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Abstract 

Software Project Management is an essential practice to successfully achieve goals in software development 

projects and a challenging task for Project Managers (PMs). Therefore, information about the developers’ work 

can be valuable in supporting the PMs’ activities. Several studies address this topic and suggest different 

strategies for obtaining such information. Given the variety of existing strategies, we need to know the state-of-

the-art on the theme. This article presents the information used for supporting PMs in the application of project 

management practices, especially with regard to risk management and people management. Thus, we carried out 

an exploratory study using a Systematic Mapping Study (SMS). Contributions include the identification of 64 

metrics, four information sources, and seven PM activities supported by the measurement of the developers’ 

work. Additionally, we interviewed four PMs to collect their personal opinion of how the metrics and activities 

reported by our SMS could help the project management in practice. Each PM considered a different set of 

metrics to support their activities, but none of them suggested new metrics (besides the 64 metrics identified in 

the SMS). Also, we presented aspects to explore the subject, indicating themes for possible new studies in the 

Software Engineering area. 
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1  Introduction 

In software projects, the Project Manager (PM) is the 

professional who ensures proper project management. The 

PM’s function includes selecting members for the project 

team and assigning roles and responsibilities as needed (de 

Souza et al. 2015). PMs must know how to assess the 

skills, strengths, and weaknesses of developers so that they 

can do their work efficiently (Zuser and Grechenig 2003). 

Besides, bad people management can bring about project 

risks (Ferreira et al. 2017). For example, team member 

turnover can be a high risk for a project because some 

developers can centralize software source code knowledge 

(Boehm 1991). These issues correspond to the PMs’ two 

activities: risk management and people management 

(Sommerville 2019). 

Performing people management and risk management is 

a non-trivial task. In addition, the PM’s effort is impacted 

by the size of the project and the size of the team (Ahonen 

et al. 2015). In this context, the team members’ evaluation 

by PMs motivates studies in the literature (de Bassi et al. 

2018; Feiner and Andrews 2018; Ferreira et al. 2017; Zuser 

and Grechenig 2003) that suggest strategies for measuring 

the developers’ work. Given the wide variety of suggested 

strategies, we need to know the state-of-the-art approaches 

in this field. 

This article presents an investigation on how the 

developers’ work can be measured, and how information on 

the developers’ work can support the project management 

(especially, risk management and people management). 

Thus, we performed an exploratory study using a 

Systematic Mapping Study (SMS). SMS allows to identify, 

interpret and evaluate available evidence from studies on a 

topic, phenomenon, or set of research questions of interest 

(Kitchenham 2004). A SMS has three phases (Kitchenham 

and Charters 2007): i) Planning (we define the motivation, 

goals, and research protocol); ii) Execution (we apply the 

strategy outlined in the research protocol to identify and 

select studies); e iii) Results (we show the analysis of 

information obtained from selected studies). Additionally, 

we interviewed four PMs to collect their opinion about 

results obtained in SMS that can help them in practice. 

Thus, we have an initial understanding of how the industry 

measures the developer's work. 

The remainder of this article is organized as follows: 

Section 2 describes a theoretical framework. Section 3 

presents the SMS Planning phase. Section 4 describes the 

SMS Execution phase. Section 5 presents the SMS Results 

phase. Section 6 discusses the results along with the PMs’ 

opinion. Section 7 describes the threats to validity. Section 

8 draws concluding remarks.  

2 Background 

This section discusses risk management and people 

management. 

2.1 Risk Management 

In PMBoK (Project Management Body of Knowledge), Risk 

Management is an area of knowledge that aims to identify, 

evaluate, and monitor the positive (opportunities) and 

negative (threats) risks that may affect the project (PMI 

2017). The most critical activities for the PMs when a 

problem emerges are to evaluate and monitor risks 

(Sommerville 2019). This area comprises five processes 
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(Plan Risk Management, Identify Risks, Perform Qualitative 

Risk Analysis, Perform Quantitative Risk Analysis, and Plan 

Risk Responses). There are several techniques for analyzing 

threats. When choosing a threat analysis technique, the PM 

needs to pay attention to the characteristics of the project to 

avoid impacts on the quality of the analysis results (Tuma, 

Gül, and Riccardo 2018). Effective performance of risk 

management can directly impact project success or failure 

(Menezes et al. 2019). 

The risks can affect the project schedule or resources 

(project risks), software quality or performance (product 

risks), or organization that produces or acquires software 

(business risks) (Sommerville 2019). For example, the 

departure of an experienced developer can represent: 

 Project risk, because this departure affects the schedule 

due to the loss of human resources; 

 Product risk, because the developer who substitutes an 

experienced developer can have different skills and 

project knowledge; and 

 Business risk, because the developer’s experience 

impacts the signing of contracts. 

Many existent risks in software projects relate to the 

development team. Specifically, one risk addressed in the 

literature is the lack of technical skills of some team 

members (Menezes et al. 2019), leading to investments in 

training or hiring people. Another risk mentioned as a 

constant concern for PMs is developer turnover associated 

to concentration of knowledge regarding source codes. In 

this situation, the project can fail if these developers leave 

the project/organization earlier than expected (Ferreira et 

al. 2017). An alternative in order to mitigate this is to 

identify the people who concentrate the knowledge on 

source code and distribute it among all team members 

(developers). 

2.2 People Management 

In PMBoK, Resource Management is a field of knowledge 

that aims to identify, acquire, and manage the resources 

needed for successful project completion (PMI 2017). This 

area comprises six processes (Planning of Resource 

Management, Estimate Activity Resources, Acquire 

Resources, Develop Team, Manage Team, and Control 

Resources). 

In software projects, the team members play different 

roles. Thus, PMs need to consider the members’ technical 

skills and personality to assemble the teams. In order to 

correctly manage people, PMs should (Sommerville 2019): 

 Have an honest and respectful relationship with those 

involved in the project; 

 Have people who are motivated to perform their 

functions; 

 Support teamwork and maintain relationship of trust 

among everyone, enabling the team to self-manage; 

 Select team members to optimize performance and meet 

the projects’ technical and human requirements; 

 Organize the working method and team members’ roles; 

and 

 Ensure effective communication between the people 

involved. 

Despite the existing recommendations, there are studies 

that show that PMs can hardly organize performance teams 

in a systematic and repeatable way (Latorre and Javier 

2017). Understanding people’s characteristics, assigning 

tasks, and recognizing the work done are complex and 

relevant tasks for PMs (Zuser and Grechenig 2003). 

3 SMS Planning Phase 

This section describes the SMS Planning phase and 

presents the research protocol and its validation and the 

data extraction procedure. 

3.1 Research Protocol 

The research protocol includes the strategies used for 

retrieving and selecting studies that are relevant to the topic 

of interest in the research (Kitchenham 2004). In this 

protocol, we defined the research questions, the procedure 

used to conduct SMS, the inclusion and exclusion criteria 

for selecting the studies, and how to obtain and classify 

information. In Table 1, we showed the research questions 

and the goals for answering them. The primary research 

questions help to understand the measurement of the 

developers’ work to support PMs and consist of the main 

results of this study. The secondary research questions 

provide insight into the characteristics of the scientific 

studies found in the SMS. 

We selected the ACM, IEEE, and Springer repositories 

of scientific papers. In addition, we chose Ei Compendex 

and Scopus because they index other repositories. They 

publish papers from the most important conferences and 

journals in Software Engineering (Ambreen et al., 2018; 

Bouchkira 2020). Additionally, we elaborated on a search 

string (Table 2) that contains five parts of key terms aligned 

with the research questions to retrieve studies in these 

repositories. Each set is composed of a key expression and 

its synonyms, as follows: 

 Part 1 refers to the action required to obtain the metrics 

on the developers’ work. We defined it by measure OR 

measurement OR mensuration OR dimension OR 

evaluation OR analyze OR analysis OR view OR 

visualization OR knowledge; 

 Part 2 refers to the object to be measured (the 

developer’s work). We defined it by contribution OR 

participation OR productivity OR skills OR 

collaboration OR effort OR knowledge; 

 Part 3 refers to who is evaluated by the measurement. 

We defined it by developers OR “software development 

team” OR “team members”; 

 Part 4 refers to whoever is interested in the metrics 

obtained from the measurement. We defined it by 

“software project manager” OR “project manager” 

OR “project managers” OR “software project” OR 

“project management”; and 
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 Part 5 refers to the method or tool used to measure. We 

defined it by tool OR framework OR plugin OR method 

OR metric OR factors. 

 

Only Part 1 was searched in the title of the studies 

because it is related to “measurement” and is relevant to the 

retrieved studies regarding the SMS goal (we used search 

engine tokens). When we enlarged the search for other 

items (besides the title), the number of returned studies 

increased significantly; these studies treat issues that are 

distant from the objective of this study. We searched the 

other parts (Parts 2 - 5) in titles, abstracts, and keywords. 

Table 1. Research Questions 

Primary Research Questions 

Research Question Goal 

Q-P.1 - What metrics are used by PMs to measure the developers’ work? To identify metrics about the developers’ work. 

Q-P.2 - How are metrics applied by PMs to monitor the developers’ 

work? 

To identify how PMs extract and analyze the 

metrics to measure the developers’ work. 

Q-P.3 - How do metrics concerning the developers’ work support project 

management, especially with regard to risk management and people 

management? 

To identify how metrics regarding the 

developers’ work support project management 

(risk management and people management). 
  

Secondary Research Questions 

Q-S.1 - What type of solution is often proposed for studies in this area? 

To identify the type of solution proposed in 

studies to measure the developers’ work and 

support the PMs’ decision. 

Q-S.2 - What type of research methodology is often used for studies in 

this area? 

To identify the research methodology used in 

studies to verify their maturity. 

Q-S.3 - How is the proposed solution related to the research methodology 

in the included studies? 

To identify the maturity of the solutions 

presented in studies. For example, how the 

researchers evaluated the metrics used for 

measuring the developers’ work. 

 

Table 2. Search String 

 

(measure OR measurement OR mensuration OR dimension 

OR evaluation OR analyze OR analysis OR view OR 

visualization) 

 

AND 
 

(contribution OR participation OR productivity OR skills 

OR collaboration OR effort OR knowledge) 

 

AND 
 

(developers OR “software development team” OR “team 

members”) 

 

AND 
 

(“software project manager” OR “project manager” OR 

“project managers” OR “software project” OR “project 

management”) 

 

AND 
 

(tool OR framework OR plugin OR method OR metric OR 

factors) 

 

 

Next, we established the selection process, which 

defines the inclusion and exclusion criteria. For inclusion 

criteria, the study should be a primary study addressing the 

mensuration of developers’ work to support the PMs’ 

activities. For exclusion criteria, we removed studies that 

(i) do not have complete scientific contributions (e.g., 

abstracts), (ii) are not scientific studies (e.g., standards and 

tables of contents), (iii) do not have complete texts, or (iv) 

have restricted access. 

Subsequently, a procedure that involved the efforts of 

four researchers was defined to select the studies. 

Researchers A and B performed the activities planned for 

SMS. Researcher C (experienced) helped Researchers A 

and B. Researcher D (the most experienced) supervised the 

work. The procedure consisted of the following stages: 

 To apply the search string. Researcher A applied the 

search string in the digital repositories and stored the 

retrieved studies in the Mendeley reference 

management system (https://mendeley.com); 

 To remove duplicates. Researchers A and B analyzed 

the information from the studies retrieved in the 

previous stage in order to identify and remove duplicate 

ones. They used a Mendeley feature to identify 

duplicate studies. They then removed indexed studies 

with fewer keywords because those with more 

keywords in the digital database can be considered as 

better characterized; 

 To apply exclusion criteria. Researchers A and B 

applied the exclusion criteria. Researcher C monitored 

the exclusion; 

 To select potential studies. Researchers A and B 

independently read the resulting studies’ title, abstract, 

and keyword from the previous stage to identify those 

with the potential to meet the inclusion criteria. They 

classified them as “with potential”, “without potential”, 

or “doubtful” (unsure about the potential). Both 

researchers admitted the maximum of potential studies. 

Next, they merged their classification following two 
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decision criteria (Accepted or Reject) (Bin Ali and 

Petersen 2014). The researchers accepted a study if both 

classified it as “with potential” or if at least one 

classified it as “with potential”. The researchers rejected 

the study if both classified it as “without potential” or if 

one researcher classified it as “without potential” and 

the other classified it as “doubtful”. Researcher C 

monitored the classification process; and 

 To apply inclusion criteria. Researchers A and B read 

the full text of the resulting studies from the previous 

stage and defined five quality questions for scoring the 

studies (Table 3) to apply the inclusion criteria. Each 

question could receive the value 1 (Yes), 0 (No), or 0.5 

(Partly). Thus, the minimum score is 0 and the 

maximum score is 5. After assigning scores 

individually, Researchers A and B calculated the 

arithmetic mean for each study ((Researcher A score + 

Researcher B score)/2). This calculation represents the 

study’s final score for the inclusion criteria. Finally, 

they accepted studies with a final score equal to or 

greater than 2.5 (50%) (Bin Ali and Petersen 2014). 

Researcher D analyzed the accepted studies to assess 

their relevance for SMS. 

 

Table 3. Quality Questions for Inclusion Criteria 

ID Quality Questions 

Q1 Are the aims of the research explicitly defined? 

Q2 Are the metrics explicitly reported? 

Q3 Are the metrics related to a software activity?  

Q4 Are the metrics clearly described or defined? 

Q5 
Are the findings related to a project management 

activity?  

 

3.2 Evaluation of the Research Protocol 

We evaluated the research protocol before starting the 

Execution phase (Kitchenham and Charters 2007) to assess 

the feasibility of performing SMS and identifying the 

changes necessary in order to improve the quality of the 

retrieved studies. This evaluation occurred with one test 

that defined a group of primary studies (control group) to 

be retrieved by the research protocol. We set the group of 

control with 7 studies through an ad-hoc literature review, 

using Google Scholar to search for studies related to the 

SMS goal. 

We refined the search string and applied it to the search 

engines until they returned all the studies from the control 

group. Keywords in Part 1 (Table 2) are general; the 

measurement process is commonly applied in the studies to 

validate their results. Therefore, we restricted Part 1 to be 

searched only in the title of the studies. Consequently, we 

found six studies from the control group; we added the 

other study manually. Table A1 - Appendix A lists the 

studies from the control group (P20 - protocol did not 

retrieve, and P21, P23, P24, P30, P33, and P39). 

3.3 Data Classification and Extraction 

Procedure 

We established a procedure to classify and extract data 

from the selected studies in nine categories: 

 Information on the publication. To collect data related 

to the study’s publication, such as title, authors, year of 

publication, and publication media (journal/event), and 

use them to track general information on the studies; 

 Proposal of Solution. To collect data on the solution 

and classify it as “Overview”, “Method”, “Model”, 

“Metric”, and “Tool” (Petersen et al. 2008). This 

category helps to Q-S.1 and Q-S.3; 

 Research Methodology. To collect data on the research 

methodology and classify it as “Evaluation Research”, 

“Proposal of Solution”, “Validation Research”, 

“Opinion Studies”, “Experience Studies”, and 

“Philosophical Studies” (Wieringa et al. 2006). This 

category helps to answer Q-S.2 and Q-S.3; 

 Metrics to measure the developers’ work. To collect 

metrics used by PMs to measure the developers’ work. 

This category helps to answer Q-P.1; 

 Data source on the developers’ work. To identify data 

sources used as input to apply metrics. This category 

helps to answer Q-P.2; 

 Method to extract data and apply metrics. To 

identify the method used to obtain the metrics from the 

data sources and apply them (e.g., mining of source 

code repositories and collecting feedback from team 

members). This category helps to answer Q-P.2; 

 Context of metrics extraction and application. To 

collect metrics in a context: i) type of software 

(proprietary or open-source) and ii) environment to 

collect team data (academic or industry). This category 

helps to answer Q-P.2; 

 Method for presenting results to PMs. To identify 

information about how to present metrics to PMs. This 

category helps to answer Q-P.2; and 

 Support for project management. To identify how the 

metrics of the developers’ work support PMs in project 

management, especially in risk management and people 

management. This category helps to answer Q-P.3. 

4 SMS Execution Phase 

We performed the SMS Execution Phase between March 

and November 2019. First, we customized and applied the 

search string in the selected search engines, considering 

their specificities. We used the search string in the: 

 Single search field without filters (ACM Digital 

Library); 

 Advanced Search field without filters (Scopus); 

 Single search field with the filter “Content-Type: 

Conference Publications, Journals & Magazines” (IEEE 

Xplore); 

 Single search field with the filter “Controlled 

Vocabulary: Software Engineering” (Ei Compendex);  
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 Single search field with the filters “Discipline: 

Computer Science; Subdiscipline: Software 

Engineering; Content-Type: Article” (Springer). 

Next, we selected the studies, and the results were as 

follows (Table 4): 

 Application of the search string. We retrieved 1,381 

documents (Filter 1). Of these, 240 documents were 

from ACM (17.4%), 433 documents were from IEEE 

(31.4%), 169 documents were from Scopus (12.2%), 

141 documents were from Ei Compendex (10.2%), and 

398 documents were from Springer (28.8%); 

 Removal of duplicates. After removing duplicate 

documents, 1,305 documents remained (Filter 2). Of 

these, 239 documents were from ACM (18.3%), 421 

documents were from IEEE (32.3%), 115 documents 

were from Scopus (8.8%), 134 documents were from Ei 

Compendex (10.3%), and 396 documents were from 

Springer (30.3%);  

 Application of exclusion criteria. After applying the 

exclusion criteria (after which only studies remained), 

1,205 studies remained (Filter 3). Of these, 212 studies 

were from ACM (17.6%), 415 studies were from IEEE 

(34.4%), 77 studies were from Scopus (6.4%), 115 

studies were from Ei Compendex (9.6%), and 386 

studies were from Springer (32.0%). At this stage, the 

results returned were only studies; 

 Selection of potential studies. After reading the titles 

of the studies, abstract, and keywords, 61 studies were 

retrieved (Filter 4). Of these, 7 studies were from ACM 

(11.5%), 32 studies were from IEEE (52.5%), 8 studies 

were from Scopus (13.1%), 8 studies were from Ei 

Compendex (13.1%), and 6 studies were from Springer 

(9.8%); and 

 Application of inclusion criteria. After applying the 

inclusion criteria, we retrieved and read 40 studies. 

Additionally, we added the (only) non-recovered study 

(from the control group) by the protocol, totaling 41 

accepted studies (Filter 5). Of these, 4 studies were 

from ACM (9.8%), 27 studies were from IEEE (65.9%), 

6 studies were from Scopus (14.6%), 3 studies were 

from Ei Compendex (7.3%), and 1 study was from 

Springer (2.4%). 

Table 4. Summary of Selection Stages 

Repositories 
Filter 1 Filter 2 Filter 3 Filter 4 Filter 5 

A A R A R A R A R 

ACM 240 239 1 212 27 7 205 4 3 

IEEE 433 421 12 415 6 32 383 27 5 

Scopus 169 115 54 77 38 8 69 6 2 

Ei Compendex 141 134 7 115 19 8 107 3 5 

Springer 398 396 2 386 10 6 380 1 5 

Total 1,381 1,305 76 1,205 100 61 1,144 41* 20 
* Included Studies from the Control Group 

 

5 SMS Results Phase 

The studies resulting from the SMS are presented in Table 

A1 (Appendix A), containing identifiers, authors, year of 

publication, and repositories. When extracting the data 

from the studies, we could observe that the date of the 

resulting studies began in 2003 and had a publication 

frequency (average) of 2 studies. Over the years, two 

periods had more publications on the subject (2008 and 

from 2014 to 2016), with an average of 5.5 studies 

published (Figure 1). 

 

 
Figure 1. Annual Distribution of Selected Studies 

 

Additionally, when analyzing the publication media, 

conferences and symposiums published 31 studies (75.6%), 

journals published 5 studies (12.2%), and workshops 

published 5 studies (12.2%). The International Conference 

on Software Maintenance and Evolution (ICSME) 

published more studies (5 studies). 

To answer the secondary research question 

 

Q-S.1 - What type of solution is often proposed for 

studies in this area? 

 

we mapped the studies regarding the proposal of solutions 

to investigate the study theme, which could be (Figure 2): 

 Method defines workflows, rules, or procedures on 

how to perform an activity. It was present in 9 studies 

(22.0%); 

 Model describes conceptual representation with a 

formal abstraction of details and notations. It was 

present in 9 studies (22.0%); 

 Metric describes new metrics or one measurement plan. 

It was present in 9 studies (22.0%); 

 Overview describes and compares information to 

provide an overview of the subject. It was present in 4 

studies (9.7%); and 
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 Tool describes and provides one computational tool. It 

was present in 10 studies (24.3%). 

These solutions result from keywords often found in 

Software Engineering studies (Petersen et al. 2008). This 

mapping will allow us to assess where the community was 

more focused, i.e., on proposing new metrics or developing 

new tools to collect the existing metrics. 

 

 
Figure 2. Proposal of Solutions 

 

The identification of the solutions considers the first 

solution proposed in the study; the “Metric” and “Tool” 

solutions were also found as secondary solutions in other 

studies. All studies used the “Metric” solution. The “Tool” 

solution was used in 4 studies to support the “Metric” 

solution (26.7%), in 4 studies to support the “Method” 

solution (26.7%), 5 studies to support the “Model” solution 

(33.3%), and 2 studies to support the “Overview” solution 

(13.3%). In the following items, we discussed proposals for 

primary solutions: 

 Method was used to mine information and knowledge 

to support collaborative programming and resource 

allocation. Workflow analysis and interaction among 

developers facilitate project understanding and 

development (P10, P16, P32, P37), considering 

collaborative programming. Historical details of 

resource allocation and individual skills were analyzed 

to distribute tasks to team members recognizing each 

developer’s competencies (P1, P6, P11, P36), 

considering resource allocation; 

 Model was used to analyze individual participation, 

which investigated the collaborative software 

engineering context in order to share information and 

organize tasks and resources. Hence, the identified 

models evaluated the developers’ performance, 

considering the development environment and team 

feedback (P2, P7, P20), the building of the development 

team based on the activity, profile and experience of the 

developers (P4, P18, P34, P41), and the assessment of 

how the developers’ roles evolved, based on their 

contributions (P19, P24); 

 Metric was collected in source code repositories, bug 

tracking systems, or version control systems. From 

these metrics, indicators were taken from the 

developers’ work, e.g., productivity (P8, P9, P17, P21, 

P22, P23, P25), collaboration (P8, P9, P21, P22, P23), 

experience (P8, P9, P21, P22, P26), interaction (P8, 

P22), and task accomplishment indicators (P8, P9, P23, 

P25, P38); 

 Overview consists in the investigation of how PMs 

understand the developers’ work compared different 

factors regarding developers’ personality and activity. 

PMs interviewed developers to identify the most 

appropriate profile for a task (P15, P33) and compared 

methods used to estimate the developers’ work (P29, 

P35); and 

 Tool was used to support PM activities. Using 

automated resource allocation in software projects can 

help PMs in analyzing the variables needed for resource 

allocation. PMs can examine the software development 

process through information extracted from software 

repositories (P3, P13, P14, P30, P39) and developers’ 

evolution (P5, P12, P28, P30, P31, P40). 

To answer the secondary research question 

 

Q-S.2 - What type of research methodology is 

often used for studies in this area? 

 

we mapped studies according to the research methodology 

used (Figure 3): 

 Proposal of Solution proposes a solution technique and 

defends its relevance with one small example, or one 

good argumentation - 13 studies (31.7%) classified; 

 Validation Research investigates a solution technique 

within a specific context through experiments, surveys, 

or interviews to answer a particular research question - 

16 studies (39.0%) classified. This methodology does 

not require more formal experimental methods (e.g., 

hypothesis testing, control experiment); 

 Evaluation Research investigates the relationship 

among phenomena through formal experimental 

methods where casual properties are studied 

empirically, such as case studies, field studies, and field 

experiments - 12 studies (29.3%) classified; 

 Experience Studies explains how something has been 

done in practice based on the author’s experience - no 

study classified; 

 Opinion Studies reports the author’s opinion on how 

things should be - no study classified; and 

 Philosophical Studies structures the information 

regarding a specific field like one specific taxonomy or 

conceptual framework, resulting in a new way of 

looking at existing things - no study classified. 

We used three levels of research maturity (high rigor, 

medium rigor, and low rigor) related to the study subject 

(Garousi et al. 2015). The “Proposal of Solution” 

methodology has low rigor because it provides simple 

examples to verify its applicability. The “Validation 

Research” methodology has medium rigor because it does 

not include hypothesis testing nor discussions on threats to 

validity. The “Evaluation Research” methodology has high 

rigor because it includes hypothesis testing and discussions 
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on threats to validity. Given the distribution of studies in 

these methodologies (Figure 3), there are more empirical 

studies than proposal of solution, indicating high research 

rigor in this area. 

 

 
Figure 3. Research Methodology 

 

To answer the secondary research question 

 

Q-S.3 - How is the proposed solution related to 

the research methodology in the included studies? 

 

we performed an integrated analysis of the results obtained 

in Q-S.2 and Q-S.3. The information on the number of 

studies by research methodology and type of primary 

solution were listed and presented in Figure 4. We can 

observe that many studies showed the “Metric”, “Method”, 

and “Model” methodologies as a solution in the “Proposal 

of Solution”, “Validation Research”, and “Evaluation 

Research” methodologies, i.e., they were evaluated in the 

three maturity levels (high, medium, and low rigor). 

However, many intersections have zero values. For 

example, in studies that presented the “Tool” solution, only 

evaluations with low and medium rigor were conducted 

using the “Proposal of Solution” and “Validation Survey” 

methodologies. Therefore, this solution needs robust 

empirical studies. Besides, there are no solutions related to 

the “Experience Studies”, “Opinion Studies”, and 

“Philosophical Studies” methodologies, which highlights 

the need for studies in this field. 

 

To answer the primary research question 

 

Q-P.1 - What metrics are used by PMs to measure 

the developers’ work? 

 

we collected 64 metrics used to measure the developers’ 

work (Table 5) and categorized them into 6 groups (Figure 

5). In this categorization, we considered the similarity 

between the meanings and purpose of the metrics. Thus, we 

merged two metrics with different names when their aims 

and values were the same. Besides, there were cases in 

which the metrics with the same name measured different 

information. In those cases, we separated them into two or 

more metrics and changed their names. One example was 

the Collaboration (files) and Collaboration (interaction) 

metrics. The first one relates to the joint work on code files, 

and the second one relates to the exchange of information 

and help by teammates. The categories are: 

 Quality (Qua). This group refers to the quality of work 

delivered (task or source code). It covers the Martin 

(Martin 1994), CK (Chidamber and Kemerer 1994), 

size, and complexity metrics (P8, P9, P11, P14, P23, 

P25, P33, P39, P38). It comprises 11 metrics in 9 

studies (22%); 

 

 
Figure 4. Relationship between Methodologies and Proposal of Solution 

 

 Contribution (Con). This group refers to the amount of 

work performed by the developers on the software 

artifacts (P2, P3, P4, P5, P8, P9, P10, P11, P12, P13, 

P14, P16, P17, P18, P19, P20, P21, P22, P23, P24, P25, 

P26, P27, P28, P29, P30, P32, P33, P34, P35, P37, P39, 

P40). It covers metrics related to the number of commits 

and the number of modified/added/removed lines of 

code (Code Churn). It comprises 39 metrics in 33 

studies (80.5%); 

 Collaborative Work (CoW). This group refers to 

information sharing and teamwork to develop the same 

software artifact (P3, P7, P8, P9, P10, P12, P14, P18, 

P21, P22, P23, P30, P39, P40). It covers metrics related 

to the messages exchanged regarding bugs and the 

commits performing or lines of code in the same 

artifact. It comprises 4 metrics in 14 studies (34.1%); 

 Degree of Importance (ImP). This group refers to 

technology domains, developer reputation, participation 

time in projects, and type of work (e.g., bug fix) (P4, 

P5, P7, P8, P9, P13, P14, P15, P17, P18, P19, P20, P21, 

P22, P26, P27, P29, P31, P32, P33, P34, P35, P37). It 

comprises 20 metrics in 23 studies (56.1%). 

 Productivity (Pro). This group refers to the number of 

tasks performed within a given time (P2, P8, P17, P20, 

P24, P25, P33, P34, P36). It relates to the number of 

modified/added/removed lines of code, the number of 

commits, or the report on tasks completed in a period. It 

comprises 7 metrics in 9 studies (22%); and 
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Table 5. Metrics to Measure the Developers’ Work 

# Metrics Interpretation Reference # Metrics Interpretation Reference 

1 % of Commits Con P22, P8 28 Contribution Start Con, ImP P34 

2 % of Lines of Code ImP, Con P19, P35 29 Cost Pro P2 

3 Authorship by Guilt Con P35 30 CQI Qua P14 

4 CDI Qua P14 31 
Developer 

Fragmentation 
Con P14, P22, P24 

5 
Change Code 

Documentation (CAD) 
Con P8, P11 32 

Degree of 

Authorship (DOA) 
Con P29, P35 

6 CK Metrics Qua P9, P38 33 Effort on commit Pro, Con P17 

7 Close a Bug (BCL) ImP P9, P19, P8 34 
Effort per 

Modification 
Pro, Con P25, P2 

8 
Close a Bug that is then 

Reopened (BCR) 
ImP P8 35 

Expected Shortfall 

(ES) 
Con, ImP P37 

9 
Close a Lingering Thread 

(MCT) 
Pro P8 36 Expertise ImP P18, P31 

10 Code Duplication Qua P11 37 
Expertise Breadth of 

a Developer (EBD) 
Con, ImP P26 

11 
Collaboration 

(CodeChurn) 
CoW, Con P7 38 

Expertise of a 

Developer (ED) 
Con, ImP P21, P26 

12 Collaboration (Files) CoW, Con 

P14, P3, 

P10, P12, 

P30 

39 
First Reply to Thread 

(MRT) 
ImP P8 

13 
Collaboration 

(Interaction) 
CoW, Beh P21, P40 40 Hero Con, ImP P13 

14 
Comment on a Bug 

Report (BCR) 
Con P19, P8 41 

Knowledge at Risk 

(KaR) 
Con, ImP P37 

15 
Commit Binary Files 

(CBF) 
Con P8 42 Knowledge Loss Con, ImP P32, P37 

16 
Commit Code that 

Closes a Bug (CCB) 
Con P39, P8 43 

Last Committer 

“Takes All” 
Con P35 

17 

Commit Comment that 

Includes a Bug Report 

Num (CBN) 

Con, ImP P17, P19, P8 44 

Link a Wiki Page 

from Documentation 

File (WLP) 

Qua P8 

18 
Commit Documentation 

Files (CDF) 
Con P39, P8 45 Martin Metrics Qua P38, P11 

19 
Commit Fixes Code 

Style (CSF) 
Qua, Con P39, P8 46 

Mastery of 

Technologies 
ImP, Con P27, P33 

20 

Commit Multiples Files 

in a Single Commit 

(CMF) 

Con 
P19, P22, 

P28, P8 
47 Monthly Effort Pro P20, P2 

21 
Commit New Source 

File or Directory (CNS) 
Con P8 48 MTBC Pro P34 

22 

Commit with Empty 

Commit Comment 

(CEC) 

Con P8 49 
Number of Active 

Days 
Con, ImP 

P9, P12, P20, P19, 

P30, P34, P29, P39 

23 Commitment ImP, Beh 
P7, P33, 

P15 
50 

Number of Code 

Churn 
Con P20, P34 

24 Commits Versatility Con P34 51 Number of Commits Con P14 

25 Complexity and Size Qua 
P9, P23, 

P38, P11 
52 

Number of Lines of 

Code (NLOC) 
Con, CoW 

P16, P19, P3, P9, 

P14, P21, P18, P22, 

P23, P39, P8, P40 

26 Contribution Duration Con, ImP P34 53 
Participate in a 

Flame War (MFW) 
Beh P8, P14 

27 Contribution Factor Con P8 54 QCTE Qua P5, P4, P14, P35 
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Table 5. Metrics to Measure the Developers’ Work (cont.) 

# Metrics Interpretation Reference # Metrics Interpretation Reference 

55 QMood Metrics Qua P38 60 
Start a New Wiki 

Page (WSP) 
Con P8 

56 Report a Bug (BRP) ImP P8 61 Status ImP P22 

57 Rework Qua P25, P33 62 Task Delivery Pro P24, P33, P36 

58 Source Abandoned Con, ImP P32, P37 63 Truck Factor Con, ImP P13, P29, P35 

59 
Start a New Thread 

(MST) 
Con P8 64 

Update a  

Wiki Page (WUP) 
Con P22 

 

 Behavior (Beh). This group refers to the developers’ 

behavior, such as focus, proactivity, communication 

skills, and interaction with the team, to identify 

members’ engagement and commitment to the project 

(P7, P8, P15, P19, P22, P33). It comprises 5 metrics in 

6 studies (14.6%). 

For example, the Truck Factor metrics calculate the 

minimum number of developers who have to leave a 

project for it to be delayed (high probability). If this 

measurement returns a value of 1, it indicates that one 

developer has all the knowledge on the project. Therefore, 

project development can be delayed if this developer 

abandons it. Analogously, if this measurement returns a 

value of 3, it indicates that 3 developers have all the 

knowledge on the project. Thus, the project’s development 

can be delayed if these developers abandon it. If only a 

single developer has the all knowledge on the project, the 

Hero metric indicates that this one is a “hero”. Both metrics 

consider the developers’ contribution towards devising the 

files, meaning their level of expertise in the project (Con, 

ImP). 

 

 
Figure 5. Categories of Metrics 

 

To answer the primary research question 

 

Q-P.2 - How are metrics applied by PMs to 

monitor the developers’ work? 

 

we considered (i) data sources used to obtain information 

on the developers’ work (Table 6), (ii) the extraction 

method of this information for the application of metrics 

(Table 7), (iii) context in which the metrics were extracted 

(Figure 6), and (iv) presentation of the results for PMs to 

analyze (Table 8). 

We identified 5 data sources: i) Source Code 

Repositories (supported by Version Control Systems) in 28 

studies (68.3%); ii) Bug Repositories in 7 studies (17.1%); 

iii) Activity Management Repositories in 4 studies 

(9.8%); iv) Source Code Files in 5 studies (12.2%); and v) 

People (team members and/or PMs) in 7 studies (17.1%). 

We would like to point out that 8 studies used more than 

one data source (19.5%). The first four data sources 

provided impersonal data, and only the last one offered 

subjective data. 

 

Table 6. Data Sources on the Developers’ Work 

Data Sources References 

Code 

Repositories 

P3, P5, P8, P10, P9, P12, P13, P14, 

P16, P19, P20, P21, P22, P24, P23, 

P25, P26, P28, P29, P30, P31, P32, 

P34, P35, P37, P38, P39, P40 

Bugs Repositories P8, P9, P17, P19, P23, P25, P39 

Activity 

Management 

Repositories 

P8, P19, P22, P36 

Source Code Files P2, P4, P11, P17, P18 

People P1, P6, P7, P15, P27, P33, P41 

 

Table 7. Strategies for Data Extraction and Metrics Application 

Strategies References 

Automated 

Tools 

P2, P3, P4, P5, P8, P9, P10, P12, P11, 

P13, P14, P16, P17, P18, P19, P20, 

P26, P28, P29, P30, P31, P35, P36, 

P39, P40 

Manual Process 
P21, P22, P23, P24, P25, P32, P34, 

P37, P38 

Questionnaires, 

PMs’ Intuition,  

Focal Groups, 

and Interviews 

P1, P6, P7, P27, P33, P15, P41 

 

 
Figure 6: Extraction Context of Value of the Metrics 
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We found two strategies for data extraction and metrics 

application from impersonal data sources (Table 7): i) use 

of automated tools (25 studies - 61%); and ii) manual 

process (9 studies - 22%). We considered the impersonal 

data source to identify a strategy composed of 

questionnaires, PMs’ intuition, focal groups, and interviews 

(7 studies - 17.1%). 

 

Table 8. Strategies to Present Information 

Presentation Form References 

Textual 

P1, P4, P13, P14, P16, P19, P18, 

P22, P25, P26, P27, P29, P30, P31, 

P34, P35, P36, P39 

Graphical 

P2, P9, P10, P13, P11, P14, P17, 

P16, P18, P19, P20, P22, P25, P26, 

P31, P34, P38, P40 

Visualization 

Techniques 

P3, P5, P7, P9, P10, P12, P16, P28, 

P30, P39 

 

Additionally, we analyzed the data source used to 

identify the metrics application context (Figure 6). We 

analyzed the type of software in which the extraction of 

impersonal data used metrics (33 studies): i) proprietary 

software (7 studies - 21.2%); ii) open-source software (23 

studies - 69.7%); and iii) author’s example (3 studies - 

9.1%). For the impersonal data extraction, we analyzed the 

contexts in which interviews, questionnaires, and focus 

groups were held (8 studies): i) academic (3 studies - 

37.5%); ii) industrial (3 studies - 37.5%); and iii) 

industrial and academic (2 studies - 25%). 

For the extraction of impersonal data in an open-source 

context, the metrics were used with a frequency (median) 

of three software per study (P3, P4, P5, P8, P9, P10, P12, 

P13, P14, P16, P17, P18, P19, P20, P26, P29, P30, P31, 

P34, P35, P36, P38, P39 - 23 studies). The most widely 

used open-source software systems for data extraction were 

Eclipse (P4, P17, P19, P31 - 4 studies), JEdit (P5, P9, P13, 

P30 - 4 studies), Apache (P26, P31, P36 - 3 studies), and 

OpenStack (P20, P31 - 2 studies). In the proprietary 

software context, the studies used metrics in just one 

system (P11, P16, P21, P23, P25, P32, P40 - 7 studies). In 

the context the author used as an example, they used 

examples to show the metrics value extraction (P22, P24, 

P28 - 3 studies). In order to extract subjective data in the 

academic context, undergraduate students in computer 

science and business informatics were interviewed (P1, 

P15, P41 - 3 studies). In the industry context, interviews 

with product engineers and project managers were carried 

out (average = 12 people/study) (P2, P6, P7, P27, P33 - 5 

studies). 

From the context of classification used for data 

extraction, we identified that the studies analyzed the same 

metric in different contexts. Therefore, the metrics’ 

applicability to measure the developers’ work does not 

depend on a specific context. It is sufficient to use metrics 

on software (proprietary or open-source) and developers for 

the impersonal and subjective data extraction, respectively. 

Besides, we identified three strategies to submit 

information to PMs (32 studies - 78%) (Table 8): i) 

Textual (18 studies - 56.3%), ii) Graphical (18 studies - 

56.3%), and iii) Visualization Techniques (10 studies - 

31.3%). We point out 13 studies combining two or more 

strategies (40.6%). 

To answer the primary research question 

 

Q-P.3 - How do metrics concerning the developers’ 

work support project management, especially with 

regard to risk management and people management? 

 

we identified the project management activities supported 

by the information obtained by measuring the developers’ 

work. It is worth noticing that we defined these activities 

using the researchers’ interpretation. We analyzed the 

objectives and findings of the studies regarding the 

background presented (Section 2). For example, Lima and 

Elias 2019 (Lima and Elias, 2019) proposed a systematic 

approach to assign people to a specific activity according to 

their personality and skills. We used this concept in order to 

categorize the activities. After extracting the data, we 

merged some categories according to the similarity of their 

names and definition. In total, we found 7 activities that 

support project management (Table 9), and we highlight the 

fact that 16 studies (48.5%) treated two or more activities: 

 Identify the skills and the profile of developers (25 

studies - 61%); 

 Plan improvements to code quality (4 studies - 9.8%); 

 Improve team performance (12 studies - 29.3%); 

 Estimate project costs and deadlines and identify 

anomalies in developer performance (15 studies - 

36.6%); 

 Understand and control knowledge distribution (9 

studies - 22%); 

 Adjust pay (2 studies - 4.9%); and 

 Identify the need for investment (training or 

equipment) (5 studies - 12.2%). 

6 Discussion 

In this section, we discussed the results obtained with the 

SMS and presented the four PMs’ opinions. We collected 

their opinions to understand to what extent the metrics 

collected could be used to analyze the developers’ work. 

The PMs' opinions were collected using the interview 

described in Appendix B. 

There is a wide variety of existing metrics to measure 

the developers’ work (64 metrics). We found two most 

commonly used metrics: NLOC (number of lines of code) 

(12 studies) and number of commits (9 studies). Table 10 

presents 45 metrics created from those metrics above. 

There are 17 metrics unrelated to NLOC and the number of 

commits (Table 11) and associated with bugs (2 metrics), 

documentation (6 metrics), behavior (2 metrics), and 

quality (7 metrics) activities. 
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Table 9. Activities Supported by Information about the Developers’ 

Work 

Activities References 

Identify the skills and 

the profile of developers 

P24, P1, P3, P5, P7, P8, P9, 

P10, P11, P12, P14, P15, P20, 

P21, P22, P23, P25, P27, P30, 

P31, P33, P34, P36, P40, P41 

Plan improvements to 

code quality 
P14, P16, P22, P24 

Improve team 

performance 

P1, P7, P12, P15, P16, P18, 

P19, P22, P23, P32, P33, P37 

Estimate project costs 

and deadlines and 

identify anomalies in 

developer performance 

P1, P2, P6, P8, P9, P11, P12, 

P14, P17, P19, P18, P22, P28, 

P34, P33 

Understand and control 

knowledge distribution 

P8, P13, P23, P26, P29, P32, 

P33, P35, P37 

Adjust pay P19, P23 

Identify the need for 

investment (training or 

equipment) 

P8, P15, P17, P24, P28 

 

Table 10. Metrics Created from NLOC and Number of Commits 

# Metrics  # Metrics 

1 % of Commits  20 Contribution Duration 

2 % of Lines of Code  21 Contribution Factor 

3 Authorship by Guilt  22 Contribution Start 

4 Close a Bug (BCL)  23 Cost 

5 
Close a Bug that is 

then Reopened (BCR) 
 24 

Developer 

Fragmentation 

6 
Close a Lingering 

Thread (MCT) 
 25 

Degree of Authorship 

(DOA) 

7 Code Duplication  26 Effort on Commit 

8 
Collaboration 

(CodeChurn) 
 27 Effort per Modification 

9 Collaboration (Files)  28 Expected Shortfall (ES) 

10 
Comment on a Bug 

Report (BCR) 
 29 

Expertise Breadth of a 

Developer (EBD) 

11 
Commit Binary Files 

(CBF) 
 30 

Expertise of a 

Developer (ED) 

12 
Commit Code that 

Closes a Bug (CCB) 
 31 Expertise 

13 

Commit Comment that 

Includes a Bug Report 

Number (CBN) 

 32 Hero 

14 
Commit Documentation 

Files (CDF) 
 33 

Knowledge at Risk 

(KaR) 

15 
Commit Fixes Code 

Style (CSF) 
 34 Knowledge Loss 

16 

Commit Multiple Files 

in a Single Commit 

(CMF) 

 35 
Last Committer “Takes 

All” 

17 

Commit New Source 

File or Directory 

(CNS) 

 36 
Mastery of 

Technologies 

18 

Commit with Empty 

Commit Comment 

(CEC) 

 37 Monthly Effort 

19 Commits Versatility  38 MTBC 

 

Table 10. Metrics Created from NLOC and Number of Commits (cont.) 

# Metrics  # Metrics 

39 
Number of Active 

Days 
 43 Status 

40 
Number of Code 

Churn 
 44 Task Delivery 

41 
Participate in a Flame 

War (MFW) 
 45  Truck Factor 

42 Source Abandoned    

 

Table 11. Unrelated Metrics to NLOC and Number of Commits 

# Purpose Metrics 

1 
Bugs 

Rework 

Report a Bug (BRP) 2 
 

1 

Documentation 

Change Code Documentation (CAD) 

First Reply to Thread (MRT) 
Link a Wiki Page from Documentation File (WLP) 

Start a New Thread (MST) 

Start a New Wiki Page (WSP) 

Update a wiki Page (WUP) 

2 

3 

4 

5 

6 
 

1 
Behavior 

Commitment 

Collaboration (Interaction) 2 
 

1 

Quality 

CDI 

CK Metrics 

CQI 

Martin Metrics 

QCTE 

QMood Metrics 

Size 

2 

3 

4 

5 

6 

7 

 

Despite the variety of metrics, most of them quantify 

the developers’ work regarding their contributions to the 

software artifacts development. Hence, 34 metrics form the 

Contribution group, which shares metrics with the other 

groups created, except the Behavior Group, because it 

considers aspects such as focus and commitment, not the 

work done by the developers. 

PMs could choose any metrics from the 64 metrics 

identified in SMS as being essential to measure the 

developer’s work. As a result, they mentioned 29 metrics, 

of which two or more PMs cited the same 9 metrics. Three 

PMs chose 3 metrics (Task Delivery, Number of Commits, 

and Rework) showing that the performance on task 

delivery, frequency of contribution to the artifacts and 

solution generation do not need reworking as the most 

relevant inputs to measure the developers’ work. Another 

interesting point is the perception of the two PMs who 

work in the same company (PM1 and PM4). Although they 

have the same amount of experience in Company A, they 

have different opinions with regard to measuring the 

developers’ work. While PM1 highlighted only 1 metric, 

PM4 highlighted 24 metrics. This result shows the 

difficulty in finding a consensus regarding how to measure 

the developers’ work. None of the PMs suggested using a 

metric beyond the 64 metrics presented in Table 5. 

Nevertheless, PM1 mentioned code smells as a possible 

metric, but he/she did not justify its use. Maybe, the 

“number of code smells” can be one metric used to verify 
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the quality of solutions implemented by the developer, but 

we need to define how to use it. Besides, PM2 said, “I use 

the Task Delivery, Status, and Contribution Duration 

metrics using different names (Throughput, Lead Time, and 

Cycle Time, respectively)”. 

One interesting factor is that the selected studies used 

more than one metric for measuring the developers’ work. 

This may occur due to task complexity, requiring a lot of 

data to analyze the team members’ performance in the 

fairest way possible. The proposed organization of the 

metrics into groups provides an overview of the “types of 

information” used by PMs. However, no studies covered 

metrics from all groups. 

With regard to the artifact used to extract the value of 

the metrics, we found the source code repositories 

(managed by Version Control Systems) to be the most 

frequently used to collect information about the developers’ 

work. The information collected includes mainly the 

execution of commits and addition/modification/removal of 

lines of code. As previously mentioned, they indicate the 

degree of contribution to the project and are bases for most 

of the metrics listed. For example, we can trace the activity 

performed with the commit message if this activity 

consisted of a bug fixing. Another interesting point about 

NLOC and the number of commits is to apply filters, which 

can be: i) Information granularity levels (e.g., the number 

of commits performed by one developer in a directory, file 

or line of code); and ii) Time intervals (e.g., how much 

time the developer takes adding lines of code to the 

repository or how much time the developer contributed to 

the project in recent months). 

Another example of existent information in the source 

code repositories is the degree of collaboration among 

developers. The variability of possibilities offered by the 

data obtained from the source code repositories is 

numerous and diverse, in addition to providing support for 

the two most representative metrics (number of commits 

and NLOC). It can justify the code repositories to be the 

data source most often used in the studies found in SMS. 

The source code files are other data sources but limited to 

questions of complexity and quality code. The source code 

file analysis in an integrated development environment 

(e.g., Eclipse IDE) overcomes that limitation, which 

consists of enhancing it with plugins and enriching 

information. For example, we can determine how long one 

developer has kept a source code file open or which 

developer changed the source code. 

Using bug repositories helps to identify the developers’ 

work regarding bug detection, correction, or generation in 

software, providing information on when the developer 

contributed to correct bugs or need of reworking. Task 

repositories allow managing of bug activities, which can be 

supported by tools, such as spreadsheets or specialized 

tools. By analyzing the records of tasks performed by the 

developers, it is possible to identify information such as the 

history of tasks delivered by the developer, including extra 

data (e.g., duration), and types of tasks. This information 

can be extracted manually or automatically (through 

integration with the task repositories). 

People’s opinions were collected through feedback from 

team members and are based on the PMs’ intuition and 

knowledge about the developers, thus producing more 

subjective data about their work. Possible information 

includes type and frequency of activities, technical and 

personal skills, satisfaction, motivation, behavior, and 

personality. Questionnaires, interviews, or focus groups are 

used to extract such information. 

Interestingly, source code repositories used with other 

data sources are trivial and are a valuable data source to 

obtain information about the developers’ work. Again, the 

complexity of quantifying developers’ work explains this 

use. Such complexity can be the reason for using automated 

tools for data extraction and metrics application and is the 

most commonly used strategy to obtain the metrics on the 

developers’ work (28 studies - 68.3%). Automated tools 

include web systems, software executed via command 

terminals, and plugins for integrated development 

environments. The web systems offer more value to PMs 

among the automated tools because the other tools have no 

graphical interface and are limited, and any devices and 

operating systems (using a web browser) can access web 

systems. 

Another aspect observed in SMS, motivated by the 

complexity of measuring the developer’s work, is the 

balance between the three ways of presenting the 

information measured to PMs (textual - 56.3%, graphical - 

56.3%, and visualization techniques - 31.3%). The studies 

used text to show uncomplicated information, graphical for 

group information, and visualization techniques when the 

amount of information displayed was higher. Several 

studies (40.6%) used a combination of these presentation 

forms. 

We also noticed that 7 activities inherent to PMs can be 

supported by measuring the developers’ work. The 

activities can be related to the definitions described in 

PMBoK for People Management, Risk Management, 

Project Quality Management, and Resource Management. 

In “Identifying the skills and profile of the developer” 

activity, the PM chooses the members for a project team 

considering the skills and professional profile required to 

achieve the project goals. This activity supports the task 

allocation, considering the most appropriate person to 

perform a function (People management). Risk 

management can be supported, for example, in the 

following way: the PM can consider that the people 

available for the project do not have sufficient project 

technology skills (risk: not obtaining excellent project 

performance). Therefore, close monitoring of the team’s 

work is necessary, as well as hiring a consultancy firm. 

In the interview, the PMs pointed out the metrics they 

consider useful to carry out the “Identify the skills and the 

profile of developers” activity. Thus, they identified 21 

metrics among the 64 metrics found in SMS. The most 

frequently mentioned metric (three PMs) was Commitment. 

This metric provides information on the developer’s 

behavior. Other metrics mentioned by more than one PM 

were Collaboration (Interaction), Mastery of Technologies, 

Contribution Factor, Complexity and Size (5 metrics). The 
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PMs’ vision is to measure how committed the developer is 

to the project and the team, how much the developer 

collaborates with colleagues, and their mastery of project 

technologies, enabling them to contribute to the 

implementation of complex solutions for the software. 

Besides, more than one PM considered other relevant 

metrics. Such metrics provide information about the 

complexity of tasks performed by the developer, the 

contribution factor in software artifacts, the technical 

capacity in design technologies, and performance in 

collaboration with colleagues. 

In the “Planning Improvements to Code Quality” 

activity, PMs analyze the quality of the solutions delivered 

by the developers. The answers must meet the expectations 

of those involved with the project (including team, PMs 

and customers) and should be good enough to avoid 

rework. Quality is a factor related to project management, 

and there is an area of knowledge in PMBoK called Project 

Quality Management for this factor. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Planning Improvements to 

Code Quality” activity. Thus, they identified 17 metrics 

among the 64 metrics found in SMS. Two or more PMs 

mentioned the same 2 metrics (Rework and Collaboration 

(interaction)). The PMs’ view of this activity is 

significantly divergent. In the opinion of PM1, 

documentation is the main point, considering the writing 

software-specific documents and the documentation made 

from commits in code repositories. For PM2, the solution-

generated quality and bugs reported for lines of code that 

the developers created are interesting for quality checking. 

PM3 considers that developer’s experience and how much 

knowledge he/she shares with other team members are the 

main way to ensure that code quality is satisfactory. For 

PM4, object-oriented code quality metrics, the quality of 

the implemented solution and the developer’s ability to 

work in various code parts provide inputs to observe source 

code quality. In general, metrics are used for 

documentation, implementation quality, and generated 

rework. 

In “Improving Team Performance” activity, there is a 

dependency on measuring the developers’ work, because 

measuring the team’s performance (to determine the current 

state) is necessary in order to plan and apply actions to 

leverage performance (to promote improvement) and to 

remeasure it (to the new state). This activity is essential for 

people management, such as defining teams, assigning 

roles, communicating, and organizing work, thus 

contributing to performance improvement. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Improving Team 

Performance” activity. Thus, they identified 15 metrics 

among the 64 metrics found in SMS. Out of these, two or 

more PMs mentioned the same 6 metrics (Collaboration 

(Files), Collaboration (Interaction), Mastery of 

Technologies, Expertise, Collaboration (CodeChurn), and 

Closing a Bug that is then Reopened (BCR)). PMs share a 

similar view on performance: the developer with the 

technical knowledge, experience, and participation in 

various parts of source code gets the best performance. 

Besides, performance is analyzed by looking at not just one 

developer, but at the entire team. Hence, one developer 

cannot produce new solutions, but collaborate with other 

developers for the team to deliver an answer as soon as 

possible. PM2 and PM3 also highlighted the quality of the 

implemented solution that the developer performs better, as 

corrections or refactoring are necessary when the developer 

provides an error-free task and satisfactory quality. In the 

same way as the previous activity (related to quality), PMs 

considered metrics related to reworking in order to 

understand the team’s performance. 

In the “Estimating Project Costs and Deadlines and 

Identifying Anomalies in Developer Performance” activity, 

there is a relationship with people management because the 

project budget and cost are anticipated when PMs record 

historical information on the developers’ work. Besides, 

recent history can help to identify when one developer is 

performing differently than expected (better or worse), 

which can be a consequence of a change in the developer’s 

motivation or his/her interpersonal relationships with the 

team. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Estimating Project Costs 

and Deadlines and Identifying Anomalies in Developer 

Performance” activity. Thus, they identified 24 metrics 

among the 64 metrics found in SMS. Two or more PMs 

mentioned the same 6 metrics (Cost, Effort per 

Modification, Rework, Commitment, Task Delivery, and 

Contribution Factor). The four PMs interviewed considered 

the technical ability and delivery history of the team 

allocated to the project to be essential in order to estimate 

costs and deadlines. Additionally, they said that the 

developers’ knowledge and contributions to the project’s 

source code should be taken into account in the estimates. 

PM1 pointed out that performance anomalies are usually 

caused by the emergence of unplanned and highly complex 

demands, leading to high development costs. 

In the “Understanding and Controlling Knowledge 

Distribution” activity, there is support for risk management 

because the departure of one developer who has most of the 

knowledge about the source code of a project can present 

high risks. Therefore, PMs should monitor knowledge 

distribution, act towards leveling the knowledge of the 

team, and prevent essential people from leaving the project 

earlier than expected. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Understanding and 

Controlling Knowledge Distribution” activity. Thus, they 

identified 17 metrics among the 64 metrics found in SMS. 

Out of the 64, two or more PMs mentioned the same 6 

metrics (Commit Documentation Files (CDF), 

Collaboration (Files), Collaboration (Interaction), 

Collaboration (CodeChurn), Change Code Documentation 

(CAD), and Degree of Authorship (DOA)). In the PMs’ 

opinion, it is possible to identify a developer’s knowledge 

of the system by observing the contributions in writing their 

documentation and code. PM3 also considers commitment, 
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time working on the project, and all activities registered in 

the version control system. 

Another interesting point is to measure how much the 

developer shares your knowledge. PM2, PM3, and PM4 

highlighted this information. Among the studies found in 

SMS, one study addressed knowledge distribution with 

greater emphasis (Ferreira et al. 2017). The authors 

calculated the DOA metric for all files in the code 

repository in order to identify the developers with the most 

knowledge of the project. This calculation generated 

another metric (Truck Factor metric). However, when 

choosing the DOA metric instead of the Truck Factor 

metric, PMs preferred to look at individual files instead of 

the entire set of files in the repository, identifying 

developers’ knowledge in parts of source code. 

In the “Pay Adjustments” activity, the work done by the 

development team is recognized, thus keeping professionals 

motivated and satisfied. This activity is critical when 

managing people. In the “Identifying the Need for 

Investment” activity, there is acquisition of equipment and 

training in order to meet project needs. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Pay Adjustments” activity. 

Thus, they identified 30 metrics among the 64 metrics 

found in SMS. Out of these 30, two or more PMs 

mentioned the same 12 metrics (Commitment, Expertise, 

Rework, Collaboration (Files), Mastery of Technologies, 

Task Delivery, Monthly Effort, Contribution Factor, 

Number of Active Days, Cost, Contribution Start, and 

Contribution Duration). With regard to other activities, this 

one received the most significant number of different 

metrics, and the rate of metrics chosen by more than one 

PM was higher. This variety of metrics may be due to the 

activity’s sensitivity and the concern for making 

compensation adjustments in the most adequate way. In 

general, according to the PMs, the developers’ commitment 

and technical ability, the quality of the solutions generated 

and the time spent on the project are primary information. 

In the interview, PMs pointed out the metrics they 

consider useful to carry out the “Identifying the Need for 

Investment” activity. Thus, they identified 23 metrics 

among the 64 metrics found in SMS. Two or more PMs 

mentioned the same 3 metrics (Close a Bug that is then 

Reopened (BCR), Mastery of Technologies, and Effort on 

Commit). For PMs, it is necessary to understand if the 

developers are technically competent to perform their 

activities. Hence, the selected metrics provide the level of 

effort to accomplish tasks, the mastery of project 

technologies, and the number of errors and rework for 

solutions delivered by developers. 

In Table 12, we presented the metrics that PMs cited ten 

or more times. They considered them relevant, and their 

opinion provides some (few) professionals’ views on the 

metrics found in the literature. Thus, these results cannot be 

generalized for the entire industrial context.

 

Table 12. Metrics most selected by PMs 

# Metric Number of Citations Mentioned by 

1 Collaboration (Interaction) 15 

PM2: 1, 3, 5 

PM3: 1, 2, 3, 4, 5, 6, 7, General  

PM4: 1, 3, 5, General 

2 Rework 14 

PM2: 1, 2, 3, 4, 5, 6, 7, General 

PM3: 6, General 

PM4: 2, 4, 6, General 

3 Collaboration (Files) 12 

PM2: 3, 5, 6  

PM3: 3, 4, 5, 6, 7  

PM4: 1, 3, 5, General 

4 Expertise 12 

PM1: 3  

PM2: 6 

PM3: 1, 2, 3, 5, 6, 7, General 

PM4: 4, 6, General 

5 Mastery of Technologies 12 

PM1: 3  

PM2: 1, 3, 6, 7 

PM3: 3, 5, General 

PM4: 1, 6, 7, General 

6 Commitment 11 

PM1: 6 

PM2: 1, 4, 6 

PM3: 1, 3, 4, 5, 6, General 

PM4: 1 

7 Cost 11 

PM2: 4  

PM3: 1, 2, 3, 4, 6, 7, General 

PM4: 4, 6, General 
1. Identify the skills and the profile of developers; 2. Plan improvements to code quality; 3. Improve team performance; 4. Estimate project 

costs and deadlines and identify anomalies in developer performance; 5. Understand and control knowledge distribution; 6. Adjust pay; 7. 

Identify the need for investment (training or equipment); General. Considers relevant to project management (unspecified activity). 

 



 

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020 

7 Threats to Validity 

Internal Validity. Refers to the effects of the treatments 

over the variables due to uncontrolled factors in the 

environment (Wohlin et al. 2012). Limitations of the search 

string and digital libraries can lead to an incomplete 

selection of studies. We selected five search engines and 

adapted the search string to achieve our goal. However, 

other digital libraries and keywords could be added to the 

search string. Another possible threat is the researchers’ 

bias in selecting the studies, and answering the research 

questions (e.g., identification and grouping of metrics, 

interpretation of project management activities). To 

mitigate this, Researchers A and B discussed the results 

while generating the groups presented. These researchers 

were monitored by Researcher C. Finally, Researcher D 

(most experienced researcher) evaluated the work 

performed and suggested improvements to ensure the 

impartiality and quality of this study. Moreover, we 

carefully defined and reported the search string, digital 

libraries chosen, and the inclusion and exclusion criteria to 

ensure SMS replicability. 

External Validity. Relates to whether the results can be 

generalized outside the experimental setting (Wohlin et al. 

2012). One threat to external validity is about our selecting 

representative studies. With regard to the amount of 

information collected, we argue that the selected studies are 

representative. However, we only considered studies from 

the formal literature, which could be extended by 

considering the gray literature. Our findings are focused on 

evaluating the developers’ work. Currently, we have no 

intention to generalize our results beyond this field. 

Construct Validity. Represents the measurement of the 

concepts of cause and effect in the experiment through 

dependent and independent variables (Wohlin et al. 2012). 

To ensure that SMS was impartial, comprehensive, and of 

high quality, four researchers took part in the definition and 

execution of the research protocol. The protocol used to 

select the studies was validated using a control group (7 

studies). However, we addressed 6 studies from this group 

and added the other study manually. It was one 

consequence of our decision to limit results by applying 

keywords from Parts 2, 3, 4, and 5 just in the title, abstract, 

and keyword of the studies. With regard to data extraction, 

we defined a classification scheme. However, it was a 

manual process, and we cannot claim that it was carried out 

mistake-free. The data extraction process required an 

understanding of the subject to infer the non-explicit data, 

which made this process exhaustive and complicated. 

Conclusion Validity. Refers to the extension of the 

conclusions about the relationship between the treatments 

and the outcomes (Wohlin et al. 2012). We followed a 

systematic approach for conducting SMS and described all 

procedures to ensure this study’s replicability. 

8 Final Remarks 

Project managers (PMs) are professionals whose task is to 

successfully lead software projects. Therefore, project 

management practices are applied. Aiming to support the 

PM, several studies in the literature have proposed 

strategies to measure the developers’ work. In this article, 

an exploratory study was carried out by using the 

Systematic Mapping Study (SMS) and interviewing PMs to 

organize concepts related to this topic. 

In this context, we answered three primary research 

questions, specific to our study field (Q-P.1 - What metrics 

are used by PMs to measure the developers’ work?, Q-P.2 - 

How are metrics applied by PMs to monitor the developers’ 

work?, and Q-P.3 - How does information about the 

developers’ work support project management?). 

Additionally, we answered three secondary research 

questions, which are common to SMS studies (Q-S.1 - 

What type of solution is often proposed for studies in this 

area?, Q-S.2 - What type of research methodology is often 

used for studies in this area?, and Q-S.3 - How is the 

proposed solution related to the research methodology in 

the included studies?). The responses were based on an 

analysis of 41 studies found using SMS and the opinions of 

four PMs opinions. 

Our contributions are: i) identification of the studies’ 

maturity, ii) identification of solution proposals to 

investigate the study theme, iii) identification of 64 metrics, 

iv) organization of the metrics into 6 groups, v) 

identification of 4 data sources to obtain information, vi) 

identification of the data extraction context and metrics 

application, vii) identification of 7 activities for which the 

PM is responsible (most of these activities are related to 

risk management and people management), supported by a 

measurement of the developers’ work, viii) the opinion of 

four PMs on the usefulness of the 64 metrics; ix) the 

opinion of four PMs on how the 64 metrics relate to 7 

activities under their responsibility, and x) characterization 

of the aspects to explore the subject, indicating themes for 

possible new studies in the area of Software Engineering. 

The suggestions for future work include: i) verification 

of the validity of metrics found by collecting the most 

significant number of PM opinions, allowing a quantitative 

analysis, ii) assessment of the validity of the metrics found 

by conducting a field study, iii) evaluation of approaches to 

measure the developers’ work considering the industrial, 

and proprietary software context, iv) creation of new 

approaches (or advances in existing approaches) to consider 

diversified metrics that provide information about work 

quality, contribution by the developer, collaboration, level 

of importance to the project, productivity, and personal 

behavior, and v) combination of three forms of presenting 

information (textual, graphical, and visualization 

techniques). 
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Appendix A 

Table A1. Resultant Studies from SMS 

# Title Authors Year Repository Score 

P1 
Reflecting Skills and Personality Internally as Means for 

Team Performance Improvement 

Zuser, W. 

Grechenig, T. 
2003 IEEE 3.5 

P2 
Continuous productivity assessment and effort prediction 

based on Bayesian analysis 

Yun, S. 

Simmons D. 
2004 

Ei 

Compendex 
5.0 

P3 Visualization of CVS Repository Information 

Xie, X. 

Poshyvanyk, D. 

Marcus, A. 

2006 IEEE 4.5 
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Table A1. Resultant Studies from SMS (cont.) 

# Title Authors Year Repository Score 

P4 
A 3-Dimensional Relevance Model for Collaborative 

Software Engineering 

Omoronyia, I. 

Ferguson, J. 

Roper, M. 

Wood, M. 

2007 IEEE 3.5 

P5 
A Visualization for Software Project Awareness and 

Evolution 

Ripley, R. 

Sarma, A. 

van der Hoek, A. 

2007 IEEE 5.0 

P6 Evaluating Software Project Portfolio Risks 

Costa, H. 

Barros, M. 

Travassos, G. 

2007 
Ei 

Compendex 
4.0 

P7 
Development of a Project Level Performance Measurement 

Model for Improving Collaborative Design Team Work 

Yin, Y. 

Qin, S. 

Holland, R. 

2008 IEEE 4.5 

P8 
Measuring Developer Contribution from Software Repository 

Data 

Gousios, G. 

Kalliamvakou, E. 

Spinellis, D. 

2008 ACM 4.0 

P9 
Mining Individual Performance Indicators in Collaborative 

Development Using Software Repositories 

Zhang, S. 

Wang, Y. 

Xiao, J. 

2008 IEEE 4.0 

P10 
SVNNAT: Measuring Collaboration in Software 

Development Networks 

Schwind, M. 

Wegmann, C. 
2008 IEEE 3.5 

P11 
Case Study: Visual Analytics in Software Product 

Assessments 

Telea, A. 

Voinea, L. 
2009 

Ei 

Compendex 
4.5 

P12 
Using Transflow to Analyze Open-Source Developers’ 

Evolution 

Costa, J. 

Santana Jr., F. 

de Souza, C. 

2009 Scopus 4.5 

P13 Are Heroes Common in FLOSS Projects? 
Ricca, F. 

Marchetto, A. 
2010 ACM 4.0 

P14 PIVoT: Project Insights and Visualization Toolkit 
Sharma, V. 

Kaulgud, V. 
2012 IEEE 5.0 

P15 
Effect of Personality Type on Structured Tool Comprehension 

Performance 

Gorla, N. 

Chiravuri, A. 

Meso P. 

2013 Springer 4.0 

P16 
Extracting, Identifying and Visualisation of the Content, Users 

and Authors in Software Projects 

Polášek, I. 

Uhlár, M. 
2013 Scopus 5.0 

P17 
Towards Understanding How Developers Spend Their Effort 

During Maintenance Activities 

Soh, Z. 

Khomh, F. 

Guéhéneuc, Y. 

Antoniol, G. 

2013 IEEE 5.0 

P18 

A Machine Learning Technique for Predicting the 

Productivity of Practitioners from Individually Developed 

Software Projects 

Lopez-Martin, C. 

Chavoya, A. 

Meda-Campana, M. 

2014 IEEE 4.5 

P19 
Determining Developers’ Expertise and Role: A Graph 

Hierarchy-Based Approach 

Bhattacharya, P. 

Neamtiu, I. 

Faloutsos, M. 

2014 IEEE 5.0 

P20 

Estimating Development Effort in Free/Open-source Software 

Projects by Mining Software Repositories: A Case Study of 

OpenStack 

Robles, G. 

González-Barahona, J. M. 

Cervigón, C. 

Capiluppi, A. 

Izquierdo-Cortázar, D. 

2014 ACM 5.0 

P21 
Extracting New Metrics from Version Control System for the 

Comparison of Software Developers 

Moura, M. 

Nascimento, H. 

Rosa, T. 

2014 IEEE 4.5 

P22 
Influence of Social and Technical Factors for Evaluating 

Contribution in GitHub 

Tsay, J. 

Dabbish, L. 

Herbsleb, J. 

2014 ACM 5.0 
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Table A1. Resultant Studies from SMS (cont.) 

# Title Authors Year Repository Score 

P23 
Assessing Developer Contribution with Repository Mining-

Based Metrics 

Lima, J. 

Treude, C. 

Filho, F. 

Kulesza, U. 

2015 IEEE 4.0 

24 
Contributor’s Performance, Participation Intentions, Its 

Influencers and Project Performance 
Rastogi, A. 2015 IEEE 4.0 

P25 
Identifying Wasted Effort in the Field Via Developer 

Interaction Data 

Balogh, G. 

Antal, G. 

Beszedes, A. 

Vidacs, L. 

Gyimothy, L. 

Vegh, T. 

Zoltan A. 

2015 IEEE 4.5 

P26 
Niche vs. Breadth: Calculating Expertise over Time through a 

Fine-Grained Analysis 

da Silva, J. 

Clua, E. 

Murta, L. 

Sarma, A. 

2015 IEEE 5.0 

P27 
Proposal for a Quantitative Skill Risk Evaluation Method 

Using Fault Tree Analysis 

Liu, G. 

Yokoyama, S. 
2015 IEEE 4.0 

P28 
TeamWATCH Demonstration: A Web-based 3D Software 

Source Code Visualization for Education 

Gao, M. 

Liu, C. 
2015 Scopus 4.5 

P29 
A Comparative Study of Algorithms for Estimating Truck 

Factor 

Ferreira, M. 

Avelino, G. 

Valente, M. 

Ferreira, K. 

2016 IEEE 5.0 

P30 
Knowledge Discovery in Software Teams by Means of 

Evolutionary Visual Software Analytics 

González-Torres, A. 

García-Peñalvo, F. 

Therón-Sánchez, R. 

Colomo-Palacios, R. 

2016 Scopus 5.0 

P31 
Open-source Resume (OSR): A Visualization Tool for 

Presenting OSS Biographies of Developers 

Jaruchotrattanasakul, T. 

Yang, X. 

Makihara, E. 

Fujiwara, K. 

Iida, H. 

2016 IEEE 5.0 

P32 
Quantifying and Mitigating Turnover-Induced Knowledge 

Loss: Case Studies of Chrome and a project at Avaya 

Rigby, P. 

Zhu, Y. 

Donadelli, S. 

Mockus, A. 

Rigb, P. 

Zhu, Y. 

Donadell, S. 

Mockus, A. 

2016 Scopus 5.0 

P33 
Software Project Managers’ Perceptions of Productivity 

Factors: Findings from a Qualitative Study 

Oliveira, E. 

Conte, T. 

Cristo, M. 

Mendes, E. 

2016 ACM 4.5 

P34 
Using Temporal and Semantic Developer-Level Information 

to Predict Maintenance Activity Profiles 

Levin, S. 

Yehudai, A. 
2016 IEEE 5.0 

P35 
A Comparison of Three Algorithms for Computing Truck 

Factors 

Ferreira, M. 

Valente, M. 

Ferreira, K. 

2017 IEEE 5.0 

P36 
Collabcrew - An Intelligent Tool for Dynamic Task 

Allocation within a Software Development Team 

Samath, S. 

Udalagama, D. 

Kurukulasooriya, H. 

Premarathne, D. 

Thelijjagoda, S. 

2017 IEEE 4.5 
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Table A1. Resultant Studies from SMS (cont.) 

# Title Authors Year Repository Score 

P37 
Revisiting Turnover-Induced Knowledge Loss in Software 

Projects 

Nassif, M. 

Robillard, M. P. 
2017 Scopus 3.0 

P38 
Measuring Developers’ Contribution in Source Code using 

Quality Metrics 

de Bassi, P. 

Wanderley, G. 

Banali, P. 

Paraiso, E. 

2018 IEEE 3.5 

P39 
RepoVis: Visual Overviews and Full-Text Search in Software 

Repositories 

Feiner, J. 

Andrews, K. 
2018 IEEE 3.5 

P40 
git2net - Mining Time-Stamped Co-Editing Networks from 

Large git Repositories 

Gote, C. 

Scholtes, I. 

Schweitzer, F. 

2019 IEEE 4.5 

P41 
Selecting Project Team Members through MBTI Method: An 

Investigation with Homophily and Behavioural Analysis 

Kollipara, P. 

Regalla, L. 

Ghosh, G. 

Kasturi, N. 

2019 IEEE 3.0 

 

 

 

 

 

  



 

How is a Developer’s Work Measured? An Industrial and Academic Exploratory View Ferreira et al. 2020 

Appendix B 

1. Interview with PMs 

We collected the opinion of professionals who work with project management in the software industry and used a 

structured script containing the following items for conducting the interview1: 

 Description (company, level of education, experience, and number of projects managed); 

 Opinion on which of the 64 metrics (Table 5) is necessary to measure the developers’ work; 

 Opinion on which of the 64 metrics (Table 5) are useful to support the performance of the 7 activities listed in Table 9; 

and 

 Suggestion for other metrics. 

We interviewed four PMs from three private companies with different characteristics. By interviewing these PMs, 

information from professionals in different contexts and projects was collected. The company’s characteristics are: 

 Company A is a software factory in the Brazilian market and has approximately 70 employees; 

 Company B is a software factory operating in Brazil’s education area, with around 150 employees; and 

 Company C is an enterprise software consultant with approximately 12,000 employees and headquarters in various 

countries. 

Table B1 presents the interviewees’ description (PM1, PM2, PM3, and PM4) who work in companies of different 

characteristics. PM1 and PM4 work in the same company. PM1, PM2, and PM3 are graduates, and PM4 is postgraduate. 

Their experience ranges from 1 to 3 years and have participated in the management of 6 to 10 projects. 

Table B1. Activities Supported by Information on the Developers’ Work 

ID Company Education Experience # Projects 

PM1 A Bachelor degree 1 year 6 

PM2 C Bachelor degree 1,5 year 8 

PM3 B Bachelor degree 3 years 10 

PM4 A MBA 1 year 8 

 

In Figure 7, we presented the steps for collecting the PMs’ opinions. The researchers defined questions and devised an 

electronic questionnaire. Then, PMs were asked to voice their opinions. We scheduled an individual interview with each 

PM and recorded their answers in the electronic questionnaire. Finally, we compiled the responses and included them in the 

discussion of the results. 

 

 
Figure 7. Steps to Collect PMs’ opinions 

 

 

 

 

 

 

 

  

                                                           
1 The questions, responses, and annotations are available at (in Portuguese): http://doi.org/10.5281/zenodo.3965805 


