

Journal of Software Engineering Research and Development, 2020, 8:8, DOI: 10.5753/jserd.2020.544
 This work is licensed under a Creative Commons Attribution 4.0 International License.

How is a Developer’s Work Measured?

An Industrial and Academic Exploratory View

Matheus Silva Ferreira [Federal University of Lavras | matheus.ferreira5@estudante.ufla.br]

Luana Almeida Martins [Federal University of Lavras | luana.martins1@estudante.ufla.br]

Paulo Afonso Parreira Júnior [Federal University of Lavras | pauloa.junior@ufla.br]

Heitor Costa [Federal University of Lavras | heitor@ufla.br]

Abstract

Software Project Management is an essential practice to successfully achieve goals in software development

projects and a challenging task for Project Managers (PMs). Therefore, information about the developers’ work

can be valuable in supporting the PMs’ activities. Several studies address this topic and suggest different

strategies for obtaining such information. Given the variety of existing strategies, we need to know the state-of-

the-art on the theme. This article presents the information used for supporting PMs in the application of project

management practices, especially with regard to risk management and people management. Thus, we carried out

an exploratory study using a Systematic Mapping Study (SMS). Contributions include the identification of 64

metrics, four information sources, and seven PM activities supported by the measurement of the developers’

work. Additionally, we interviewed four PMs to collect their personal opinion of how the metrics and activities

reported by our SMS could help the project management in practice. Each PM considered a different set of

metrics to support their activities, but none of them suggested new metrics (besides the 64 metrics identified in

the SMS). Also, we presented aspects to explore the subject, indicating themes for possible new studies in the

Software Engineering area.

Keywords: Project Management, Knowledge of the Developers’ Work, Project Manager’s Activities, Metric

1 Introduction

In software projects, the Project Manager (PM) is the

professional who ensures proper project management. The

PM’s function includes selecting members for the project

team and assigning roles and responsibilities as needed (de

Souza et al. 2015). PMs must know how to assess the

skills, strengths, and weaknesses of developers so that they

can do their work efficiently (Zuser and Grechenig 2003).

Besides, bad people management can bring about project

risks (Ferreira et al. 2017). For example, team member

turnover can be a high risk for a project because some

developers can centralize software source code knowledge

(Boehm 1991). These issues correspond to the PMs’ two

activities: risk management and people management

(Sommerville 2019).

Performing people management and risk management is

a non-trivial task. In addition, the PM’s effort is impacted

by the size of the project and the size of the team (Ahonen

et al. 2015). In this context, the team members’ evaluation

by PMs motivates studies in the literature (de Bassi et al.

2018; Feiner and Andrews 2018; Ferreira et al. 2017; Zuser

and Grechenig 2003) that suggest strategies for measuring

the developers’ work. Given the wide variety of suggested

strategies, we need to know the state-of-the-art approaches

in this field.

This article presents an investigation on how the

developers’ work can be measured, and how information on

the developers’ work can support the project management

(especially, risk management and people management).

Thus, we performed an exploratory study using a

Systematic Mapping Study (SMS). SMS allows to identify,

interpret and evaluate available evidence from studies on a

topic, phenomenon, or set of research questions of interest

(Kitchenham 2004). A SMS has three phases (Kitchenham

and Charters 2007): i) Planning (we define the motivation,

goals, and research protocol); ii) Execution (we apply the

strategy outlined in the research protocol to identify and

select studies); e iii) Results (we show the analysis of

information obtained from selected studies). Additionally,

we interviewed four PMs to collect their opinion about

results obtained in SMS that can help them in practice.

Thus, we have an initial understanding of how the industry

measures the developer's work.

The remainder of this article is organized as follows:

Section 2 describes a theoretical framework. Section 3

presents the SMS Planning phase. Section 4 describes the

SMS Execution phase. Section 5 presents the SMS Results

phase. Section 6 discusses the results along with the PMs’

opinion. Section 7 describes the threats to validity. Section

8 draws concluding remarks.

2 Background

This section discusses risk management and people

management.

2.1 Risk Management

In PMBoK (Project Management Body of Knowledge), Risk

Management is an area of knowledge that aims to identify,

evaluate, and monitor the positive (opportunities) and

negative (threats) risks that may affect the project (PMI

2017). The most critical activities for the PMs when a

problem emerges are to evaluate and monitor risks

(Sommerville 2019). This area comprises five processes

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

(Plan Risk Management, Identify Risks, Perform Qualitative

Risk Analysis, Perform Quantitative Risk Analysis, and Plan

Risk Responses). There are several techniques for analyzing

threats. When choosing a threat analysis technique, the PM

needs to pay attention to the characteristics of the project to

avoid impacts on the quality of the analysis results (Tuma,

Gül, and Riccardo 2018). Effective performance of risk

management can directly impact project success or failure

(Menezes et al. 2019).

The risks can affect the project schedule or resources

(project risks), software quality or performance (product

risks), or organization that produces or acquires software

(business risks) (Sommerville 2019). For example, the

departure of an experienced developer can represent:

 Project risk, because this departure affects the schedule

due to the loss of human resources;

 Product risk, because the developer who substitutes an

experienced developer can have different skills and

project knowledge; and

 Business risk, because the developer’s experience

impacts the signing of contracts.

Many existent risks in software projects relate to the

development team. Specifically, one risk addressed in the

literature is the lack of technical skills of some team

members (Menezes et al. 2019), leading to investments in

training or hiring people. Another risk mentioned as a

constant concern for PMs is developer turnover associated

to concentration of knowledge regarding source codes. In

this situation, the project can fail if these developers leave

the project/organization earlier than expected (Ferreira et

al. 2017). An alternative in order to mitigate this is to

identify the people who concentrate the knowledge on

source code and distribute it among all team members

(developers).

2.2 People Management

In PMBoK, Resource Management is a field of knowledge

that aims to identify, acquire, and manage the resources

needed for successful project completion (PMI 2017). This

area comprises six processes (Planning of Resource

Management, Estimate Activity Resources, Acquire

Resources, Develop Team, Manage Team, and Control

Resources).

In software projects, the team members play different

roles. Thus, PMs need to consider the members’ technical

skills and personality to assemble the teams. In order to

correctly manage people, PMs should (Sommerville 2019):

 Have an honest and respectful relationship with those

involved in the project;

 Have people who are motivated to perform their

functions;

 Support teamwork and maintain relationship of trust

among everyone, enabling the team to self-manage;

 Select team members to optimize performance and meet

the projects’ technical and human requirements;

 Organize the working method and team members’ roles;

and

 Ensure effective communication between the people

involved.

Despite the existing recommendations, there are studies

that show that PMs can hardly organize performance teams

in a systematic and repeatable way (Latorre and Javier

2017). Understanding people’s characteristics, assigning

tasks, and recognizing the work done are complex and

relevant tasks for PMs (Zuser and Grechenig 2003).

3 SMS Planning Phase

This section describes the SMS Planning phase and

presents the research protocol and its validation and the

data extraction procedure.

3.1 Research Protocol

The research protocol includes the strategies used for

retrieving and selecting studies that are relevant to the topic

of interest in the research (Kitchenham 2004). In this

protocol, we defined the research questions, the procedure

used to conduct SMS, the inclusion and exclusion criteria

for selecting the studies, and how to obtain and classify

information. In Table 1, we showed the research questions

and the goals for answering them. The primary research

questions help to understand the measurement of the

developers’ work to support PMs and consist of the main

results of this study. The secondary research questions

provide insight into the characteristics of the scientific

studies found in the SMS.

We selected the ACM, IEEE, and Springer repositories

of scientific papers. In addition, we chose Ei Compendex

and Scopus because they index other repositories. They

publish papers from the most important conferences and

journals in Software Engineering (Ambreen et al., 2018;

Bouchkira 2020). Additionally, we elaborated on a search

string (Table 2) that contains five parts of key terms aligned

with the research questions to retrieve studies in these

repositories. Each set is composed of a key expression and

its synonyms, as follows:

 Part 1 refers to the action required to obtain the metrics

on the developers’ work. We defined it by measure OR

measurement OR mensuration OR dimension OR

evaluation OR analyze OR analysis OR view OR

visualization OR knowledge;

 Part 2 refers to the object to be measured (the

developer’s work). We defined it by contribution OR

participation OR productivity OR skills OR

collaboration OR effort OR knowledge;

 Part 3 refers to who is evaluated by the measurement.

We defined it by developers OR “software development

team” OR “team members”;

 Part 4 refers to whoever is interested in the metrics

obtained from the measurement. We defined it by

“software project manager” OR “project manager”

OR “project managers” OR “software project” OR

“project management”; and

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

 Part 5 refers to the method or tool used to measure. We

defined it by tool OR framework OR plugin OR method

OR metric OR factors.

Only Part 1 was searched in the title of the studies

because it is related to “measurement” and is relevant to the

retrieved studies regarding the SMS goal (we used search

engine tokens). When we enlarged the search for other

items (besides the title), the number of returned studies

increased significantly; these studies treat issues that are

distant from the objective of this study. We searched the

other parts (Parts 2 - 5) in titles, abstracts, and keywords.

Table 1. Research Questions

Primary Research Questions

Research Question Goal

Q-P.1 - What metrics are used by PMs to measure the developers’ work? To identify metrics about the developers’ work.

Q-P.2 - How are metrics applied by PMs to monitor the developers’

work?

To identify how PMs extract and analyze the

metrics to measure the developers’ work.

Q-P.3 - How do metrics concerning the developers’ work support project

management, especially with regard to risk management and people

management?

To identify how metrics regarding the

developers’ work support project management

(risk management and people management).

Secondary Research Questions

Q-S.1 - What type of solution is often proposed for studies in this area?

To identify the type of solution proposed in

studies to measure the developers’ work and

support the PMs’ decision.

Q-S.2 - What type of research methodology is often used for studies in

this area?

To identify the research methodology used in

studies to verify their maturity.

Q-S.3 - How is the proposed solution related to the research methodology

in the included studies?

To identify the maturity of the solutions

presented in studies. For example, how the

researchers evaluated the metrics used for

measuring the developers’ work.

Table 2. Search String

(measure OR measurement OR mensuration OR dimension

OR evaluation OR analyze OR analysis OR view OR

visualization)

AND

(contribution OR participation OR productivity OR skills

OR collaboration OR effort OR knowledge)

AND

(developers OR “software development team” OR “team

members”)

AND

(“software project manager” OR “project manager” OR

“project managers” OR “software project” OR “project

management”)

AND

(tool OR framework OR plugin OR method OR metric OR

factors)

Next, we established the selection process, which

defines the inclusion and exclusion criteria. For inclusion

criteria, the study should be a primary study addressing the

mensuration of developers’ work to support the PMs’

activities. For exclusion criteria, we removed studies that

(i) do not have complete scientific contributions (e.g.,

abstracts), (ii) are not scientific studies (e.g., standards and

tables of contents), (iii) do not have complete texts, or (iv)

have restricted access.

Subsequently, a procedure that involved the efforts of

four researchers was defined to select the studies.

Researchers A and B performed the activities planned for

SMS. Researcher C (experienced) helped Researchers A

and B. Researcher D (the most experienced) supervised the

work. The procedure consisted of the following stages:

 To apply the search string. Researcher A applied the

search string in the digital repositories and stored the

retrieved studies in the Mendeley reference

management system (https://mendeley.com);

 To remove duplicates. Researchers A and B analyzed

the information from the studies retrieved in the

previous stage in order to identify and remove duplicate

ones. They used a Mendeley feature to identify

duplicate studies. They then removed indexed studies

with fewer keywords because those with more

keywords in the digital database can be considered as

better characterized;

 To apply exclusion criteria. Researchers A and B

applied the exclusion criteria. Researcher C monitored

the exclusion;

 To select potential studies. Researchers A and B

independently read the resulting studies’ title, abstract,

and keyword from the previous stage to identify those

with the potential to meet the inclusion criteria. They

classified them as “with potential”, “without potential”,

or “doubtful” (unsure about the potential). Both

researchers admitted the maximum of potential studies.

Next, they merged their classification following two

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

decision criteria (Accepted or Reject) (Bin Ali and

Petersen 2014). The researchers accepted a study if both

classified it as “with potential” or if at least one

classified it as “with potential”. The researchers rejected

the study if both classified it as “without potential” or if

one researcher classified it as “without potential” and

the other classified it as “doubtful”. Researcher C

monitored the classification process; and

 To apply inclusion criteria. Researchers A and B read

the full text of the resulting studies from the previous

stage and defined five quality questions for scoring the

studies (Table 3) to apply the inclusion criteria. Each

question could receive the value 1 (Yes), 0 (No), or 0.5

(Partly). Thus, the minimum score is 0 and the

maximum score is 5. After assigning scores

individually, Researchers A and B calculated the

arithmetic mean for each study ((Researcher A score +

Researcher B score)/2). This calculation represents the

study’s final score for the inclusion criteria. Finally,

they accepted studies with a final score equal to or

greater than 2.5 (50%) (Bin Ali and Petersen 2014).

Researcher D analyzed the accepted studies to assess

their relevance for SMS.

Table 3. Quality Questions for Inclusion Criteria

ID Quality Questions

Q1 Are the aims of the research explicitly defined?

Q2 Are the metrics explicitly reported?

Q3 Are the metrics related to a software activity?

Q4 Are the metrics clearly described or defined?

Q5
Are the findings related to a project management

activity?

3.2 Evaluation of the Research Protocol

We evaluated the research protocol before starting the

Execution phase (Kitchenham and Charters 2007) to assess

the feasibility of performing SMS and identifying the

changes necessary in order to improve the quality of the

retrieved studies. This evaluation occurred with one test

that defined a group of primary studies (control group) to

be retrieved by the research protocol. We set the group of

control with 7 studies through an ad-hoc literature review,

using Google Scholar to search for studies related to the

SMS goal.

We refined the search string and applied it to the search

engines until they returned all the studies from the control

group. Keywords in Part 1 (Table 2) are general; the

measurement process is commonly applied in the studies to

validate their results. Therefore, we restricted Part 1 to be

searched only in the title of the studies. Consequently, we

found six studies from the control group; we added the

other study manually. Table A1 - Appendix A lists the

studies from the control group (P20 - protocol did not

retrieve, and P21, P23, P24, P30, P33, and P39).

3.3 Data Classification and Extraction

Procedure

We established a procedure to classify and extract data

from the selected studies in nine categories:

 Information on the publication. To collect data related

to the study’s publication, such as title, authors, year of

publication, and publication media (journal/event), and

use them to track general information on the studies;

 Proposal of Solution. To collect data on the solution

and classify it as “Overview”, “Method”, “Model”,

“Metric”, and “Tool” (Petersen et al. 2008). This

category helps to Q-S.1 and Q-S.3;

 Research Methodology. To collect data on the research

methodology and classify it as “Evaluation Research”,

“Proposal of Solution”, “Validation Research”,

“Opinion Studies”, “Experience Studies”, and

“Philosophical Studies” (Wieringa et al. 2006). This

category helps to answer Q-S.2 and Q-S.3;

 Metrics to measure the developers’ work. To collect

metrics used by PMs to measure the developers’ work.

This category helps to answer Q-P.1;

 Data source on the developers’ work. To identify data

sources used as input to apply metrics. This category

helps to answer Q-P.2;

 Method to extract data and apply metrics. To

identify the method used to obtain the metrics from the

data sources and apply them (e.g., mining of source

code repositories and collecting feedback from team

members). This category helps to answer Q-P.2;

 Context of metrics extraction and application. To

collect metrics in a context: i) type of software

(proprietary or open-source) and ii) environment to

collect team data (academic or industry). This category

helps to answer Q-P.2;

 Method for presenting results to PMs. To identify

information about how to present metrics to PMs. This

category helps to answer Q-P.2; and

 Support for project management. To identify how the

metrics of the developers’ work support PMs in project

management, especially in risk management and people

management. This category helps to answer Q-P.3.

4 SMS Execution Phase

We performed the SMS Execution Phase between March

and November 2019. First, we customized and applied the

search string in the selected search engines, considering

their specificities. We used the search string in the:

 Single search field without filters (ACM Digital

Library);

 Advanced Search field without filters (Scopus);

 Single search field with the filter “Content-Type:

Conference Publications, Journals & Magazines” (IEEE

Xplore);

 Single search field with the filter “Controlled

Vocabulary: Software Engineering” (Ei Compendex);

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

 Single search field with the filters “Discipline:

Computer Science; Subdiscipline: Software

Engineering; Content-Type: Article” (Springer).

Next, we selected the studies, and the results were as

follows (Table 4):

 Application of the search string. We retrieved 1,381

documents (Filter 1). Of these, 240 documents were

from ACM (17.4%), 433 documents were from IEEE

(31.4%), 169 documents were from Scopus (12.2%),

141 documents were from Ei Compendex (10.2%), and

398 documents were from Springer (28.8%);

 Removal of duplicates. After removing duplicate

documents, 1,305 documents remained (Filter 2). Of

these, 239 documents were from ACM (18.3%), 421

documents were from IEEE (32.3%), 115 documents

were from Scopus (8.8%), 134 documents were from Ei

Compendex (10.3%), and 396 documents were from

Springer (30.3%);

 Application of exclusion criteria. After applying the

exclusion criteria (after which only studies remained),

1,205 studies remained (Filter 3). Of these, 212 studies

were from ACM (17.6%), 415 studies were from IEEE

(34.4%), 77 studies were from Scopus (6.4%), 115

studies were from Ei Compendex (9.6%), and 386

studies were from Springer (32.0%). At this stage, the

results returned were only studies;

 Selection of potential studies. After reading the titles

of the studies, abstract, and keywords, 61 studies were

retrieved (Filter 4). Of these, 7 studies were from ACM

(11.5%), 32 studies were from IEEE (52.5%), 8 studies

were from Scopus (13.1%), 8 studies were from Ei

Compendex (13.1%), and 6 studies were from Springer

(9.8%); and

 Application of inclusion criteria. After applying the

inclusion criteria, we retrieved and read 40 studies.

Additionally, we added the (only) non-recovered study

(from the control group) by the protocol, totaling 41

accepted studies (Filter 5). Of these, 4 studies were

from ACM (9.8%), 27 studies were from IEEE (65.9%),

6 studies were from Scopus (14.6%), 3 studies were

from Ei Compendex (7.3%), and 1 study was from

Springer (2.4%).

Table 4. Summary of Selection Stages

Repositories
Filter 1 Filter 2 Filter 3 Filter 4 Filter 5

A A R A R A R A R

ACM 240 239 1 212 27 7 205 4 3

IEEE 433 421 12 415 6 32 383 27 5

Scopus 169 115 54 77 38 8 69 6 2

Ei Compendex 141 134 7 115 19 8 107 3 5

Springer 398 396 2 386 10 6 380 1 5

Total 1,381 1,305 76 1,205 100 61 1,144 41* 20
* Included Studies from the Control Group

5 SMS Results Phase

The studies resulting from the SMS are presented in Table

A1 (Appendix A), containing identifiers, authors, year of

publication, and repositories. When extracting the data

from the studies, we could observe that the date of the

resulting studies began in 2003 and had a publication

frequency (average) of 2 studies. Over the years, two

periods had more publications on the subject (2008 and

from 2014 to 2016), with an average of 5.5 studies

published (Figure 1).

Figure 1. Annual Distribution of Selected Studies

Additionally, when analyzing the publication media,

conferences and symposiums published 31 studies (75.6%),

journals published 5 studies (12.2%), and workshops

published 5 studies (12.2%). The International Conference

on Software Maintenance and Evolution (ICSME)

published more studies (5 studies).

To answer the secondary research question

Q-S.1 - What type of solution is often proposed for

studies in this area?

we mapped the studies regarding the proposal of solutions

to investigate the study theme, which could be (Figure 2):

 Method defines workflows, rules, or procedures on

how to perform an activity. It was present in 9 studies

(22.0%);

 Model describes conceptual representation with a

formal abstraction of details and notations. It was

present in 9 studies (22.0%);

 Metric describes new metrics or one measurement plan.

It was present in 9 studies (22.0%);

 Overview describes and compares information to

provide an overview of the subject. It was present in 4

studies (9.7%); and

1 1
0

1

3
4

2
1

0
1

3

5
6 6

3
2 2

0
1
2
3
4
5
6
7

2
0
0

3

2
0
0

4

2
0
0

5

2
0
0

6

2
0
0

7

2
0
0

8

2
0
0

9

2
0
1

0

2
0
1

1

2
0
1

2

2
0
1

3

2
0
1

4

2
0
1

5

2
0
1

6

2
0
1

7

2
0
1

8

2
0
1

9

Number of studies

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

 Tool describes and provides one computational tool. It

was present in 10 studies (24.3%).

These solutions result from keywords often found in

Software Engineering studies (Petersen et al. 2008). This

mapping will allow us to assess where the community was

more focused, i.e., on proposing new metrics or developing

new tools to collect the existing metrics.

Figure 2. Proposal of Solutions

The identification of the solutions considers the first

solution proposed in the study; the “Metric” and “Tool”

solutions were also found as secondary solutions in other

studies. All studies used the “Metric” solution. The “Tool”

solution was used in 4 studies to support the “Metric”

solution (26.7%), in 4 studies to support the “Method”

solution (26.7%), 5 studies to support the “Model” solution

(33.3%), and 2 studies to support the “Overview” solution

(13.3%). In the following items, we discussed proposals for

primary solutions:

 Method was used to mine information and knowledge

to support collaborative programming and resource

allocation. Workflow analysis and interaction among

developers facilitate project understanding and

development (P10, P16, P32, P37), considering

collaborative programming. Historical details of

resource allocation and individual skills were analyzed

to distribute tasks to team members recognizing each

developer’s competencies (P1, P6, P11, P36),

considering resource allocation;

 Model was used to analyze individual participation,

which investigated the collaborative software

engineering context in order to share information and

organize tasks and resources. Hence, the identified

models evaluated the developers’ performance,

considering the development environment and team

feedback (P2, P7, P20), the building of the development

team based on the activity, profile and experience of the

developers (P4, P18, P34, P41), and the assessment of

how the developers’ roles evolved, based on their

contributions (P19, P24);

 Metric was collected in source code repositories, bug

tracking systems, or version control systems. From

these metrics, indicators were taken from the

developers’ work, e.g., productivity (P8, P9, P17, P21,

P22, P23, P25), collaboration (P8, P9, P21, P22, P23),

experience (P8, P9, P21, P22, P26), interaction (P8,

P22), and task accomplishment indicators (P8, P9, P23,

P25, P38);

 Overview consists in the investigation of how PMs

understand the developers’ work compared different

factors regarding developers’ personality and activity.

PMs interviewed developers to identify the most

appropriate profile for a task (P15, P33) and compared

methods used to estimate the developers’ work (P29,

P35); and

 Tool was used to support PM activities. Using

automated resource allocation in software projects can

help PMs in analyzing the variables needed for resource

allocation. PMs can examine the software development

process through information extracted from software

repositories (P3, P13, P14, P30, P39) and developers’

evolution (P5, P12, P28, P30, P31, P40).

To answer the secondary research question

Q-S.2 - What type of research methodology is

often used for studies in this area?

we mapped studies according to the research methodology

used (Figure 3):

 Proposal of Solution proposes a solution technique and

defends its relevance with one small example, or one

good argumentation - 13 studies (31.7%) classified;

 Validation Research investigates a solution technique

within a specific context through experiments, surveys,

or interviews to answer a particular research question -

16 studies (39.0%) classified. This methodology does

not require more formal experimental methods (e.g.,

hypothesis testing, control experiment);

 Evaluation Research investigates the relationship

among phenomena through formal experimental

methods where casual properties are studied

empirically, such as case studies, field studies, and field

experiments - 12 studies (29.3%) classified;

 Experience Studies explains how something has been

done in practice based on the author’s experience - no

study classified;

 Opinion Studies reports the author’s opinion on how

things should be - no study classified; and

 Philosophical Studies structures the information

regarding a specific field like one specific taxonomy or

conceptual framework, resulting in a new way of

looking at existing things - no study classified.

We used three levels of research maturity (high rigor,

medium rigor, and low rigor) related to the study subject

(Garousi et al. 2015). The “Proposal of Solution”

methodology has low rigor because it provides simple

examples to verify its applicability. The “Validation

Research” methodology has medium rigor because it does

not include hypothesis testing nor discussions on threats to

validity. The “Evaluation Research” methodology has high

rigor because it includes hypothesis testing and discussions

4

9

9

10

9

15

32

0 20 40 60

Overview

Model

Method

Tool

Metric

Primary Solution Secondary Solution

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

on threats to validity. Given the distribution of studies in

these methodologies (Figure 3), there are more empirical

studies than proposal of solution, indicating high research

rigor in this area.

Figure 3. Research Methodology

To answer the secondary research question

Q-S.3 - How is the proposed solution related to

the research methodology in the included studies?

we performed an integrated analysis of the results obtained

in Q-S.2 and Q-S.3. The information on the number of

studies by research methodology and type of primary

solution were listed and presented in Figure 4. We can

observe that many studies showed the “Metric”, “Method”,

and “Model” methodologies as a solution in the “Proposal

of Solution”, “Validation Research”, and “Evaluation

Research” methodologies, i.e., they were evaluated in the

three maturity levels (high, medium, and low rigor).

However, many intersections have zero values. For

example, in studies that presented the “Tool” solution, only

evaluations with low and medium rigor were conducted

using the “Proposal of Solution” and “Validation Survey”

methodologies. Therefore, this solution needs robust

empirical studies. Besides, there are no solutions related to

the “Experience Studies”, “Opinion Studies”, and

“Philosophical Studies” methodologies, which highlights

the need for studies in this field.

To answer the primary research question

Q-P.1 - What metrics are used by PMs to measure

the developers’ work?

we collected 64 metrics used to measure the developers’

work (Table 5) and categorized them into 6 groups (Figure

5). In this categorization, we considered the similarity

between the meanings and purpose of the metrics. Thus, we

merged two metrics with different names when their aims

and values were the same. Besides, there were cases in

which the metrics with the same name measured different

information. In those cases, we separated them into two or

more metrics and changed their names. One example was

the Collaboration (files) and Collaboration (interaction)

metrics. The first one relates to the joint work on code files,

and the second one relates to the exchange of information

and help by teammates. The categories are:

 Quality (Qua). This group refers to the quality of work

delivered (task or source code). It covers the Martin

(Martin 1994), CK (Chidamber and Kemerer 1994),

size, and complexity metrics (P8, P9, P11, P14, P23,

P25, P33, P39, P38). It comprises 11 metrics in 9

studies (22%);

Figure 4. Relationship between Methodologies and Proposal of Solution

 Contribution (Con). This group refers to the amount of

work performed by the developers on the software

artifacts (P2, P3, P4, P5, P8, P9, P10, P11, P12, P13,

P14, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25,

P26, P27, P28, P29, P30, P32, P33, P34, P35, P37, P39,

P40). It covers metrics related to the number of commits

and the number of modified/added/removed lines of

code (Code Churn). It comprises 39 metrics in 33

studies (80.5%);

 Collaborative Work (CoW). This group refers to

information sharing and teamwork to develop the same

software artifact (P3, P7, P8, P9, P10, P12, P14, P18,

P21, P22, P23, P30, P39, P40). It covers metrics related

to the messages exchanged regarding bugs and the

commits performing or lines of code in the same

artifact. It comprises 4 metrics in 14 studies (34.1%);

 Degree of Importance (ImP). This group refers to

technology domains, developer reputation, participation

time in projects, and type of work (e.g., bug fix) (P4,

P5, P7, P8, P9, P13, P14, P15, P17, P18, P19, P20, P21,

P22, P26, P27, P29, P31, P32, P33, P34, P35, P37). It

comprises 20 metrics in 23 studies (56.1%).

 Productivity (Pro). This group refers to the number of

tasks performed within a given time (P2, P8, P17, P20,

P24, P25, P33, P34, P36). It relates to the number of

modified/added/removed lines of code, the number of

commits, or the report on tasks completed in a period. It

comprises 7 metrics in 9 studies (22%); and

0

0

0

12

13

16

0 5 10 15 20

Experience Studies

Philosophical Studies

Opinion Studies

Evaluation Research

Proposal of Solution

Validation Research

Number of Studies

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table 5. Metrics to Measure the Developers’ Work

Metrics Interpretation Reference # Metrics Interpretation Reference

1 % of Commits Con P22, P8 28 Contribution Start Con, ImP P34

2 % of Lines of Code ImP, Con P19, P35 29 Cost Pro P2

3 Authorship by Guilt Con P35 30 CQI Qua P14

4 CDI Qua P14 31
Developer

Fragmentation
Con P14, P22, P24

5
Change Code

Documentation (CAD)
Con P8, P11 32

Degree of

Authorship (DOA)
Con P29, P35

6 CK Metrics Qua P9, P38 33 Effort on commit Pro, Con P17

7 Close a Bug (BCL) ImP P9, P19, P8 34
Effort per

Modification
Pro, Con P25, P2

8
Close a Bug that is then

Reopened (BCR)
ImP P8 35

Expected Shortfall

(ES)
Con, ImP P37

9
Close a Lingering Thread

(MCT)
Pro P8 36 Expertise ImP P18, P31

10 Code Duplication Qua P11 37
Expertise Breadth of

a Developer (EBD)
Con, ImP P26

11
Collaboration

(CodeChurn)
CoW, Con P7 38

Expertise of a

Developer (ED)
Con, ImP P21, P26

12 Collaboration (Files) CoW, Con

P14, P3,

P10, P12,

P30

39
First Reply to Thread

(MRT)
ImP P8

13
Collaboration

(Interaction)
CoW, Beh P21, P40 40 Hero Con, ImP P13

14
Comment on a Bug

Report (BCR)
Con P19, P8 41

Knowledge at Risk

(KaR)
Con, ImP P37

15
Commit Binary Files

(CBF)
Con P8 42 Knowledge Loss Con, ImP P32, P37

16
Commit Code that

Closes a Bug (CCB)
Con P39, P8 43

Last Committer

“Takes All”
Con P35

17

Commit Comment that

Includes a Bug Report

Num (CBN)

Con, ImP P17, P19, P8 44

Link a Wiki Page

from Documentation

File (WLP)

Qua P8

18
Commit Documentation

Files (CDF)
Con P39, P8 45 Martin Metrics Qua P38, P11

19
Commit Fixes Code

Style (CSF)
Qua, Con P39, P8 46

Mastery of

Technologies
ImP, Con P27, P33

20

Commit Multiples Files

in a Single Commit

(CMF)

Con
P19, P22,

P28, P8
47 Monthly Effort Pro P20, P2

21
Commit New Source

File or Directory (CNS)
Con P8 48 MTBC Pro P34

22

Commit with Empty

Commit Comment

(CEC)

Con P8 49
Number of Active

Days
Con, ImP

P9, P12, P20, P19,

P30, P34, P29, P39

23 Commitment ImP, Beh
P7, P33,

P15
50

Number of Code

Churn
Con P20, P34

24 Commits Versatility Con P34 51 Number of Commits Con P14

25 Complexity and Size Qua
P9, P23,

P38, P11
52

Number of Lines of

Code (NLOC)
Con, CoW

P16, P19, P3, P9,

P14, P21, P18, P22,

P23, P39, P8, P40

26 Contribution Duration Con, ImP P34 53
Participate in a

Flame War (MFW)
Beh P8, P14

27 Contribution Factor Con P8 54 QCTE Qua P5, P4, P14, P35

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table 5. Metrics to Measure the Developers’ Work (cont.)

Metrics Interpretation Reference # Metrics Interpretation Reference

55 QMood Metrics Qua P38 60
Start a New Wiki

Page (WSP)
Con P8

56 Report a Bug (BRP) ImP P8 61 Status ImP P22

57 Rework Qua P25, P33 62 Task Delivery Pro P24, P33, P36

58 Source Abandoned Con, ImP P32, P37 63 Truck Factor Con, ImP P13, P29, P35

59
Start a New Thread

(MST)
Con P8 64

Update a

Wiki Page (WUP)
Con P22

 Behavior (Beh). This group refers to the developers’

behavior, such as focus, proactivity, communication

skills, and interaction with the team, to identify

members’ engagement and commitment to the project

(P7, P8, P15, P19, P22, P33). It comprises 5 metrics in

6 studies (14.6%).

For example, the Truck Factor metrics calculate the

minimum number of developers who have to leave a

project for it to be delayed (high probability). If this

measurement returns a value of 1, it indicates that one

developer has all the knowledge on the project. Therefore,

project development can be delayed if this developer

abandons it. Analogously, if this measurement returns a

value of 3, it indicates that 3 developers have all the

knowledge on the project. Thus, the project’s development

can be delayed if these developers abandon it. If only a

single developer has the all knowledge on the project, the

Hero metric indicates that this one is a “hero”. Both metrics

consider the developers’ contribution towards devising the

files, meaning their level of expertise in the project (Con,

ImP).

Figure 5. Categories of Metrics

To answer the primary research question

Q-P.2 - How are metrics applied by PMs to

monitor the developers’ work?

we considered (i) data sources used to obtain information

on the developers’ work (Table 6), (ii) the extraction

method of this information for the application of metrics

(Table 7), (iii) context in which the metrics were extracted

(Figure 6), and (iv) presentation of the results for PMs to

analyze (Table 8).

We identified 5 data sources: i) Source Code

Repositories (supported by Version Control Systems) in 28

studies (68.3%); ii) Bug Repositories in 7 studies (17.1%);

iii) Activity Management Repositories in 4 studies

(9.8%); iv) Source Code Files in 5 studies (12.2%); and v)

People (team members and/or PMs) in 7 studies (17.1%).

We would like to point out that 8 studies used more than

one data source (19.5%). The first four data sources

provided impersonal data, and only the last one offered

subjective data.

Table 6. Data Sources on the Developers’ Work

Data Sources References

Code

Repositories

P3, P5, P8, P10, P9, P12, P13, P14,

P16, P19, P20, P21, P22, P24, P23,

P25, P26, P28, P29, P30, P31, P32,

P34, P35, P37, P38, P39, P40

Bugs Repositories P8, P9, P17, P19, P23, P25, P39

Activity

Management

Repositories

P8, P19, P22, P36

Source Code Files P2, P4, P11, P17, P18

People P1, P6, P7, P15, P27, P33, P41

Table 7. Strategies for Data Extraction and Metrics Application

Strategies References

Automated

Tools

P2, P3, P4, P5, P8, P9, P10, P12, P11,

P13, P14, P16, P17, P18, P19, P20,

P26, P28, P29, P30, P31, P35, P36,

P39, P40

Manual Process
P21, P22, P23, P24, P25, P32, P34,

P37, P38

Questionnaires,

PMs’ Intuition,

Focal Groups,

and Interviews

P1, P6, P7, P27, P33, P15, P41

Figure 6: Extraction Context of Value of the Metrics

3

7

23

2

3

3

0 5 10 15 20 25

Academic/Industrial

Academic

Industrial

Author’s example

Proprietary

Open-source

Subjective Data Objective Data

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

We found two strategies for data extraction and metrics

application from impersonal data sources (Table 7): i) use

of automated tools (25 studies - 61%); and ii) manual

process (9 studies - 22%). We considered the impersonal

data source to identify a strategy composed of

questionnaires, PMs’ intuition, focal groups, and interviews

(7 studies - 17.1%).

Table 8. Strategies to Present Information

Presentation Form References

Textual

P1, P4, P13, P14, P16, P19, P18,

P22, P25, P26, P27, P29, P30, P31,

P34, P35, P36, P39

Graphical

P2, P9, P10, P13, P11, P14, P17,

P16, P18, P19, P20, P22, P25, P26,

P31, P34, P38, P40

Visualization

Techniques

P3, P5, P7, P9, P10, P12, P16, P28,

P30, P39

Additionally, we analyzed the data source used to

identify the metrics application context (Figure 6). We

analyzed the type of software in which the extraction of

impersonal data used metrics (33 studies): i) proprietary

software (7 studies - 21.2%); ii) open-source software (23

studies - 69.7%); and iii) author’s example (3 studies -

9.1%). For the impersonal data extraction, we analyzed the

contexts in which interviews, questionnaires, and focus

groups were held (8 studies): i) academic (3 studies -

37.5%); ii) industrial (3 studies - 37.5%); and iii)

industrial and academic (2 studies - 25%).

For the extraction of impersonal data in an open-source

context, the metrics were used with a frequency (median)

of three software per study (P3, P4, P5, P8, P9, P10, P12,

P13, P14, P16, P17, P18, P19, P20, P26, P29, P30, P31,

P34, P35, P36, P38, P39 - 23 studies). The most widely

used open-source software systems for data extraction were

Eclipse (P4, P17, P19, P31 - 4 studies), JEdit (P5, P9, P13,

P30 - 4 studies), Apache (P26, P31, P36 - 3 studies), and

OpenStack (P20, P31 - 2 studies). In the proprietary

software context, the studies used metrics in just one

system (P11, P16, P21, P23, P25, P32, P40 - 7 studies). In

the context the author used as an example, they used

examples to show the metrics value extraction (P22, P24,

P28 - 3 studies). In order to extract subjective data in the

academic context, undergraduate students in computer

science and business informatics were interviewed (P1,

P15, P41 - 3 studies). In the industry context, interviews

with product engineers and project managers were carried

out (average = 12 people/study) (P2, P6, P7, P27, P33 - 5

studies).

From the context of classification used for data

extraction, we identified that the studies analyzed the same

metric in different contexts. Therefore, the metrics’

applicability to measure the developers’ work does not

depend on a specific context. It is sufficient to use metrics

on software (proprietary or open-source) and developers for

the impersonal and subjective data extraction, respectively.

Besides, we identified three strategies to submit

information to PMs (32 studies - 78%) (Table 8): i)

Textual (18 studies - 56.3%), ii) Graphical (18 studies -

56.3%), and iii) Visualization Techniques (10 studies -

31.3%). We point out 13 studies combining two or more

strategies (40.6%).

To answer the primary research question

Q-P.3 - How do metrics concerning the developers’

work support project management, especially with

regard to risk management and people management?

we identified the project management activities supported

by the information obtained by measuring the developers’

work. It is worth noticing that we defined these activities

using the researchers’ interpretation. We analyzed the

objectives and findings of the studies regarding the

background presented (Section 2). For example, Lima and

Elias 2019 (Lima and Elias, 2019) proposed a systematic

approach to assign people to a specific activity according to

their personality and skills. We used this concept in order to

categorize the activities. After extracting the data, we

merged some categories according to the similarity of their

names and definition. In total, we found 7 activities that

support project management (Table 9), and we highlight the

fact that 16 studies (48.5%) treated two or more activities:

 Identify the skills and the profile of developers (25

studies - 61%);

 Plan improvements to code quality (4 studies - 9.8%);

 Improve team performance (12 studies - 29.3%);

 Estimate project costs and deadlines and identify

anomalies in developer performance (15 studies -

36.6%);

 Understand and control knowledge distribution (9

studies - 22%);

 Adjust pay (2 studies - 4.9%); and

 Identify the need for investment (training or

equipment) (5 studies - 12.2%).

6 Discussion

In this section, we discussed the results obtained with the

SMS and presented the four PMs’ opinions. We collected

their opinions to understand to what extent the metrics

collected could be used to analyze the developers’ work.

The PMs' opinions were collected using the interview

described in Appendix B.

There is a wide variety of existing metrics to measure

the developers’ work (64 metrics). We found two most

commonly used metrics: NLOC (number of lines of code)

(12 studies) and number of commits (9 studies). Table 10

presents 45 metrics created from those metrics above.

There are 17 metrics unrelated to NLOC and the number of

commits (Table 11) and associated with bugs (2 metrics),

documentation (6 metrics), behavior (2 metrics), and

quality (7 metrics) activities.

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table 9. Activities Supported by Information about the Developers’

Work

Activities References

Identify the skills and

the profile of developers

P24, P1, P3, P5, P7, P8, P9,

P10, P11, P12, P14, P15, P20,

P21, P22, P23, P25, P27, P30,

P31, P33, P34, P36, P40, P41

Plan improvements to

code quality
P14, P16, P22, P24

Improve team

performance

P1, P7, P12, P15, P16, P18,

P19, P22, P23, P32, P33, P37

Estimate project costs

and deadlines and

identify anomalies in

developer performance

P1, P2, P6, P8, P9, P11, P12,

P14, P17, P19, P18, P22, P28,

P34, P33

Understand and control

knowledge distribution

P8, P13, P23, P26, P29, P32,

P33, P35, P37

Adjust pay P19, P23

Identify the need for

investment (training or

equipment)

P8, P15, P17, P24, P28

Table 10. Metrics Created from NLOC and Number of Commits

Metrics # Metrics

1 % of Commits 20 Contribution Duration

2 % of Lines of Code 21 Contribution Factor

3 Authorship by Guilt 22 Contribution Start

4 Close a Bug (BCL) 23 Cost

5
Close a Bug that is

then Reopened (BCR)
 24

Developer

Fragmentation

6
Close a Lingering

Thread (MCT)
 25

Degree of Authorship

(DOA)

7 Code Duplication 26 Effort on Commit

8
Collaboration

(CodeChurn)
 27 Effort per Modification

9 Collaboration (Files) 28 Expected Shortfall (ES)

10
Comment on a Bug

Report (BCR)
 29

Expertise Breadth of a

Developer (EBD)

11
Commit Binary Files

(CBF)
 30

Expertise of a

Developer (ED)

12
Commit Code that

Closes a Bug (CCB)
 31 Expertise

13

Commit Comment that

Includes a Bug Report

Number (CBN)

 32 Hero

14
Commit Documentation

Files (CDF)
 33

Knowledge at Risk

(KaR)

15
Commit Fixes Code

Style (CSF)
 34 Knowledge Loss

16

Commit Multiple Files

in a Single Commit

(CMF)

 35
Last Committer “Takes

All”

17

Commit New Source

File or Directory

(CNS)

 36
Mastery of

Technologies

18

Commit with Empty

Commit Comment

(CEC)

 37 Monthly Effort

19 Commits Versatility 38 MTBC

Table 10. Metrics Created from NLOC and Number of Commits (cont.)

Metrics # Metrics

39
Number of Active

Days
 43 Status

40
Number of Code

Churn
 44 Task Delivery

41
Participate in a Flame

War (MFW)
 45 Truck Factor

42 Source Abandoned

Table 11. Unrelated Metrics to NLOC and Number of Commits

Purpose Metrics

1
Bugs

Rework

Report a Bug (BRP) 2

1

Documentation

Change Code Documentation (CAD)

First Reply to Thread (MRT)
Link a Wiki Page from Documentation File (WLP)

Start a New Thread (MST)

Start a New Wiki Page (WSP)

Update a wiki Page (WUP)

2

3

4

5

6

1
Behavior

Commitment

Collaboration (Interaction) 2

1

Quality

CDI

CK Metrics

CQI

Martin Metrics

QCTE

QMood Metrics

Size

2

3

4

5

6

7

Despite the variety of metrics, most of them quantify

the developers’ work regarding their contributions to the

software artifacts development. Hence, 34 metrics form the

Contribution group, which shares metrics with the other

groups created, except the Behavior Group, because it

considers aspects such as focus and commitment, not the

work done by the developers.

PMs could choose any metrics from the 64 metrics

identified in SMS as being essential to measure the

developer’s work. As a result, they mentioned 29 metrics,

of which two or more PMs cited the same 9 metrics. Three

PMs chose 3 metrics (Task Delivery, Number of Commits,

and Rework) showing that the performance on task

delivery, frequency of contribution to the artifacts and

solution generation do not need reworking as the most

relevant inputs to measure the developers’ work. Another

interesting point is the perception of the two PMs who

work in the same company (PM1 and PM4). Although they

have the same amount of experience in Company A, they

have different opinions with regard to measuring the

developers’ work. While PM1 highlighted only 1 metric,

PM4 highlighted 24 metrics. This result shows the

difficulty in finding a consensus regarding how to measure

the developers’ work. None of the PMs suggested using a

metric beyond the 64 metrics presented in Table 5.

Nevertheless, PM1 mentioned code smells as a possible

metric, but he/she did not justify its use. Maybe, the

“number of code smells” can be one metric used to verify

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

the quality of solutions implemented by the developer, but

we need to define how to use it. Besides, PM2 said, “I use

the Task Delivery, Status, and Contribution Duration

metrics using different names (Throughput, Lead Time, and

Cycle Time, respectively)”.

One interesting factor is that the selected studies used

more than one metric for measuring the developers’ work.

This may occur due to task complexity, requiring a lot of

data to analyze the team members’ performance in the

fairest way possible. The proposed organization of the

metrics into groups provides an overview of the “types of

information” used by PMs. However, no studies covered

metrics from all groups.

With regard to the artifact used to extract the value of

the metrics, we found the source code repositories

(managed by Version Control Systems) to be the most

frequently used to collect information about the developers’

work. The information collected includes mainly the

execution of commits and addition/modification/removal of

lines of code. As previously mentioned, they indicate the

degree of contribution to the project and are bases for most

of the metrics listed. For example, we can trace the activity

performed with the commit message if this activity

consisted of a bug fixing. Another interesting point about

NLOC and the number of commits is to apply filters, which

can be: i) Information granularity levels (e.g., the number

of commits performed by one developer in a directory, file

or line of code); and ii) Time intervals (e.g., how much

time the developer takes adding lines of code to the

repository or how much time the developer contributed to

the project in recent months).

Another example of existent information in the source

code repositories is the degree of collaboration among

developers. The variability of possibilities offered by the

data obtained from the source code repositories is

numerous and diverse, in addition to providing support for

the two most representative metrics (number of commits

and NLOC). It can justify the code repositories to be the

data source most often used in the studies found in SMS.

The source code files are other data sources but limited to

questions of complexity and quality code. The source code

file analysis in an integrated development environment

(e.g., Eclipse IDE) overcomes that limitation, which

consists of enhancing it with plugins and enriching

information. For example, we can determine how long one

developer has kept a source code file open or which

developer changed the source code.

Using bug repositories helps to identify the developers’

work regarding bug detection, correction, or generation in

software, providing information on when the developer

contributed to correct bugs or need of reworking. Task

repositories allow managing of bug activities, which can be

supported by tools, such as spreadsheets or specialized

tools. By analyzing the records of tasks performed by the

developers, it is possible to identify information such as the

history of tasks delivered by the developer, including extra

data (e.g., duration), and types of tasks. This information

can be extracted manually or automatically (through

integration with the task repositories).

People’s opinions were collected through feedback from

team members and are based on the PMs’ intuition and

knowledge about the developers, thus producing more

subjective data about their work. Possible information

includes type and frequency of activities, technical and

personal skills, satisfaction, motivation, behavior, and

personality. Questionnaires, interviews, or focus groups are

used to extract such information.

Interestingly, source code repositories used with other

data sources are trivial and are a valuable data source to

obtain information about the developers’ work. Again, the

complexity of quantifying developers’ work explains this

use. Such complexity can be the reason for using automated

tools for data extraction and metrics application and is the

most commonly used strategy to obtain the metrics on the

developers’ work (28 studies - 68.3%). Automated tools

include web systems, software executed via command

terminals, and plugins for integrated development

environments. The web systems offer more value to PMs

among the automated tools because the other tools have no

graphical interface and are limited, and any devices and

operating systems (using a web browser) can access web

systems.

Another aspect observed in SMS, motivated by the

complexity of measuring the developer’s work, is the

balance between the three ways of presenting the

information measured to PMs (textual - 56.3%, graphical -

56.3%, and visualization techniques - 31.3%). The studies

used text to show uncomplicated information, graphical for

group information, and visualization techniques when the

amount of information displayed was higher. Several

studies (40.6%) used a combination of these presentation

forms.

We also noticed that 7 activities inherent to PMs can be

supported by measuring the developers’ work. The

activities can be related to the definitions described in

PMBoK for People Management, Risk Management,

Project Quality Management, and Resource Management.

In “Identifying the skills and profile of the developer”

activity, the PM chooses the members for a project team

considering the skills and professional profile required to

achieve the project goals. This activity supports the task

allocation, considering the most appropriate person to

perform a function (People management). Risk

management can be supported, for example, in the

following way: the PM can consider that the people

available for the project do not have sufficient project

technology skills (risk: not obtaining excellent project

performance). Therefore, close monitoring of the team’s

work is necessary, as well as hiring a consultancy firm.

In the interview, the PMs pointed out the metrics they

consider useful to carry out the “Identify the skills and the

profile of developers” activity. Thus, they identified 21

metrics among the 64 metrics found in SMS. The most

frequently mentioned metric (three PMs) was Commitment.

This metric provides information on the developer’s

behavior. Other metrics mentioned by more than one PM

were Collaboration (Interaction), Mastery of Technologies,

Contribution Factor, Complexity and Size (5 metrics). The

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

PMs’ vision is to measure how committed the developer is

to the project and the team, how much the developer

collaborates with colleagues, and their mastery of project

technologies, enabling them to contribute to the

implementation of complex solutions for the software.

Besides, more than one PM considered other relevant

metrics. Such metrics provide information about the

complexity of tasks performed by the developer, the

contribution factor in software artifacts, the technical

capacity in design technologies, and performance in

collaboration with colleagues.

In the “Planning Improvements to Code Quality”

activity, PMs analyze the quality of the solutions delivered

by the developers. The answers must meet the expectations

of those involved with the project (including team, PMs

and customers) and should be good enough to avoid

rework. Quality is a factor related to project management,

and there is an area of knowledge in PMBoK called Project

Quality Management for this factor.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Planning Improvements to

Code Quality” activity. Thus, they identified 17 metrics

among the 64 metrics found in SMS. Two or more PMs

mentioned the same 2 metrics (Rework and Collaboration

(interaction)). The PMs’ view of this activity is

significantly divergent. In the opinion of PM1,

documentation is the main point, considering the writing

software-specific documents and the documentation made

from commits in code repositories. For PM2, the solution-

generated quality and bugs reported for lines of code that

the developers created are interesting for quality checking.

PM3 considers that developer’s experience and how much

knowledge he/she shares with other team members are the

main way to ensure that code quality is satisfactory. For

PM4, object-oriented code quality metrics, the quality of

the implemented solution and the developer’s ability to

work in various code parts provide inputs to observe source

code quality. In general, metrics are used for

documentation, implementation quality, and generated

rework.

In “Improving Team Performance” activity, there is a

dependency on measuring the developers’ work, because

measuring the team’s performance (to determine the current

state) is necessary in order to plan and apply actions to

leverage performance (to promote improvement) and to

remeasure it (to the new state). This activity is essential for

people management, such as defining teams, assigning

roles, communicating, and organizing work, thus

contributing to performance improvement.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Improving Team

Performance” activity. Thus, they identified 15 metrics

among the 64 metrics found in SMS. Out of these, two or

more PMs mentioned the same 6 metrics (Collaboration

(Files), Collaboration (Interaction), Mastery of

Technologies, Expertise, Collaboration (CodeChurn), and

Closing a Bug that is then Reopened (BCR)). PMs share a

similar view on performance: the developer with the

technical knowledge, experience, and participation in

various parts of source code gets the best performance.

Besides, performance is analyzed by looking at not just one

developer, but at the entire team. Hence, one developer

cannot produce new solutions, but collaborate with other

developers for the team to deliver an answer as soon as

possible. PM2 and PM3 also highlighted the quality of the

implemented solution that the developer performs better, as

corrections or refactoring are necessary when the developer

provides an error-free task and satisfactory quality. In the

same way as the previous activity (related to quality), PMs

considered metrics related to reworking in order to

understand the team’s performance.

In the “Estimating Project Costs and Deadlines and

Identifying Anomalies in Developer Performance” activity,

there is a relationship with people management because the

project budget and cost are anticipated when PMs record

historical information on the developers’ work. Besides,

recent history can help to identify when one developer is

performing differently than expected (better or worse),

which can be a consequence of a change in the developer’s

motivation or his/her interpersonal relationships with the

team.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Estimating Project Costs

and Deadlines and Identifying Anomalies in Developer

Performance” activity. Thus, they identified 24 metrics

among the 64 metrics found in SMS. Two or more PMs

mentioned the same 6 metrics (Cost, Effort per

Modification, Rework, Commitment, Task Delivery, and

Contribution Factor). The four PMs interviewed considered

the technical ability and delivery history of the team

allocated to the project to be essential in order to estimate

costs and deadlines. Additionally, they said that the

developers’ knowledge and contributions to the project’s

source code should be taken into account in the estimates.

PM1 pointed out that performance anomalies are usually

caused by the emergence of unplanned and highly complex

demands, leading to high development costs.

In the “Understanding and Controlling Knowledge

Distribution” activity, there is support for risk management

because the departure of one developer who has most of the

knowledge about the source code of a project can present

high risks. Therefore, PMs should monitor knowledge

distribution, act towards leveling the knowledge of the

team, and prevent essential people from leaving the project

earlier than expected.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Understanding and

Controlling Knowledge Distribution” activity. Thus, they

identified 17 metrics among the 64 metrics found in SMS.

Out of the 64, two or more PMs mentioned the same 6

metrics (Commit Documentation Files (CDF),

Collaboration (Files), Collaboration (Interaction),

Collaboration (CodeChurn), Change Code Documentation

(CAD), and Degree of Authorship (DOA)). In the PMs’

opinion, it is possible to identify a developer’s knowledge

of the system by observing the contributions in writing their

documentation and code. PM3 also considers commitment,

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

time working on the project, and all activities registered in

the version control system.

Another interesting point is to measure how much the

developer shares your knowledge. PM2, PM3, and PM4

highlighted this information. Among the studies found in

SMS, one study addressed knowledge distribution with

greater emphasis (Ferreira et al. 2017). The authors

calculated the DOA metric for all files in the code

repository in order to identify the developers with the most

knowledge of the project. This calculation generated

another metric (Truck Factor metric). However, when

choosing the DOA metric instead of the Truck Factor

metric, PMs preferred to look at individual files instead of

the entire set of files in the repository, identifying

developers’ knowledge in parts of source code.

In the “Pay Adjustments” activity, the work done by the

development team is recognized, thus keeping professionals

motivated and satisfied. This activity is critical when

managing people. In the “Identifying the Need for

Investment” activity, there is acquisition of equipment and

training in order to meet project needs.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Pay Adjustments” activity.

Thus, they identified 30 metrics among the 64 metrics

found in SMS. Out of these 30, two or more PMs

mentioned the same 12 metrics (Commitment, Expertise,

Rework, Collaboration (Files), Mastery of Technologies,

Task Delivery, Monthly Effort, Contribution Factor,

Number of Active Days, Cost, Contribution Start, and

Contribution Duration). With regard to other activities, this

one received the most significant number of different

metrics, and the rate of metrics chosen by more than one

PM was higher. This variety of metrics may be due to the

activity’s sensitivity and the concern for making

compensation adjustments in the most adequate way. In

general, according to the PMs, the developers’ commitment

and technical ability, the quality of the solutions generated

and the time spent on the project are primary information.

In the interview, PMs pointed out the metrics they

consider useful to carry out the “Identifying the Need for

Investment” activity. Thus, they identified 23 metrics

among the 64 metrics found in SMS. Two or more PMs

mentioned the same 3 metrics (Close a Bug that is then

Reopened (BCR), Mastery of Technologies, and Effort on

Commit). For PMs, it is necessary to understand if the

developers are technically competent to perform their

activities. Hence, the selected metrics provide the level of

effort to accomplish tasks, the mastery of project

technologies, and the number of errors and rework for

solutions delivered by developers.

In Table 12, we presented the metrics that PMs cited ten

or more times. They considered them relevant, and their

opinion provides some (few) professionals’ views on the

metrics found in the literature. Thus, these results cannot be

generalized for the entire industrial context.

Table 12. Metrics most selected by PMs

Metric Number of Citations Mentioned by

1 Collaboration (Interaction) 15

PM2: 1, 3, 5

PM3: 1, 2, 3, 4, 5, 6, 7, General

PM4: 1, 3, 5, General

2 Rework 14

PM2: 1, 2, 3, 4, 5, 6, 7, General

PM3: 6, General

PM4: 2, 4, 6, General

3 Collaboration (Files) 12

PM2: 3, 5, 6

PM3: 3, 4, 5, 6, 7

PM4: 1, 3, 5, General

4 Expertise 12

PM1: 3

PM2: 6

PM3: 1, 2, 3, 5, 6, 7, General

PM4: 4, 6, General

5 Mastery of Technologies 12

PM1: 3

PM2: 1, 3, 6, 7

PM3: 3, 5, General

PM4: 1, 6, 7, General

6 Commitment 11

PM1: 6

PM2: 1, 4, 6

PM3: 1, 3, 4, 5, 6, General

PM4: 1

7 Cost 11

PM2: 4

PM3: 1, 2, 3, 4, 6, 7, General

PM4: 4, 6, General
1. Identify the skills and the profile of developers; 2. Plan improvements to code quality; 3. Improve team performance; 4. Estimate project

costs and deadlines and identify anomalies in developer performance; 5. Understand and control knowledge distribution; 6. Adjust pay; 7.

Identify the need for investment (training or equipment); General. Considers relevant to project management (unspecified activity).

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

7 Threats to Validity

Internal Validity. Refers to the effects of the treatments

over the variables due to uncontrolled factors in the

environment (Wohlin et al. 2012). Limitations of the search

string and digital libraries can lead to an incomplete

selection of studies. We selected five search engines and

adapted the search string to achieve our goal. However,

other digital libraries and keywords could be added to the

search string. Another possible threat is the researchers’

bias in selecting the studies, and answering the research

questions (e.g., identification and grouping of metrics,

interpretation of project management activities). To

mitigate this, Researchers A and B discussed the results

while generating the groups presented. These researchers

were monitored by Researcher C. Finally, Researcher D

(most experienced researcher) evaluated the work

performed and suggested improvements to ensure the

impartiality and quality of this study. Moreover, we

carefully defined and reported the search string, digital

libraries chosen, and the inclusion and exclusion criteria to

ensure SMS replicability.

External Validity. Relates to whether the results can be

generalized outside the experimental setting (Wohlin et al.

2012). One threat to external validity is about our selecting

representative studies. With regard to the amount of

information collected, we argue that the selected studies are

representative. However, we only considered studies from

the formal literature, which could be extended by

considering the gray literature. Our findings are focused on

evaluating the developers’ work. Currently, we have no

intention to generalize our results beyond this field.

Construct Validity. Represents the measurement of the

concepts of cause and effect in the experiment through

dependent and independent variables (Wohlin et al. 2012).

To ensure that SMS was impartial, comprehensive, and of

high quality, four researchers took part in the definition and

execution of the research protocol. The protocol used to

select the studies was validated using a control group (7

studies). However, we addressed 6 studies from this group

and added the other study manually. It was one

consequence of our decision to limit results by applying

keywords from Parts 2, 3, 4, and 5 just in the title, abstract,

and keyword of the studies. With regard to data extraction,

we defined a classification scheme. However, it was a

manual process, and we cannot claim that it was carried out

mistake-free. The data extraction process required an

understanding of the subject to infer the non-explicit data,

which made this process exhaustive and complicated.

Conclusion Validity. Refers to the extension of the

conclusions about the relationship between the treatments

and the outcomes (Wohlin et al. 2012). We followed a

systematic approach for conducting SMS and described all

procedures to ensure this study’s replicability.

8 Final Remarks

Project managers (PMs) are professionals whose task is to

successfully lead software projects. Therefore, project

management practices are applied. Aiming to support the

PM, several studies in the literature have proposed

strategies to measure the developers’ work. In this article,

an exploratory study was carried out by using the

Systematic Mapping Study (SMS) and interviewing PMs to

organize concepts related to this topic.

In this context, we answered three primary research

questions, specific to our study field (Q-P.1 - What metrics

are used by PMs to measure the developers’ work?, Q-P.2 -

How are metrics applied by PMs to monitor the developers’

work?, and Q-P.3 - How does information about the

developers’ work support project management?).

Additionally, we answered three secondary research

questions, which are common to SMS studies (Q-S.1 -

What type of solution is often proposed for studies in this

area?, Q-S.2 - What type of research methodology is often

used for studies in this area?, and Q-S.3 - How is the

proposed solution related to the research methodology in

the included studies?). The responses were based on an

analysis of 41 studies found using SMS and the opinions of

four PMs opinions.

Our contributions are: i) identification of the studies’

maturity, ii) identification of solution proposals to

investigate the study theme, iii) identification of 64 metrics,

iv) organization of the metrics into 6 groups, v)

identification of 4 data sources to obtain information, vi)

identification of the data extraction context and metrics

application, vii) identification of 7 activities for which the

PM is responsible (most of these activities are related to

risk management and people management), supported by a

measurement of the developers’ work, viii) the opinion of

four PMs on the usefulness of the 64 metrics; ix) the

opinion of four PMs on how the 64 metrics relate to 7

activities under their responsibility, and x) characterization

of the aspects to explore the subject, indicating themes for

possible new studies in the area of Software Engineering.

The suggestions for future work include: i) verification

of the validity of metrics found by collecting the most

significant number of PM opinions, allowing a quantitative

analysis, ii) assessment of the validity of the metrics found

by conducting a field study, iii) evaluation of approaches to

measure the developers’ work considering the industrial,

and proprietary software context, iv) creation of new

approaches (or advances in existing approaches) to consider

diversified metrics that provide information about work

quality, contribution by the developer, collaboration, level

of importance to the project, productivity, and personal

behavior, and v) combination of three forms of presenting

information (textual, graphical, and visualization

techniques).

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

References

B. Kitchenham and S. Charters, “Guidelines for

Performing Systematic Literature Reviews in Software

Engineering,” 2007.

B. Kitchenham, “Procedures for Performing Systematic

Reviews,” Keele, UK, Keele Univ., vol. 33, pp. 1-26, 2004.

B. W. Boehm, “Software Risk Management: Principles

and Practices,” IEEE Softw., vol. 8, no. 1, pp. 32–41, 1991.

C. Wohlin, P. Runeson, M. Höst, M. Ohlsson, B.

Regnell, and A. Wesslén. Experimentation in Software

Engineering. Springer Science & Business Media, New

York, NY. 2012.

I. Bouchrika, “Top Computer Science Conferences”,

Guide2Research, 2020, available at

<http://www.guide2research.com/topconf/>, last access

May, 9th, 2020.

I. Sommerville, Engenharia de Software, 10th ed. Pear-

son Universidades, 2019.

J. A. Lima and G. Elias, “Selection and Allocation of

People based on Technical and Personality Profiles for

Software Development Projects,” XLV Latin American

Computing Conference (CLEI), Panama, 2019, pp. 1-10,

doi: 10.1109/CLEI47609.2019.235052.

J. Feiner and K. Andrews, “RepoVis: Visual Overviews

and Full-Text Search in Software Repositories,” in

Working Conference on Software Visualization, 2018, pp.

1–11.

J. J. Ahonen, P. Savolainen, H. Merikoski, and J.

Nevalainen, “Reported project management effort, project

size, and contract type”. Journal of Systems and Software

109, 2015, pp. 205–213.

J. Menezes, C. Gusmão, and H. Moura, “Risk Factors in

Software Development Projects: A Systematic Literature

Review”, in Software Qual J 27, 2019, pp 1149–1174.

K. Petersen, R. Feldt, S. Mujtaba, M. Mattsson,

“Systematic Mapping Studies in Software Engineering”, in:

Presented at the 12th International Conference on

Evaluation and Assessment in Software Engineering

(EASE), 2008.

K. Tuma, Ç. Gül, and S. Riccardo. “Threat analysis of

software systems: A systematic literature review”, Journal

of Systems and Software 144, 2018, pp. 275-294.

M. Ferreira, M. T. Valente, and K. Ferreira, “A

Comparison of Three Algorithms for Computing Truck

Factors,” IEEE/ACM 25th International Conference on

Program Comprehension, 2017, pp. 207–217.

N. Bin Ali and K. Petersen, “Evaluating Strategies for

Study Selection in Systematic literature studies,” In:

ACM/IEEE International Symposium on Empirical

Software Engineering and Measurement, 2014, p. 45.

N. Wieringa, N. M. R. Maiden and C. Rolland.

Requirements Engineering Paper Classification and

Evaluation Criteria: A Proposal and a Discussion.

Requirements engineering, v. 11, n. 1, p. 102-107, 2006.

P. R. de Bassi, G. M. P. Wanderley, P. H. Banali, and E.

C. Paraiso, “Measuring Developers’ Contribution in Source

Code using Quality Metrics,” in IEEE International

Conference on Computer Supported Cooperative Work in

Design, 2018, pp. 39–44.

PMI, Guide to the Project Management Body of

Knowledge (PMBOK® Guide), 6th ed., 2017.

R. Latorre and S. Javier, “Measuring social networks

when forming information system project teams”, Journal

of Systems and Software 134, 2017, pp. 304-323.

R. Martin, “OO Design Quality Metrics - An Analysis

of Dependencies,” in Workshop Pragmatic and Theoretical

Directions in Object-Oriented Software Metrics, 1994.

S. R. Chidamber and C. F. Kemerer, “A Metrics Suite

for Object Oriented Design,” IEEE Trans. Softw. Eng., vol.

20, no. 6, pp. 476–493, 1994.

T. Ambreen, N. Ikram, M. Usman, and Niazi, M.

“Empirical Research in Requirements Engineering: Trends

and Opportunities”. Requirements Eng 23, 63–95 (2018).

V. F. de Souza, A. L’Erario, and J. A. Fabri, “Model for

Monitoring and Control of Software Production in

Distributed Projects”. In: Iberian Conference on

Information Systems and Technologies, 2015, pp. 1–6.

V. Garousi; Y. Amannejad; A. B. Can. “Software Test-

Code Engineering: A Systematic Mapping”. Information

and Software Technology, v. 58, p. 123-147, 2015.

W. Zuser and T. Grechenig, “Reflecting Skills and

Personality Internally as Means for Team Performance

Improvement.” In: Conference on Software Engineering

Education and Training, 2003, pp. 234–241.

Appendix A

Table A1. Resultant Studies from SMS

Title Authors Year Repository Score

P1
Reflecting Skills and Personality Internally as Means for

Team Performance Improvement

Zuser, W.

Grechenig, T.
2003 IEEE 3.5

P2
Continuous productivity assessment and effort prediction

based on Bayesian analysis

Yun, S.

Simmons D.
2004

Ei

Compendex
5.0

P3 Visualization of CVS Repository Information

Xie, X.

Poshyvanyk, D.

Marcus, A.

2006 IEEE 4.5

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table A1. Resultant Studies from SMS (cont.)

Title Authors Year Repository Score

P4
A 3-Dimensional Relevance Model for Collaborative

Software Engineering

Omoronyia, I.

Ferguson, J.

Roper, M.

Wood, M.

2007 IEEE 3.5

P5
A Visualization for Software Project Awareness and

Evolution

Ripley, R.

Sarma, A.

van der Hoek, A.

2007 IEEE 5.0

P6 Evaluating Software Project Portfolio Risks

Costa, H.

Barros, M.

Travassos, G.

2007
Ei

Compendex
4.0

P7
Development of a Project Level Performance Measurement

Model for Improving Collaborative Design Team Work

Yin, Y.

Qin, S.

Holland, R.

2008 IEEE 4.5

P8
Measuring Developer Contribution from Software Repository

Data

Gousios, G.

Kalliamvakou, E.

Spinellis, D.

2008 ACM 4.0

P9
Mining Individual Performance Indicators in Collaborative

Development Using Software Repositories

Zhang, S.

Wang, Y.

Xiao, J.

2008 IEEE 4.0

P10
SVNNAT: Measuring Collaboration in Software

Development Networks

Schwind, M.

Wegmann, C.
2008 IEEE 3.5

P11
Case Study: Visual Analytics in Software Product

Assessments

Telea, A.

Voinea, L.
2009

Ei

Compendex
4.5

P12
Using Transflow to Analyze Open-Source Developers’

Evolution

Costa, J.

Santana Jr., F.

de Souza, C.

2009 Scopus 4.5

P13 Are Heroes Common in FLOSS Projects?
Ricca, F.

Marchetto, A.
2010 ACM 4.0

P14 PIVoT: Project Insights and Visualization Toolkit
Sharma, V.

Kaulgud, V.
2012 IEEE 5.0

P15
Effect of Personality Type on Structured Tool Comprehension

Performance

Gorla, N.

Chiravuri, A.

Meso P.

2013 Springer 4.0

P16
Extracting, Identifying and Visualisation of the Content, Users

and Authors in Software Projects

Polášek, I.

Uhlár, M.
2013 Scopus 5.0

P17
Towards Understanding How Developers Spend Their Effort

During Maintenance Activities

Soh, Z.

Khomh, F.

Guéhéneuc, Y.

Antoniol, G.

2013 IEEE 5.0

P18

A Machine Learning Technique for Predicting the

Productivity of Practitioners from Individually Developed

Software Projects

Lopez-Martin, C.

Chavoya, A.

Meda-Campana, M.

2014 IEEE 4.5

P19
Determining Developers’ Expertise and Role: A Graph

Hierarchy-Based Approach

Bhattacharya, P.

Neamtiu, I.

Faloutsos, M.

2014 IEEE 5.0

P20

Estimating Development Effort in Free/Open-source Software

Projects by Mining Software Repositories: A Case Study of

OpenStack

Robles, G.

González-Barahona, J. M.

Cervigón, C.

Capiluppi, A.

Izquierdo-Cortázar, D.

2014 ACM 5.0

P21
Extracting New Metrics from Version Control System for the

Comparison of Software Developers

Moura, M.

Nascimento, H.

Rosa, T.

2014 IEEE 4.5

P22
Influence of Social and Technical Factors for Evaluating

Contribution in GitHub

Tsay, J.

Dabbish, L.

Herbsleb, J.

2014 ACM 5.0

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table A1. Resultant Studies from SMS (cont.)

Title Authors Year Repository Score

P23
Assessing Developer Contribution with Repository Mining-

Based Metrics

Lima, J.

Treude, C.

Filho, F.

Kulesza, U.

2015 IEEE 4.0

24
Contributor’s Performance, Participation Intentions, Its

Influencers and Project Performance
Rastogi, A. 2015 IEEE 4.0

P25
Identifying Wasted Effort in the Field Via Developer

Interaction Data

Balogh, G.

Antal, G.

Beszedes, A.

Vidacs, L.

Gyimothy, L.

Vegh, T.

Zoltan A.

2015 IEEE 4.5

P26
Niche vs. Breadth: Calculating Expertise over Time through a

Fine-Grained Analysis

da Silva, J.

Clua, E.

Murta, L.

Sarma, A.

2015 IEEE 5.0

P27
Proposal for a Quantitative Skill Risk Evaluation Method

Using Fault Tree Analysis

Liu, G.

Yokoyama, S.
2015 IEEE 4.0

P28
TeamWATCH Demonstration: A Web-based 3D Software

Source Code Visualization for Education

Gao, M.

Liu, C.
2015 Scopus 4.5

P29
A Comparative Study of Algorithms for Estimating Truck

Factor

Ferreira, M.

Avelino, G.

Valente, M.

Ferreira, K.

2016 IEEE 5.0

P30
Knowledge Discovery in Software Teams by Means of

Evolutionary Visual Software Analytics

González-Torres, A.

García-Peñalvo, F.

Therón-Sánchez, R.

Colomo-Palacios, R.

2016 Scopus 5.0

P31
Open-source Resume (OSR): A Visualization Tool for

Presenting OSS Biographies of Developers

Jaruchotrattanasakul, T.

Yang, X.

Makihara, E.

Fujiwara, K.

Iida, H.

2016 IEEE 5.0

P32
Quantifying and Mitigating Turnover-Induced Knowledge

Loss: Case Studies of Chrome and a project at Avaya

Rigby, P.

Zhu, Y.

Donadelli, S.

Mockus, A.

Rigb, P.

Zhu, Y.

Donadell, S.

Mockus, A.

2016 Scopus 5.0

P33
Software Project Managers’ Perceptions of Productivity

Factors: Findings from a Qualitative Study

Oliveira, E.

Conte, T.

Cristo, M.

Mendes, E.

2016 ACM 4.5

P34
Using Temporal and Semantic Developer-Level Information

to Predict Maintenance Activity Profiles

Levin, S.

Yehudai, A.
2016 IEEE 5.0

P35
A Comparison of Three Algorithms for Computing Truck

Factors

Ferreira, M.

Valente, M.

Ferreira, K.

2017 IEEE 5.0

P36
Collabcrew - An Intelligent Tool for Dynamic Task

Allocation within a Software Development Team

Samath, S.

Udalagama, D.

Kurukulasooriya, H.

Premarathne, D.

Thelijjagoda, S.

2017 IEEE 4.5

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Table A1. Resultant Studies from SMS (cont.)

Title Authors Year Repository Score

P37
Revisiting Turnover-Induced Knowledge Loss in Software

Projects

Nassif, M.

Robillard, M. P.
2017 Scopus 3.0

P38
Measuring Developers’ Contribution in Source Code using

Quality Metrics

de Bassi, P.

Wanderley, G.

Banali, P.

Paraiso, E.

2018 IEEE 3.5

P39
RepoVis: Visual Overviews and Full-Text Search in Software

Repositories

Feiner, J.

Andrews, K.
2018 IEEE 3.5

P40
git2net - Mining Time-Stamped Co-Editing Networks from

Large git Repositories

Gote, C.

Scholtes, I.

Schweitzer, F.

2019 IEEE 4.5

P41
Selecting Project Team Members through MBTI Method: An

Investigation with Homophily and Behavioural Analysis

Kollipara, P.

Regalla, L.

Ghosh, G.

Kasturi, N.

2019 IEEE 3.0

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020

Appendix B

1. Interview with PMs

We collected the opinion of professionals who work with project management in the software industry and used a

structured script containing the following items for conducting the interview1:

 Description (company, level of education, experience, and number of projects managed);

 Opinion on which of the 64 metrics (Table 5) is necessary to measure the developers’ work;

 Opinion on which of the 64 metrics (Table 5) are useful to support the performance of the 7 activities listed in Table 9;

and

 Suggestion for other metrics.

We interviewed four PMs from three private companies with different characteristics. By interviewing these PMs,

information from professionals in different contexts and projects was collected. The company’s characteristics are:

 Company A is a software factory in the Brazilian market and has approximately 70 employees;

 Company B is a software factory operating in Brazil’s education area, with around 150 employees; and

 Company C is an enterprise software consultant with approximately 12,000 employees and headquarters in various

countries.

Table B1 presents the interviewees’ description (PM1, PM2, PM3, and PM4) who work in companies of different

characteristics. PM1 and PM4 work in the same company. PM1, PM2, and PM3 are graduates, and PM4 is postgraduate.

Their experience ranges from 1 to 3 years and have participated in the management of 6 to 10 projects.

Table B1. Activities Supported by Information on the Developers’ Work

ID Company Education Experience # Projects

PM1 A Bachelor degree 1 year 6

PM2 C Bachelor degree 1,5 year 8

PM3 B Bachelor degree 3 years 10

PM4 A MBA 1 year 8

In Figure 7, we presented the steps for collecting the PMs’ opinions. The researchers defined questions and devised an

electronic questionnaire. Then, PMs were asked to voice their opinions. We scheduled an individual interview with each

PM and recorded their answers in the electronic questionnaire. Finally, we compiled the responses and included them in the

discussion of the results.

Figure 7. Steps to Collect PMs’ opinions

1 The questions, responses, and annotations are available at (in Portuguese): http://doi.org/10.5281/zenodo.3965805

