
Journal of Software Engineering Research and Development, 2023, 11:10, doi: 10.5753/jserd.2023.3082
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Identifying and Addressing Problems in the Estimation Process:
a Case Study Applying Action Research
Ana M. Debiasi Duarte [Universidade do Oeste de Santa Catarina | ana.duarte@unoesc.edu.br]
Ieda Margarete Oro [Universidade do Oeste de Santa Catarina | ieda.oro@unoesc.edu.br]
Karine Vidor [Universidade do Oeste de Santa Catarina | karine.vidor@unoesc.edu.br]
Denio Duarte [Universidade Federal da Fronteira Sul | duarte@uffs.edu.br]

Abstract
Literature shows that a large part of software projects exceeds the amount of effort and estimation duration, even

though we currently witness an evolution of software project management discipline. Through its best practices,
software engineering tries to reduce the flaws in software development. Several techniques and resources have been
presented to help to reduce this problem. This paper aims to propose an approach based on action research to improve
the estimation process in software development tasks by identifying problems. A case study is carried out to show
the effectiveness of our approach. The results show an improvement of 50% accuracy over the baseline estimation
process.

Keywords: Software Estimation, Process Improvement, Agile Methodologies, Action Research

1 Introduction

Agile software development (ASD) is usually used as an al-
ternative to more traditional approaches, e.g., waterfall or
evolutionary. The key elements for the latter are extensive
planning, rigorous reuse, and codified processes. On the
other hand, ASD is based on iterative and incremental devel-
opment models (Larman and Basili, 2003; Hohl et al., 2018).
Although ASD intends to make software development eas-
ier compared to traditional ones, it still experiences the size
estimation effort problem.
Effort estimation can be defined as the process by which

effort is evaluated, and estimation is carried out in terms of
the number of resources required to end project activity to
deliver a product or service that meets the given functional
and non-functional requirements to a customer (Trendowicz
and Jeffery, 2014). Several methods (metrics) have been pro-
posed to estimate effort, e.g., Planning Poker, Expert Judg-
ment, and Wideband Delphi. However, the accuracy of soft-
ware effort estimation models for ASD still remains incon-
sistent (Pillai et al., 2017).
The report proposed by The Standish Group CHAOS Re-

port (2018) showed that many software companies struggle
to develop their products within strict schedules and budget
constraints. Either the companies finished their projects be-
hind schedule and over budget (48% - 65%) or failed to com-
plete them (48% - 56%) in 2018. The findings show that most
projects’ planned efforts and schedules were overrun com-
pared to the estimations. It is well known that cost under-
estimation brings inefficiencies to the project (Nhung et al.,
2019). Gupta et al. (2019) present the lack of the most usual
factors that cause flaws in software projects: (i) top man-
agement’s commitment and involvement/support; (ii) alloca-
tion of scarce resources; (iii) communication among various
stakeholders; (iv) team configuration and structure; and (v)
social cohesion in the team and the complexity of the project
and organizational culture.

In this paper, we focus on software development effort es-
timation. We intend to offer an approach to minimize the er-
ror of one of the software project problems: estimation effort.
The action research method (McKay and Marshall, 2001) al-
lows us to involve researchers and developers in finding an
approach to solve the target problem.
Based on the steps performed in action research (see Fig-

ure 1), we proposed an approach to improve the estimation ef-
fort using a case study. An ASD team from a software devel-
opment company and the researchers participate in all phases
of our approach to get an ideal process to estimate effort. Us-
ing historical data, we find problems that decay the effort
estimation process.
According to those problems, we develop our approach.

The results show that our proposal improves the process ef-
fort estimation accuracy in 1.5 times. We believe that the
promising results can help companies using ASD inminimiz-
ing the flaws in software projects.
The rest of this paper is organized as follows: Section 2

briefly presents software development effort estimation and
management, and Section 3 presents works related to ours.
Next, we introduce our methods. Section 5 presents our ap-
proach and its application as a case study. Finally, Section 6
concludes this paper.

2 Background
Software development effort estimation plays a crucial role
in software development projects. Building reliable software
processes for executing software projects to meet the deliv-
ery on time, respecting the budget, and in a cost-effective
manner is challenging (Sommerville, 2015). Developers
have struggled with software development effort estimation
since the 1960s (Gautam and Singh, 2018). Effort estimation
plays a crucial role when it comes to finish a project on time
and respecting the budget.
Effort estimation can be stated as the process by which

https://orcid.org/0000-0001-8054-0063
mailto:ana.duarte@unoesc.edu.br
https://orcid.org/0000-0002-2239-531X
mailto:ieda.oro@unoesc.edu.br
mailto:karine.vidor@unoesc.edu.br
https://orcid.org/0000-0003-4936-4748
mailto:duarte@uffs.edu.br

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

effort is assessed, and estimation is performed as to the num-
ber of resources required to end project activity to deliver a
product or service that meets the given functional and non-
functional requirements to a customer (Trendowicz and Jef-
fery, 2014). If the effort estimations are accurate, they can
contribute to the success of software development projects,
while incorrect estimations can negatively affect product de-
velopment, leading to monetary losses (Altaleb and Gravell,
2018). Software project estimation involves estimating the
effort, size, staffing, schedule (time), and cost involved in
creating a unit of the software product (Jorgensen and Shep-
perd, 2006; Pillai et al., 2017).
The ratio between the amount of work spent on software

development and its size is called productivity (Fenton and
Bieman, 2014). It can be measured in several ways, but func-
tion point analysis (FPA) is the most common. FPA can be
applied before the program writing, based on system require-
ments, so it is possible to estimate the effort and the schedule
to develop activities.
Many variables can impact a software development team’s

productivity: one is time management. Inadequate time man-
agement usually occurs because of a lack of planning for the
day, non-management of compromises, and accepting more
tasks than possible, among others (Sá et al., 2017). However,
some techniques help to manage time in a better way. One of
those is the Pomodoro technique, created by Cirillo (2022),
which aims to address the time spent on activities and elimi-
nate internal and external distractions.
Planning and supervising the project is needed to check

the development team’s productivity and software quality.
Those tasks are essential in the software development pro-
cess. According to the Project Management Body of Knowl-
edge (PMBOK) (PMI, 2021), a project is a temporary effort
to progressively create a product, service, or single result.
Project managing means applying knowledge, abilities, and
tools to support scheduled requirements. According to Press-
man (2014), successful project management begins with an
accurate estimation of development effort; however, estima-
tion is still imprecise contributing to failed software projects.
Usually, estimation is made by using techniques along his-

torical project bases. However, Maxwell (2001) claims that,
more than simply registering productivity, data is needed to
improve the estimate process, so analysis is important to un-
derstand its influences on projects and their productivity con-
texts. According to Kirmani and Wahid (2015), efficiency,
product delivery on time, and the desired quality level are fea-
tures that influence the software development process. There-
fore, collecting data through the measurements taken during
the project execution, usually based on qualitative and quan-
titative information, is crucial.
Software projects are complicated in any context and are

especially prone to failure (Bannerman, 2008). There is no
fail-proof project, but it is possible to be ready for unfore-
seen problems. The agile methods, including Scrum, were
created precisely to deal with project uncertainties instead of
traditional methods that try planning everything before the
development starts.
Scrum is a lightweight framework that helps people, teams

and organizations generate value through adaptive solutions
for complex problems. In each iteration, the team analyzes

the requirements, technology, and abilities and then splits
themselves between creating and delivering the best soft-
ware they can, adapting daily as complexities and surprises
arise (Schwaber and Sutherland, 2020). Scrum employs an it-
erative, incremental approach to optimize predictability and
engages groups of people who collectively have all the skills
and expertise to do the work and share or acquire such skills
as needed.

3 Related Work
Action research (AR) has been applied in several study cases,
from software development to healthcare (Elg et al., 2020;
Cordeiro and Soares, 2018). Its basic principle is that the re-
searchers change their role from external observers to partici-
pants in solving concrete problems (Bradbury-Huang, 2010).
Regarding software engineering (SE), there are several

proposals to apply AR to deal with SE problems. In 2006,
Dingsøyr et al. (2006) used an action research study to apply
the Scrum software development process in a small cross-
organizational development project. More recently, Hoda
et al. (2014) combined action research as the overall re-
search framework, elements of User-Centered (for evalua-
tion by end-users) and Participatory Design as the design
frameworks, and Scrum as the software development frame-
work.

Marinho et al. (2015) presented the development of an
uncertainty management guide designed by action research.
The proposed guide was applied in a software development
company aiming to reduce the uncertainties in software
projects. Conversely, Choraś et al. (2020) proposed a set of
metrics thatmeasure theAgile software development process
in small and medium company types. They were built as part
of an Action-Research collaboration involving a team of re-
searchers.
Action research is also applied to developing students’

competencies during the learning and teaching process in
software engineering using Thinking-based Learning (Flores
and de Alencar, 2020).
The works cited show that the action research method is

widely used as a support tool to help the industry to improve
its processes. In this work, we intend to contribute to the in-
dustry by proposing using action research to address prob-
lems in the estimation software development process.

4 Methods
This paper applies qualitative research using a case study
approach to evaluate our proposal (Gil et al., 2002; Godoy,
1995). According to Creswell (2010), in qualitative studies,
the researcher uses a particular language to describe what is
expected to be understood, mainly through findings or the-
ories. Besides, they must encounter a minimum amount of
literature, enough to discuss the issue. The researcher uses
a particular language to describe what they expect to under-
stand, discover or develop as a theory. The research was de-
veloped using the action research method. Thiollent (2011)
defines action research as a theoretical and methodologi-

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

cal approach responsible for an essential contribution to the
methodology in social phenomenons investigations, getting
known as a research line directed to collective actions. The
method is based on joining research and action in a process
in which the implicated actors and researchers look to inter-
actively enlighten the reality in which they are and identify
common issues by searching and experimenting with solu-
tions in real situations. The search for knowledge conducted
by the research is treated as a composite construction (Pe-
ruzzo, 2016).
In our case study, researchers and software engineering

work together in all project phases. The collaboration intends
to solve a given problem in a software project.
We use an action research (AR) process adapted from

(McKay and Marshall, 2001) and pictorially shown in Fig-
ure 1. Note that the AR process is composed of 8 steps. In
the following, we present and discuss every step regarding
our proposal.

5 Case Study Planning, Execution,
and Results

Our primary goal in this work is to apply action research in
the context of software effort estimation in an ASD approach.
To accomplish that, we carried out a case study involving our
proposal. In this section, we present the target company and
development team and the implementation of our proposal.
Figure 1 guides us to show how AR is applied in the estima-
tion effort problem.

5.1 Characterization of the company and
team

The case study was conducted in a software development
company that provided previous software effort estimations
for analysis. As described in (Gil, 2008), a case study is an
analysis of situations that occur in real life; it is applied to
obtain detailed knowledge to present conclusions. The avail-
able estimations are composed of 31 sprints. The historical
data comprises 100 different functionalities, 302 stories, and
568 programming tasks.
The target company uses scrum-like process for its soft-

ware development, so they are familiar with Scrum and its
good practices. Besides, points are to estimate the sprint size.
For every sprint task, the size is calculated, and the sum of all
task sizes gives the sprint size in points. The points and the
corresponding task complexities are calculated regarding the
development effort applied previously, i.e., the company’s
historical data.
The participants in this case study (i.e., the development

team) are 7 software engineers. To build our estimation
methodology, we first study the company’s current process.
This allowed us to propose a new estimates support method
regarding AR. The project office defines all the product
phases following the estimation phase. In the estimation
phase, demands are presented to the development team, and
the team estimates the size of the demands for every sprint.
Then the project development phase starts, the projects team

prioritizes demands inside the sprint, and the development
team starts working. After 15 days, all deliverables for a
given sprint are produced.

Step 1 - Problem Identification
The first step of the AR process was applied using a bibliogra-
phy survey. We searched papers in seven different academic
databases with the following search strings: “Agile Project
Management” AND “Risks Analysis” AND “Software En-
gineering” AND “Software Estimation” AND “Agile Man-
agement” AND “AgileMethods” AND “Scrum”AND “Soft-
ware Metrics”. The search retrieved 1,006 papers. To reduce
the number of working papers, we apply the following exclu-
sion criteria: (i) papers written in English, (ii) abstracts show-
ing that estimation effort and Scrum are used in the approach,
and (iii) the reputation of publication vehicle (in this case, we
use h-index and number of citations as guide). Using those
criteria, we selected 23 papers. The team and the researchers
read and discussed the papers to make all the involved people
aware of the literature about software estimation in ASD.
During the discussions, we identified several classical soft-

ware development problems like imprecise schedules, un-
planned costs, and delays that might influence the negotia-
tion with the customer. Based on the discussions, the team
built a sheet containing variables about the 31 sprints used
in our case study. To make the development process ade-
quate, we identified the variables that help understand the
company’s historical productivity database. Table 1 presents
the built sheet from the collected data, where (i) Sprint rep-
resents the sprint number (identifier), (ii) Story stores the
number of stories, (iii) Task represents the number of tasks,
(iv) Avail. Time (h) is the available time (in hours) to
accomplish the sprint, (v) Est. Points shows the number
of estimate points (effort), and (vi) Del. Points represents
the number of delivered points.
Table 1 presents the historical data since they have started

using Scrum. Note that the estimation effort is not very accu-
rate, and, in the beginning, the team did not even registered
the delivery points (first eight sprints). We decided to use the
last eight to measure the variance between the planned and
execution time. Our choice was based in the team’s maturity
to plan the sprint. Table 2 details the mean of variation in
planned and execution time is around 35%.Note that the stan-
dard deviation is also high, meaning that the variation ranged
from 15% to 55%. For example, in Sprint #30 the variation
was 41%, whereas in Sprint #29 was 6%. Those numbers
showed that the team’s estimation could have been more ac-
curate. To calculate the variation, we used Equation 1. This
equation is also used in Bilgaiyan et al. (2017) and de Souza
(2013):

V ar = ET − PT

PT
(1)

where Var is the estimation variation, ET is the estimated
time, and PT is the estimated planning time.
The main problems from the data analysis of the effort and

size estimates were:

• Lack of precision of the effort and size estimation be-

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

Figure 1. Steps performed in action research

Table 1. Historical data from 31 finished sprints.

Sprint Story Task Avail.
Time (h)

Est.
Points

Del.
Points Sprint Story Task Avail.

Time (h)
Est.
Points

Del.
Points

#1 15 31 274 6 #17 9 18 274 77 130
#2 9 16 183 72 #18 3 16 274 70 67
#3 9 17 204 109 #19 3 10 218 44 58
#4 12 30 134 93 #20 6 20 274 49 138
#5 4 13 134 59 #21 10 27 204 133 190
#6 4 18 204 40 #22 6 10 204 95 81
#7 9 21 204 136 #23 13 7 204 130 62
#8 2 4 204 33 #24 12 19 204 130 65
#9 9 20 204 131 118 #25 28 37 183 127 122
#10 6 17 183 78 99 #26 36 39 274 122 166
#11 4 6 183 28 129 #27 13 28 183 110 74
#12 3 4 134 24 #28 13 31 274 131 79
#13 2 2 183 48 48 #29 11 11 309 12 145
#14 9 12 204 143 81 #30 10 20 344 92 98
#15 2 11 183 15 62 #31 27 44 274 128 131
#16 3 9 183 31 65 Total 302 568

cause of register failures or lack of information in his-
torical bases;

• New demands (e.g., corrections or crucial new require-
ments) are not formally specified and, sometimes, with-
out further details.

Step 2 - Recognizing facts about the problem

To collect data from problems in the estimation process, we
applied a survey containing 48 objective questions divided
into four categories: General, Specifications and estimation,
Sprint, and Effort Estimation (see Table 3). We used the Lik-
ert Scale (Likert, 1932) to evaluate the estimated problems.
The respondents could choose between the alternatives: “Al-
ways”, “Usually”, “Sometimes”, “Rarely”, and “Never”. An-
swering the survey took an average time of 30 minutes.
Even though the respondents remained anonymous, we

note that somewere uncomfortable criticizing the company’s
estimation process. We tried to mitigate this by asking them
to answer that survey in separate rooms and using the same
type of pen. Even though we noticed that some criticisms

might have been omitted, we believe that the results coher-
ently showed the reality of the development team.
Table 3 shows the proposed categories along their subcat-

egories (if it is the case). We encoded each category to make
it easier to present our solution for the problems. In the fol-
lowing, we briefly discuss each proposed category.
In the category General, the result shows there are situ-

ations in which the workers stop planned to do unplanned
tasks that were not expected when the schedule was created
(Code RSC01 in Table 3).

The Code RSC02 (category Specifications and Estima-
tion) means that there are situations where estimates need
to be carried out. This compromises delivery in several ways
such as imprecise schedules and unplanned costs.
The category Sprint represents when participants did not

use the Burndown chart as a stimulus to reach the sprint goals
(see RSC03 in Table 3). Not using the chart contributes to the
fact that the development team does not follow the sprint per-
formance, meaning there is no way to know if it follows the
schedule. Another identified problem is that rarely, or only
sometimes, the tasks are appropriately delivered to use, with-

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

Table 2. Time variation: planned versus executed
Sprint Planned time (hours) Executed time (hours) Difference Variation
#24 141 192 +51 36%
#25 260 304 +44 17%
#26 328 459 +131 40%
#27 147 263 +116 79%
#28 161 205 +44 27%
#29 84 89 +5 6%
#30 153 215 +62 41%
#31 274 366 +92 34%

Variation Mean 35% (± 20.01%)

Table 3. Problems influencing estimations

Category Code Description
General RSC01 Performing non-sprint tasks
Specification and estimation RSC02 Size estimation process not performed

Sprint RSC03 Burndown chart not used
RSC04 Lack of commitment in the delivery of tasks

Effort estimation
RSC05 Effort estimation process not performed
RSC06 Estimates of urgent tasks not performed
RSC07 Lack of technical knowledge

out any faults, pointing to the fact that there are tasks that
will need to go through unscheduled corrections (see RSC04
in Table 3). As there is no periodic maintenance in the Burn-
down chart in daily meetings, the team does not compromise
with the day-to-day delivery of goals.

The category Effort Estimation is composed of three other
problems. RSC05 states that the effort estimation process
does not occur frequently, which means there are situations
where estimates are not made. Another problem is that some
urgent tasks are added during the sprint without effort estima-
tion. This may cause delays in task performance and a prob-
lem in the estimation measurements (see RSC06 in Table 3).
Finally, RSC07 states that developers need to be aware of
all the pre-existing codes in the application, and those codes
are rarely consulted during the estimate process. This lack
of orientation causes uncertainty in estimation, meaning that
the codes will likely have to be updated during development.

From this analysis, we present in Table 3 the problems that
must be examined and discussed to propose a method that
minimizes the effects as much as possible.

The study and discussion of relevant literature, in addition
to the survey’s result, let us conclude the following: (i) the
team does not have much experience in measuring the effort,
(ii) there are not much historical data about productivity, and
(iii) the team are not very confident regarding the effort mea-
surement. The team usually estimates backlog stories; how-
ever, it is rarely estimated when a new story is inserted in a
running sprint.

Based on the two previous steps, we plan how to solve or
minimize the problems faced by the team. This is the third
step of action research.

Step 3 - Activity Planning
In Step 2, we identified the estimation process problems. We
proved a problem in estimation through the analysis, and this
served as a process improvement opportunity. We analyzed
the current process used by the company and proposed an ap-
proach for improving it according to the problems identified
in Table 3.
RSC01 – The proposed solution was to implement a Kan-
ban (Stellman and Greene, 2014; dos Santos et al., 2018), so
the unplanned tasksmay be executedwithout interferingwith
the progress of the current sprint. This process may also be
used to attend to urgent corrections; the Kanban should run
along with the sprint.
RSC02 and RSC05 –We proposed changes in the way of es-
timating. The estimation order was inverted in the proposed
model: before the sprint meeting starts, size estimation is
done, and the backlog must be prioritized. Then, the effort es-
timation process, which happens during sprint planning, can
begin.
RSC03 – The daily meetings should update the Burndown
plot. Developers must answer three questions: “What have
you done today?”, “What will you do tomorrow?” and
“Which problems have you faced?”. These three questions
were inspired fromScrumGuide 2017 (Schwaber and Suther-
land, 2017) currently used by the company.
RSC04 – There should be regular updates on the plot in
each daily meeting, and the team should justify internally
(between the developers) the daily results that concern the
goal.
RSC06 – This problem will be minimized with Kanban, pro-
posed in RSC01. In this process, at least one developer will
be ready to rapidly solve the unplanned income tasks.
RSC07 – To address this problem, the companymust provide
specialized training to the developers concerning the subjects
in which they face more problems.

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

After the discussion about the proposed approach, its im-
plementation must be defined.
First, the project office plans the definition phase, from

the requirements to the implementation. The planning feeds
a project management tool to better control the outputs. In
this study case, Redmine1 was the chosen tool.
Later, the planning and product project phase starts when

the project team estimates the size of the demands and then
prioritizes the backlog (RSC07). In case of a correction or ur-
gency, the demand is sent to Kanban (RSC01 and RSC06). If
not, it goes to the sprint, and a meeting with the developers is
called. In this phase, the demands, requirements, and related
interfaces are presented to the development team. The team
debates what was presented and estimates the effort in those
demands (RSC05).
The phase of project development starts as the sprint open-

ing is done. The project team selects the prioritized stories to
develop in the sprint. The team starts working, and the sto-
ries are finished by the end of 15 days and presented in the
sprint meeting.

Step 4 - Implementation
This step was the implementation of what was planned in
the sprint. The team compares the planned estimation to the
actual size. Two sprints were used as pilots: sprints #36 and
#37.
RSC01 and RSC06 – Kanban was implemented to reduce
these identified factors. As of now, a developer is ready to
solve any unforeseeable issues that may occur during the
sprint and make corrections. The task is developed, tested,
and integrated directly into the main branch in Kanban.
RSC02 and RSC05 – before an opening sprint meeting, the
planning team decides which tasks will be in the sprint and es-
timates their sizes. Then, the team may analyze if it is neces-
sary to add or remove any tasks to fit in the upcoming sprint.
Lastly, the development team estimates the effort, and the
opening meeting is done.
RSC03 and RSC04 – in the current model, the developers
have the daily meeting at the end of the afternoon and answer
the three proposed questions: “What have you done today?”,
“What will you do tomorrow?”, and “Which drawbacks have
you faced?”. Besides the meeting, the development team fills
the Burndown plot, making it possible to analyze the plot and
explain the daily results relating to the goal.
RSC07 – the impact of this factor was reduced by offering
the development team opportunities to improve their techni-
cal knowledge. According to Singh et al. (2019), the people
involved in the working process should be trained to guaran-
tee their tasks are executed in the best way possible to fit the
company’s goal. To allow this and reduce the impact of the
identified problems, the company provided online training to
the employees, besides intensifying knowledge-sharing prac-
tices.

Step 5 - Monitoring
This step was the active participation of the researchers in
implementing process change measurements by using sug-

1www.redmine.org

gestions and helping validate the action results. The critical
point of this step was to check the project’s evolution and en-
sure that the schedule was adequate to reach the initial goals.

Step 6 - Assessment of the results
During the study case, there were meetings to evaluate the
results and discuss problems. These meetings raised issues
about interruptions affecting the teams’ efficiency. The team
could not control these interruptions. The interruptions were
treated as a new problem so that improvement could be imple-
mented, and then the action plan was improved as described
in the next step.

Step 7 - Improving the Action Plans
After implementing technical improvements and evaluating
the effects, there were still many interruptions in the devel-
opment environment. An interruption can be internal – by a
team member – or external – by someone outside the sprint.
Those interruptions reduce productivity. See problems in Ta-
ble 4.

Table 4. New problems that may influence the estimates
Category Code Description

General RSC08 External Interruptions
RSC09 Internal Interruptions

We suggested the Pomodoro technique to solve the is-
sue. During the Pomodoro time, nobody may interrupt a col-
league – except for very urgent issues.
An online timer will be used to control each Pomodoro

time2, and a sign was developed to inform the workers that
the developer is in Pomodoro; it is visible to everyone. One
side says “Pomodoro”, and the other says “Clear”.
To use the technique, the worker picks a task and counts 25

minutes in Pomodoro. Then, for each Pomodoro, theworking
time must be put in Redmine. Each worker must turn the Po-
modoro sign according to their status and pause for 5 minutes
maximum. For every four Pomodoro tasks, a longer pause
(around 15 minutes) can be done.

Step 8 - Action-Research Cycle Conclusion
Our approach was tested in eight new sprints to identify its
performance in addressing problems of task estimation effort.
In total, nine problems should be treated to improve the esti-
mate process in the company. The improvement brought by
our approach is shown in Table 5. The average variation be-
tween the planned and executed time is 14.5% (standard devi-
ation equals 6.8%). Compared to Table 2 (35% (± 20.01%)),
the accuracy improvement is of approximately 1.5 times.
The results indicated the action-research method, which

involves cooperation between the researchers and the study
participants, is helpful in improving software estimation ef-
fort errors.

2www.tomatotimers.com

www.redmine.org
www.tomatotimers.com

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

Table 5. Time variation: time planned versus time executed after the improvements
Sprint Planned time (hours) Executed time (hours) Difference Variation
#36 134 119 -15 11% ↓
#37 80 102 22 28% ↑
#38 106 115 9 8% ↑
#39 69 83 13 19% ↑
#40 94 110 16 17% ↑
#41 81 87 6 7% ↑
#42 205 187 -18 9% ↓
#43 167 195 28 17% ↑

Variation Mean 14.5% (± 6.8%)

6 Conclusion
This paper presented a case study to investigate how action
research can help developers to address problems in the esti-
mation process. We first studied the target company estima-
tion process and analyzed the historical data; then, we sur-
veyed the development team to find the reasons for the effort
estimation errors. Using the action research method involv-
ing the researchers and developers, we propose an approach
to help the development team estimate better the task effort.
We accomplished our goal by identifying the problems and

implementing changes in the current software estimation pro-
cess. After implementing the suggested procedures, the re-
sults indicated that we reached the main goal: addressing the
problems in the estimation process. By comparing the esti-
mation time with and without our method, we improved esti-
mation accuracy 1.5 times compared to the historical data.
The research action method guided the whole process of

our proposal and proved very effective in our case study.
There are some threats to the validation of our approach;

however, using 31 sprints as historical data and eight sprints
to compare the results can satisfactorily validate our results.
Recommendations for future works are: (i) increase the

number of case studies to compare the results; (ii) apply the
analysis of methods that use statistics to treat historical pro-
ductivity data in short and long-term estimates; and (iii) to
evaluate known estimation problems in the software develop-
ment process by analyzing the techniques for solving them.

Acknowledgments
The authors thank Fapesc for the financial support to the
paper proofreading. Project approved with Grant Term N.
2021TR001877.

References
Altaleb, A. and Gravell, A. (2018). Effort estimation across
mobile app platforms using agile processes: a systematic
literature review. Journal of Software, 13(4):242.

Bannerman, P. L. (2008). Risk and risk management
in software projects: A reassessment. J. Syst. Softw.,
81(12):2118–2133.

Bilgaiyan, S., Sagnika, S., Mishra, S., and Das, M. (2017).
A systematic review on software cost estimation in agile

software development. Journal of Engineering Science &
Technology Review, 10(4).

Bradbury-Huang, H. (2010). What is good action research?
why the resurgent interest? Action research, 8(1):93–109.

Choraś, M., Springer, T., Kozik, R., López, L., Martínez-
Fernández, S., Ram, P., Rodriguez, P., and Franch, X.
(2020). Measuring and improving agile processes in a
small-size software development company. IEEE access,
8:78452–78466.

Cirillo, F. (2022). Pomodoro technique. [Online; accessed
10-Dec-2022].

Cordeiro, L. and Soares, C. B. (2018). Action research in the
healthcare field: a scoping review. JBI Evidence Synthesis,
16(4):1003–1047.

Creswell, J. W. (2010). Projeto de pesquisa métodos qualita-
tivo, quantitativo e misto. In Projeto de pesquisa métodos
qualitativo, quantitativo e misto. Penso Editora.

de Souza, L. L. C. (2013). Suporte ao Processo de Moni-
toramento e Controle de Projetos de Software: Uma abor-
dagem Inteligente com base na teoria do valor agregado.
Dissertação mestrado, Universidade Estadual do Ceará.

Dingsøyr, T., Hanssen, G. K., Dybå, T., Anker, G., and Ny-
gaard, J. O. (2006). Developing software with scrum in
a small cross-organizational project. In European Con-
ference on Software Process Improvement, pages 5–15.
Springer.

dos Santos, P. S. M., Beltrão, A. C., de Souza, B. P., and
Travassos, G. H. (2018). On the benefits and challenges
of using kanban in software engineering: a structured syn-
thesis study. Journal of Software Engineering Research
and Development, 6(1):1–29.

Elg, M., Gremyr, I., Halldorsson, Á., and Wallo, A. (2020).
Service action research: review and guidelines. Journal of
Services Marketing.

Fenton, N. and Bieman, J. (2014). Software Metrics: A Rig-
orous and Practical Approach. CRC Press, Inc., USA, 3rd
edition.

Flores, A. P. M. and de Alencar, F. M. R. (2020). Compe-
tencies development based on thinking-based learning in
software engineering: An action-research. In Proceedings
of the 34th Brazilian Symposium on Software Engineering,
pages 680–689.

Gautam, S. S. and Singh, V. (2018). The state-of-the-art in
software development effort estimation. Journal of Soft-
ware: Evolution and Process, 30(12):e1983.

Identifying and Addressing Problems in the Estimation Process Duarte et al. 2023

Gil, A. C. (2008). Métodos e técnicas de pesquisa social. 6.
ed. Editora Atlas SA.

Gil, A. C. et al. (2002). Como elaborar projetos de pesquisa,
volume 4. Atlas São Paulo.

Godoy, A. S. (1995). Pesquisa qualitativa: tipos fundamen-
tais. Revista de Administração de empresas, pages 20–29.

Gupta, S. K., Gunasekaran, A., Antony, J., Gupta, S., Bag,
S., and Roubaud, D. (2019). Systematic literature review
of project failures: Current trends and scope for future re-
search. Computers & Industrial Engineering, 127:274–
285.

Hoda, R., Henderson, A., Lee, S., Beh, B., and Greenwood,
J. (2014). Aligning technological and pedagogical consid-
erations: Harnessing touch-technology to enhance oppor-
tunities for collaborative gameplay and reciprocal teach-
ing in nz early education. International Journal of Child-
Computer Interaction, 2(1):48–59.

Hohl, P., Klünder, J., van Bennekum, A., Lockard, R., Gif-
ford, J., Münch, J., Stupperich, M., and Schneider, K.
(2018). Back to the future: origins and directions of the
“agile manifesto”–views of the originators. Journal of Soft-
ware Engineering Research and Development, 6(1):1–27.

Jorgensen,M. and Shepperd,M. (2006). A systematic review
of software development cost estimation studies. IEEE
Transactions on software engineering, 33(1):33–53.

Kirmani, M. M. and Wahid, A. (2015). Article: Use
case point method of software effort estimation: A re-
view. International Journal of Computer Applications,
116(15):43–47. Full text available.

Larman, C. and Basili, V. R. (2003). Iterative and incremen-
tal developments. a brief history. Computer, 36(6):47–56.

Likert, R. (1932). A Technique for the Measurement of Atti-
tudes. Number Nº 136-165 in A Technique for the Mea-
surement of Attitudes. publisher not identified.

Marinho, M., Lima, T., Sampaio, S., and Moura, H. (2015).
Uncertainty management in software projects - an action
research. In Experimental Software Engineering Track –
XVIII CIbSE - Iberoamerican Conference on Software En-
gineering. CIbSE.

Maxwell, K. D. (2001). Collecting data for comparability:
benchmarking software development productivity. IEEE
Software, 18(5):22–25.

McKay, J. and Marshall, P. (2001). The dual imperatives of
action research. Information Technology & People.

Nhung, H. L. T. K., Hoc, H. T., and Hai, V. V. (2019). A
review of use case-based development effort estimation
methods in the system development context. In Proceed-
ings of the Computational Methods in Systems and Soft-
ware. Springer.

Peruzzo, C. (2016). Epistemologia e método da pesquisa-
ação. uma aproximação aos movimentos sociais e à comu-
nicação. Anais XXV Encontro Anual da Compós, pages
1–22.

Pillai, S. P., Madhukumar, S., and Radharamanan, T.
(2017). Consolidating evidence based studies in software
cost/effort estimation — a tertiary study. In TENCON
2017 - 2017 IEEE Region 10 Conference, pages 833–838.

PMI, P. M. I. (2021). A Guide to the Project Management
Body of Knowledge (PMBOK©Guide). Project Manage-

ment Institute (PMI), USA, 7th edition.
Pressman, R. (2014). Software Engineering: A Practitioner’s
Approach. McGraw-Hill, Inc., USA, 8 edition.

Schwaber, K. and Sutherland, J. (2017). The Scrum Guide.
The Definitive Guide to Scrum: The Rules of the Game.
ScrumGuides.

Schwaber, K. and Sutherland, J. (2020). The Definitive
Guide to Scrum: The Rules of the game.

Singh, S. K., Gupta, S., Busso, D., and Kamboj, S. (2019).
Top management knowledge value, knowledge sharing
practices, open innovation and organizational perfor-
mance. Journal of Business Research.

Sommerville, I. (2015). Software Engineering. Pearson Ed-
ucation Limited, 10th edition edition.

Stellman, A. and Greene, J. (2014). Learning agile: Under-
standing scrum, XP, lean, and kanban. ” O’Reilly Media,
Inc.”.

Sá, M., Silva, A., Oliveira, G., and Silveira, J. (2017). O
método getting things done (gtd) e as ferramentas de geren-
ciamento de tempo e produtividade. Navus - Revista de
Gestão e Tecnologia, 8(1):72–87.

The Standish Group CHAOS Report (2018). Decision La-
tency Theory: It’s All About the Interval. Technical report,
The Standish Group International.

Thiollent, M. (2011). Metodologia da pesquisa-ação. 18ª.
São Paulo: Cortez.

Trendowicz, A. and Jeffery, R. (2014). Software project ef-
fort estimation. Foundations and Best Practice Guidelines
for Success, Constructive Cost Model–COCOMO pags,
12:277–293.

	Introduction
	Background
	Related Work
	Methods
	Case Study Planning, Execution, and Results
	Characterization of the company and team

	Conclusion

