort

on Testing

Activities (12)

Investing

Effort on

Testing

Activities (7)

Increasing the

Project Budget

(4)

3 Prioritizing TD

Items (9)

Negotiating

Deadline

Extension (6)

Negotiating

Deadline

Extension (4)

4 Using short

Feedback

Iterations (5)

Prioritizing

TD Items (6)

Investing Effort

on Testing

Activities (3)

5 Implementing

Preventive

Actions for

Avoiding TD(4)

Changing

Project Scope

(4)

Update System

Documentation

(3)

Practitioners using agile, hybrid, and traditional process

models have shared almost the same experience on

repayment practices related to coding, but this scenario is

different for repayment practices related to other software

development issues when considering the context of

traditional process models.

5.2.6 Comparing reasons for TD non-repayment between

agile, hybrid, and traditional process models

Figure 11 presents the RBO result considering the lists of

non-coding-related reasons for TD non-repayment. We did

not perform the analysis for coding-related reasons for TD

non-repayment because only one reason (lack of access on

component code) was cited by the participants. Analyzing

the figure, we can see that the similarity level is around 80-

90%, indicating that practitioners have same view on non-

coding-related reasons for TD non-repayment.

In Table 24, we can observe that the reasons focusing on

short term goal and lack of organizational interest were the

most used reasons for explaining the TD non-repayment.

Besides, the other reasons are also very similar among the

process models.

In summary, practitioners using agile, hybrid, and

traditional process models share the same view on non-

coding-related reasons for TD non-repayment.

Figure 11. RBO comparing reasons for TD non-repayment related to

other software development issues.

Table 24. Top 5 most cited reasons for TD non-repayment related to

other development issues per process model.

 Agile Hybrid Traditional

1 Focusing on

Short Term

Goals (28)

Focusing on

Short Term

Goals (32)

Focusing on

Short Term

Goals (9)

2 Lack of

Organizational

Interest (20)

Lack of

Organizational

Interest (21)

Lack of

Organizational

Interest (7)

3 Lack of Time

(16)

Lack of Time

(20) Cost (5)

4 Cost (13) Cost (16) Lack of Time

(5)

5 Effort (7) Lack of

Resources

(13)

Lack of

Technical

knowledge (3)

6 Discussion

This section presents an overview of the findings and

discusses their implications for practitioners and researchers.

6.1 Summary of findings

The results indicate that coding issues related to the

causes, effects, prevention, non-prevention, repayment, and

non-repayment of TD are only a small part of the concerns

that practitioners face in the presence of TD. Indeed, TD has

been more commonly found in other software development

issues.

The radar graph presented in Figure 12 shows the

percentages of the distribution of the participants’ responses

to each of the investigated elements concerning the

categories coding issues and other software development

issues. For every investigated element, most of the

responses are related to other software development issues.

The difference is quite bigger for the elements: causes,

prevention, reasons for not preventing, and reasons for not

repaying. The values for TD repayment are very close

between the two groups (56% vs 44%). This is an indication

that, although practitioners perceive that TD is ubiquitous in

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

software development projects, they also see that its

repayment is commonly related to coding issues.

Figure 12. Distribution of the participants’ answers on the TD

management elements.

We organized the TD management elements into

categories. The category planning and management

concentrated the biggest number of citations of causes,

effects, preventive practices, reasons for TD non-

prevention, and reasons for TD non-repayment.

Alternatively, the category TD management has the biggest

quantity of preventive practices citations.

All identified categories of each TD management element

were represented in a hump diagram. By analyzing the

diagram, practitioners can perceive the influence of each TD

management element in a specific issue associated with the

software development process. These issues correspond to

the categories defined in this study. Besides, practitioners

can specialize the diagrams following their project context.

For illustrating it, we specialized the hump diagram for

agile, hybrid, and traditional process models, and compared

them with each other.

From the comparison, we noticed that agile and hybrid

process models share the same point of view on the TD

management elements analyzed in this work. On the other

hand, practitioners who adopted traditional process models

tend to have a different view on these elements. Strategies

defined to support TD management initiatives must consider

the specificities of each process model.

6.2 Implications for researchers and

practitioners

The hump diagram can guide practitioners, showing how

each software development issue is related to each TD

management element. Having this information, practitioners

can define strategies to mitigate causes, effects, reasons for

TD non-prevention, or reasons for TD non-repayment. Also,

the combined use of the hump diagram and the detailed

results, presented in Section 4 and available at

https://bit.ly/37BopIF, provides a comprehensive guidance

for software development teams about what to expect from

the presence of TD and how to react to them considering

several software development issues. For example,

practitioners can diagnose the causes of TD by consulting

the hump diagram. As the causes from the category planning

and management are more common in agile software

projects, if an agile team has defined preventive practices

for these causes and it still identifies new causes, by

analyzing the diagram, the team can focus on other causes

from more common categories in the agile process, such as

human factors. Practitioners can also identify preventive

practices to avoid TD items in their projects. Suppose a

traditional team has applied all preventive practices from the

category planning and management (with the highest

concentration of practices), but the team still felt the effects

of TD. The team can apply preventive practices from other

categories by analyzing the hump diagram, such as

requirement engineering and verification, validation, and

test.

For researchers, our results point out the need of investing

more research effort on other issues of the software

development. For example, complementary to understanding

TD at the code level, it is also necessary to investigate

strategies to mitigate the managerial reasons that lead

software teams to not repay debt items. Another promising

topic for investigation would be the relationship between

human factors of the software development and TD.

For practitioners and researchers, the results of RBO

analyses bring to the fore the need to further investigate

practitioners' perceptions of the elements of TDM. This

investigation may reveal differences that can be used to

develop methods, techniques, and tools more suited to

professionals needs. For example, our findings reveal that

agile and traditional processes consider TD prevention

differently. Before developing a TD prevention strategy,

researchers may investigate agile software development

characteristics that influence TD prevention. Also, agile

practitioners can learn from traditional practitioners by

identifying the differences in perceptions concerning TD

prevention.

7 Threats to Validity

As in any empirical study, there are threats to validity in this

work. We attempt to remove them when possible, and

mitigate their effects when removal is not possible

The main threat to the validity of the conclusion is related

to the coding process, as it is a creative process. To mitigate

it, the analyses were carried out separately by two

researchers, and the consensus was carried out by a third,

more experienced one. Also, additional procedures were

considered for seeking consistency in the nomenclature used

by each replication team during their coding activities.

Lastly, the classification of the coded TD management

elements into code/non-code, as well as the definition of

their categories, are essentially subjective tasks. To mitigate

them, we followed a rigorous analysis procedure. The

classification process was always performed individually by

two researchers, being reviewed by at least one experienced

researcher.

https://bit.ly/37BopIF

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Another threat is related to the specialization of hump

diagrams per process model. To this end, we relied on the

responses from participants to the questions Q8 of the

InsighTD questionnaire, which explicitly states the

definition of the three categories of processes considered in

this research (agile, hybrid, and traditional).

The questionnaire was designed to eliminate threats to

internal validity. As discussed in (Rios et al., 2020), the

questionnaire went through a series of validations (three

internal and one external) and a pilot study to identify any

issues before its execution. It is also worth mentioning that

the participants could act differently from what they usually

do because they are part of a study. To avoid this, we clearly

explain the purpose of the study and ask participants to

answer the questions based on their own experience. We

also state explicitly that the questionnaire is anonymous, and

that the data collected is analyzed without considering the

identity of the participants. Also, participants may have

misinterpreted the use of the terms prevention and

repayment of TD. To investigate whether this threat

manifested, all responses on how participants avoided and

repaid the debt item were analyzed (Q23 and Q27) to

analyze if there were invalid answers. A high proportion of

invalid responses would mean that the questions could be

misinterpreted. In the end, we did not identify any invalid

response, indicating that this threat did not appear in the

study.

Lastly, external validity threats were reduced by targeting

industry professionals and seeking to achieve participant

diversity among survey respondents. In search of more

generalizable results, InsighTD is being replicated in other

countries.

8 Concluding Remarks

In this paper, we investigate the relation between TD

management elements (causes, effects, preventive practices,

repayment practices, reasons for TD non-prevention, and

reasons for TD non-repayment) and software development

issues related to coding or other activities. Also, we

categorize these elements and organize them into hump

diagrams. Further, we define a hump diagram for each

process model (agile, hybrid, and traditional) to demonstrate

how the diagram can be specialized by practitioners

following one of their project’s variables, such as, process

model and role.

The next steps of this work include (i) to investigate

whether the type of debt impacts how practitioners see TD

management elements, (ii) to develop a TD management

instrument encompassing the hump diagram and the

detailed results, and (iii) to empirically assess this

instrument on the supporting of TD management. We also

intend to investigate the main human factors associated with

TD.

Acknowledgements

This study was financed in part by the Coordenação de

Aperfeiçoamento de Pessoal de Nível Superior – Brasil

(CAPES) Finance Code 001 and the Conselho Nacional de

Desenvolvimento Científico e Tecnológico – CNPq. This

research was also supported in part by funds received from

the David A. Wilson Award for Excellence in Teaching and

Learning, which was created by the Laureate International

Universities network to support research focused on teaching

and learning.

References

Alves, N.S.R., Mendes, T.S., Mendonça, M.G., Spínola, R.,

Shull, F., & Seaman, C. (2016). Identification and

management of technical debt: A systematic mapping

study. Information and Software Technology, 70, 100-121.

DOI: https://doi.org/10.1016/j.infsof.2015.10.008.

Berenguer, C., Borges, A., Freire, S., Rios, N., Tausan, N.,

Ramac, R., Pérez, B., Castellanos, C., Correal, D.,

Pacheco, A., López, G., Falessi, D., Seaman, C., Mandic,

V., Izurieta, C., & Spínola, R. (2021). Technical Debt is

not Only about Code and We Need to be Aware about It.

In Proceedings of the XX Brazilian Symposium on

Software Quality (SBQS '21). ACM, New York, NY, USA,

1–12. DOI: https://doi.org/10.1145/3493244.3493285.

Besker, T., Ghanbari, H., Martini, A., & Bosch, J. (2020).

The influence of technical debt on software developer

morale. Journal of Systems and Software, 167. DOI:

https://doi.org/10.1016/j.jss.2020.110586.

Cunningham, W. (1992). The WyCash portfolio

management system. ACM SIGPLAN OOPS Messenger, 4,

2 (April 1993), 29-30. DOI:

https://doi.org/10.1145/157710.157715.

Freire, S., Rios, N., Mendonça, M., Falessi, D., Seaman, C.,

Izurieta, C., & Spínola, R. (2020a). Actions and

impediments for technical debt prevention: results from a

global family of industrial surveys. In Proceedings of the

35th ACM/SIGAPP Symposium on Applied Computing,

Brno, 1548–1555.

Freire, S., Rios, N., Gutierrez, B., Torres, D., Mendonça, M.,

Izurieta, C., Seaman, C., & Spínola, R. (2020b). Surveying

Software Practitioners on Technical Debt Payment

Practices and Reasons for not Paying off Debt Items. In

Proceedings of the Evaluation and Assessment in Software

Engineering. Trondheim, 210–219.

Freire, S., Rios, N., Perez, B., Castellanos, C., Correal, D.,

Ramac, R., Mandic, V., Tausan, N., Pacheco, A., López,

G., Mendonça, M., Izurieta, C., Falessi, D., Seaman, C., &

Spínola, R. (2021a). Pitfalls and Solutions for Technical

Debt Management in Agile Software Projects. IEEE

Software, vol. 38, no. 6, pp. 42-49, Nov.-Dec. 2021. DOI:

10.1109/MS.2021.3101990.

Freire, S., Rios, N., Perez, B., Castellanos, C., Correal, D.,

Ramac, R., Mandic, V., Tausan, N., López, G., Pacheco, A.,

Falessi, D., Mendonça, M., Izurieta, C., Seaman, C., &
Spínola, R. (2021b). How Experience Impacts Practitioners’

Perception of Causes and Effects of Technical Debt. In

Proceedings of the IEEE/ACM 13th International Workshop

on Cooperative and Human Aspects of Software Engineering

(CHASE). DOI: 10.1109/CHASE52884.2021.00011.

Investigating the Relationship between Technical Debt Management and Software Development Issues Berenguer et al. 2023

Freire, S., Rios, N., Pérez, B., Correal, D., Mendonça, M.,

Izurieta, C., Seaman, C., & Spínola, R. (2021c). How do

technical debt payment practices relate to the effects of the

presence of debt items in software projects? In

Proceedings of the IEEE International Conference on

Software Analysis, Evolution and Reengineering

(SANER). DOI: 10.1109/SANER50967.2021.00074.

Guo, Y., Spínola, R.O., & Seaman, C. (2016). Exploring the

costs of technical debt management --- a case study.

Empirical Software Engineering, 21, 1 (February 2016),

159–182. DOI: https://doi.org/10.1007/s10664-014-9351-7.

Izurieta, C., Vetrò, A., Zazworka, N., Cai, Y., Seaman, C., &

Shull, F. (2012). Organizing the technical debt landscape.

In Proceedings of the 3rd International Workshop on

Managing Technical Debt (MTD). Zurich, 23-26. DOI:

https://doi.org/10.1109/MTD.2012.6225995.

Lenarduzzi, V., Besker, T., Taibi, D., Martini, A., & Fontana,

F. A. (2021). A systematic literature review on technical

debt prioritization: Strategies, processes, factors, and tools.

Journal of Systems and Software, 171, 110827.

Li, Z., Avgeriou, P., & Liang, P. (2015). A systematic

mapping study on technical debt and its management.

Journal of Systems and Software, 101, 193–220. DOI:

https://doi.org/10.1016/j.jss.2014.12.027.

Lim, E., Taksande, N., & Seaman, C. (2012). A balancing

act: What software practitioners have to say about technical

debt. IEEE Software, 29, 6 (November 2012), 22–27. DOI:

https://doi.org/10.1109/MS.2012.130.

Martini, A., Stray, V., & Moe, N.B. (2019). Technical-,

social-and process debt in large-scale agile: an exploratory

case-study. In Proceeding of the International Conference

on Agile Software Development (pp. 112-119). Springer,

Cham.

Ramač, R., Mandić, V., Taušan, N., Rios, N., Freire, S.,

Pérez, B., Castellanos, C., Correal, D., Pacheco, A., Lopez,

G., Izurieta, C., Seaman, C., & Spinola, R. (2022).

Prevalence, common causes and effects of technical debt:

Results from a family of surveys with the IT industry.

Journal of Systems and Software, 184, 111114. DOI:

https://doi.org/10.1016/j.jss.2021.111114.

Ribeiro, L.F., Farias, M.A.F, Mendonça, M., & Spínola, R.O.

(2016). Decision criteria for the payment of technical debt

in software projects: A systematic mapping study. In

Proceedings of the 18th International Conference on

Enterprise Information Systems (ICEIS). DOI:

https://doi.org/10.5220/0005914605720579

Rios, N., Freire, S., Pérez, B., Castellanos, C., Correal, D.,

Mendonça, M., Falessi, D., Izurieta, C., Seaman, C., &

Spínola, R. (2021). On the Relationship Between

Technical Debt Management and Process Models. IEEE

Software.

Rios, N., Mendonça, M., & Spínola, R. (2018). A tertiary

study on technical debt: Types, management strategies,

research trends, and base information for practitioners.

Information and Software Technology, 102, 117-145. DOI:

https://doi.org/10.1016/j.infsof.2018.05.010.

Rios, N., Spínola, R.O., Mendonça, M., & Seaman, C.

(2019). Supporting analysis of technical debt causes and

effects with cross-company probabilistic cause-effect

diagrams. In Proceedings of the IEEE/ACM International

Conference on Technical Debt (TechDebt). DOI:

https://doi.org/10.1109/TechDebt.2019.00009.

Rios, N., Spínola, R.O., Mendonça, M., & Seaman, C.

(2020). The practitioners’ point of view on the concept of

technical debt and its causes and consequences: a design

for a global family of industrial surveys and its first results

from Brazil. Empirical Software Engineering, 25, 3216-

3287.

Saraiva, D., Neto, J. G., Kulesza, U., Freitas, G., Reboucas,

R., & Coelho, R. (2021). Technical Debt Tools: A

Systematic Mapping Study. In Proceedings of the 23rd

International Conference on Enterprise Information

Systems. DOI:10.5220/0010459100880098.

Strauss, A. & Corbin, J. (1998). Basics of qualitative

research: Techniques and procedures for developing

grounded theory. Sage Publications.

Tamburri, D.A., Kruchten, P., Lago, P. & van Vliet, H.

(2015). Social debt in software engineering: insights from

industry. Journal of Internet Services and Applications,

6(1), 1-17.

Webber, W., Moffat, A., & Zobel, J. (2010). A Similarity

Measure for Indefinite Rankings. ACM Transactions on

Information Systems, Vol. 28, no.4.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M.C., Regnell,

B., & Wesslen, A. (2012). Experimentation in software

engineering: An introduction. Springer.

Zazworka, N., Vetro’, A., Izurieta, C., Wong, S., Cai, Y.,

Seaman, C., & Shull, F. (2014). Comparing four

approaches for technical debt identification. Software

Quality Journal, 22, 403–426 (2014). DOI:

https://doi.org/10.1007/s11219-013-9200-8.

	Investigating the Relationship between Technical Debt Management and Software Development Issues
	1 Introduction
	2 Background
	3 Research Method
	3.1 The InsighTD project
	3.2 Research questions
	3.3 Data collection
	3.4 Data analysis procedures
	3.4.1 Demographics
	3.4.2 Preparing data for analysis
	3.4.3 Data classification and analysis

	4 Results
	4.1 Demographics
	4.2 RQ1: Are the causes of TD more related to coding issues or other software development issues?
	4.3 RQ2: Are the effects of TD more felt in coding issues or other issues in the software development process?
	4.4 RQ3: Is TD prevention more related to coding issues or other issues in the software development process?
	4.5 RQ4: Are the reasons for not preventing TD more related to coding issues or other development issues?
	4.6 RQ5: Is TD repayment more associated with coding issues or other issues in the software development process?
	4.7 RQ6: Are the reasons for not paying TD more related to coding issues or other development issues?

	5 Organizing the TD Management Elements into Hump Diagrams
	5.1 Using the diagram
	5.2 Specializing the diagram by process models
	5.2.1 Comparing TD causes between agile, hybrid, and traditional process models
	5.2.2 Comparing TD effects between agile, hybrid, and traditional process models
	5.2.3 Comparing TD preventive practices between agile, hybrid, and traditional process models
	5.2.4 Comparing reasons for TD non-prevention between agile, hybrid, and traditional process models
	5.2.5 Comparing TD repayment practices between agile, hybrid, and traditional process models
	5.2.6 Comparing reasons for TD non-repayment between agile, hybrid, and traditional process models

	6 Discussion
	6.1 Summary of findings
	6.2 Implications for researchers and practitioners

	7 Threats to Validity
	8 Concluding Remarks
	Acknowledgements
	References

