
Journal of Software Engineering Research and Development, 2020, 8:9, doi: 10.5753/jserd.2020.731
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Extraction of test cases procedures from textual use cases: is it
worth it?
Erick Barros dos Santos*[Federal University of Ceará | erickbarros@great.ufc.br]
Rossana Maria de Castro Andrade† [Federal University of Ceará | rossana@great.ufc.br]
Ismayle de Sousa Santos [Federal University of Ceará | ismaylesantos@great.ufc.br]
Lucas Simão da Costa [Federal University of Ceará | lucascosta@great.ufc.br]
Thaís Marinho de Amorim [Federal University of Ceará | thaisamorim@great.ufc.br]
Bruno Sabóia Aragão‡ [Federal University of Ceará | bruno@great.ufc.br]
Danilo Reis de Vasconcelos [Federal Institute of Ceará | danilo.reis@ifce.edu.br]

Abstract Software testing plays a major role in software quality once it assures that the software complies with
its expected behavior. However, this is an expensive activity and, consequently, companies usually do not perform
testing activities on software projects due to the time required. These costs may be even higher in testing processes
that rely on manual test execution only, which is both timeconsuming and errorprone. One strategy commonly
used to mitigate these costs is to use tools to automate testing activities such as test execution, test documentation,
and test case generation. This paper presents an experience report in the context of a Test Factory about the use of a
tool that partially automates the specification of test case procedures from textual use cases. This tool automatically
retrieves use cases from the requirement management system, generates the test case procedures, requires inputs
from the tester, and then sends the test cases to the test management system. This paper details how this tool was
used in releases of an industrial software project through a proof of concept. We also performed a feasibility study
with four test analysts from different projects to gather more data regarding its efficiency to support the test case
documentation. The results indicate that the tool reduces the test specification time, and that the integration with
both requirements and test management systems made our tool feasible in practice.

Keywords: Software Testing, Test Generation, Test Factory

1 Introduction
Software testing has an essential role in software quality as
surance, allowing the discovery of bugs beforehand over the
product life cycle (Myers et al., 2004). However, performing
manual testing activities can be timeconsuming and error
prone. Beyond that, mistakes in these activities (e.g., bad test
coverage or error in testing effort estimation) may contribute
to the appearance of test debts, i.e., technical debts related to
software testing activities (Samarthyam et al., 2017; Aragão
et al., 2019).
Aiming to reduce the mistakes and costs related to soft

ware testing, many companies have dedicated efforts to au
tomate testing activities, such as the generation of test cases,
test execution, and test reports (Garousi and Mäntylä, 2016).
In spite of the advanced research on testing activities automa
tion in the academy, the main concern in the industry is to im
prove the effectiveness and efficiency of the tests with the au
tomation and use of techniques that are easy to use (Garousi
and Felderer, 2017).
Besides that, many software development companies have

hired test factories services. One of the advantages of a test
factory is that it acts in software testing externally and inde
pendently from the development team (Andrade et al., 2017).

*Master Researcher scholarship sponsored by CNPq (No 133464 /
20180).

†Researcher scholarship DTLevel 2, sponsored by CNPq (No 315543
/ 20183).

‡Researcher scholarship sponsored by Fundação de Cultura e Apoio
ao Ensino, Pesquisa e Extensão.

Test factories can help to improve the quality of software by
reducing the effort of testing activities from the development
team. Test factories also have teams that work on several do
mains of systems, which can be allocated towork on different
testing projects on demand. Software development organiza
tions also have the benefit of outsourcing the selection of the
testing team.
On the other hand, test factories have to cope with chal

lenges related to the definition of testing processes (Aragão
et al., 2017) and automation of test case execution (Vieira
et al., 2018a). Additionally, the tight deadlines of software
projects can hinder the process of an external company that
offers the testing services. Thus, it is necessary to research
the automation of testing activities.
Regarding the automation of activities, which is the focus

of this paper, the literature still has few experience reports,
especially in the context of a test factory. This sort of study
is important since it provides evidence that knowledge from
literature can support practitioners.
This paper’s main objective is to report the experience on

the test generation from use cases with an automated tool.
In our previous work (Santos et al., 2019), we presented our
first experience report on using a tool for the semiautomatic
generation of test procedures based on use cases. The devel
opment of this tool was based on existing work in the soft
ware testing literature. We also conducted a proof of concept
in the context of a test factory to assess the benefits of the tool
during the testing process and reported five lessons learned
from this experience. Afterwards, we intend to expand the
previous report, also focusing on the acquired experience in

mailto:erickbarros@great.ufc.br
mailto:rossana@great.ufc.br
mailto:ismaylesantos@great.ufc.br
mailto:lucascosta@great.ufc.br
mailto:thaisamorim@great.ufc.br
mailto:bruno@great.ufc.br
mailto:danilo.reis@ifce.edu.br

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

the automatic generation of tests. This extension consists of
improving the tool’s functionalities, allowing users to define
their own templates to extract data from the textual use cases.
Another improvement in our tool was the inclusion of busi
ness rules in the test case generation process to increase the
test coverage.
In this context, we plan to answer the following question:

“Is it feasible to use a tool to generate test cases from textual
use cases in the test process within a test factory?”.
To answer this question, we expanded the efficiency proof

of concept with more data regarding real releases of an in
dustry software project. In this proof of concept, the speci
fication of tests needed 65,38% less time than manual activ
ity. We also conducted a feasibility study with test analysts
from different projects and collected their feedback. All users
needed less time to complete the specification task using the
tool, but they also reported the need to improve its usabil
ity. For instance, the solution generates test procedures with
unnecessary extra characters.
This paper is organized as follows: Section 2 discusses re

lated work. Section 3 presents the methodology used for the
development and proof of concept of our solution. Section
4 describes the environment of the test factory, its team pro
file, tools, and internal processes. Section 5 details the tool
developed. Section 6 details the proof of concept conducted
with our solution in a industrial context. Section 7 describes
the feasibility study with users that was conducted. Section
8 summarizes the lessons learned during this study. Finally,
Section 9 concludes the paper.

2 Related Work
In the literature, several work deal with the generation of test
cases and procedures from use cases. For example, some ap
proaches (Nogueira et al., 2019; Sneed, 2018) are based on
Natural Language Processing (NLP) for the extraction of test
cases and others on the generation of intermediate models to
extract the necessary information (Some and Cheng, 2008;
Massollar et al., 2012). Furthermore, studies (Gutiérrez et al.,
2015; Jorge et al., 2018; Massollar et al., 2012; Yue et al.,
2015) in the literature have performed evaluations and expe
rience reports in the industry about test generation tools and
approaches.
Some and Cheng (2008) offers an approach for generating

test scenarios based on textual use cases, using a restricted
languagewith tokens for preconditions, flows, steps, and con
ditional expressions. The first step in the approach consists
of extracting information from structured texts to create a
state machine called the Control FlowBased State Machine
(CFSM), in which transitions represent the steps, and states
represent the actions and outputs. Use cases included in an
other use case compose the same CFSM. At the end of the
generation process, a global CFSM is generated to link all use
cases, which is traversed to generate the test scenarios. The
paths in the model represent scenarios that can be generated
with different coverage criteria. We use a similar concept in
this paper to generate the test procedures, also requiring man
ual intervention to create the final tests. Another similarity
is that we generate the scenarios by paths in the flows, but

without generating intermediate models and with simplified
selection criteria.
Massollar et al. (2012) present an automated modelbased

approach for generating test cases. The approach consists of
specifying the use cases using specific patterns so that they
are converted into UML1 activity diagrams to represent the
system’s behavior. The goal of the activity diagram is two
folded to check if the use cases have been specified cor
rectly and assist test models generation. This test model is
the basis for the generation of procedures and test cases in
a way that the test analyst must manually identify and insert
the necessary data to generate the test cases. This paper also
presents an evaluation of the tool that is carried out with two
software engineers and a group of students. The authors dis
cuss the data related to the specification time and the model
verification, but with low emphasis on the test generation.

Gutiérrez et al. (2015) present a modelbased approach
for test case generation which focuses on the use of meta
models to increase the generalization of the solution with dif
ferent approaches. Their solution uses meta models to model
use cases and test elements, thus making transformations in
the models until the test cases can be obtained. This work
presents three industrial use cases, one of them in an agile
context, and it also summarizes the lessons learned. Even
with the introduction of extra models and their respective
transformations, the authors reported effort reductions with
the use of the proposed tools. However, not much informa
tion is provided about the approach’s effort in the agile envi
ronment.
Yue et al. (2015) present RTCM, an approach for the tex

tual specification of test cases through similar elements from
use cases. This approach provides some predefined patterns
for test specification and a tool called aToucan4Test, whose
primary goal is to assist the whole generation process of man
ual and automated test cases. To analyze the feasibility of the
solution, the authors present the use of the tool in two indus
trial case studies in the domain of cyberphysical systems.
The assessment is focused on automated test scripts genera
tion, in which the authors report a significant reduction in
the implementation effort. Finally, the authors present the
lessons learned from the process.
Jorge et al. (2018) propose CLARET, a domainspecific

language that allows use case creation using structured nat
ural language and test cases. They also present a supporting
tool that allows the specification and validation of use cases
but also converts them to Labeled Transitions Systems to cre
ate the test cases. This work describes industrial study cases
in an agile environment, where the software engineers write
use cases using CLARET and generate test cases by using
the developed tool. They also present the lessons learned and
results on the effectiveness of the solution.
Sneed (2018) reports his experience in the industry with

the semiautomatic generation of tests. The generation ap
proach consists of extracting information through Natural
Language Processing, using either requirement in plain text
or use cases enriched by keywords. The expressions of the
text are compared with grammars to identify actions, states,
and business rules that serve as the basis to test conditions.

1https://www.uml.org/

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Table 1. Comparison of related work.

Work Generation Goal Artifacts for Generation Toolsupported Industrial Evaluation

Some and Cheng (2008) Test Scenarios Textual Template and models Yes No

Massollar et al. (2012) Test Procedures Textual Template and models Yes Yes

Gutiérrez et al. (2015) Test Cases Models Yes Yes

Yue et al. (2015) Test Cases Textual Template and models Yes Yes

Jorge et al. (2018) Test Cases Textual Template Yes Yes

Sneed (2018) Test Cases Textual Template Yes Yes

Nogueira et al. (2019) Test Cases Textual Template and models Yes No

Current Work Test Procedures Textual Template Yes Yes

Finally, the tester must change the test conditions to insert in
puts and outputs. The author reports experience in four indus
trial projects, summarizing data related to effort. This work is
similar to ours, mainly in the use of keywords to ease the ex
traction of information, though little information is provided
on how these tests can be changed through the tool. Addi
tionally, the integration of the tool with other systems that
supports the testing process is not presented.
Nogueira et al. (2019) propose an approach for the auto

matic generation of tests from use cases. For this purpose, the
authors propose the use of a controlled natural language. The
first step consists of modeling use cases through language,
which allows the declaration of system interactions, entries,
and conditional expressions. After that, the specification is
converted into CSP models, so that the variables and data
types are converted to formalism. In the third step, the ana
lyst specifies the purposes of testing that will guide test gen
eration. Finally, the generation is performed using an LTS
model, where the traces represent test scenarios and the spec
ified domain is used to create the tests. The authors reported
the implementation of a tool that abstracts the formalism of
the approach for testers. Among the similarities, it is possible
to highlight the use of use cases of partners in the industry.
However, the tool usage by test analysts is not presented.
The main goal of our paper is to report the experience of

the automatic generation of test procedures from textual use
cases. To accomplish this, we implemented a tool that fulfills
the needs of a particular agile project. Table 1 summarizes a
comparison of our work with the related work presented in
this section. It is possible to verify that most studies have
focused on the generation of test cases rather than test pro
cedures. However, these approaches impose the additional
cost of formal models to increase efficacy (Massollar et al.,
2012; Yue et al., 2015; Gutiérrez et al., 2015). To analyze
and extract the use cases, we used predefined structures in
the use cases without restricting their specification with a
syntax grammar (Nogueira et al., 2019; Sneed, 2018). This
latter would require changes in all use cases of the project’s
documentation.
The work most related to ours is the one by Some and

Cheng (2008) and Massollar et al. (2012). In our tool, we
use a concept similar to the scenarios presented by the fore
mentioned authors to create the procedures, linking the use
case flows through references in steps. The main difference
was to use a simpler representation of use cases that do not

rely on models or formal languages. This impacts the effi
cacy during the test generation. On the other hand, there is
the benefit of offering a more practical solution with less ef
fort related to specification. Thus, the solution can be consid
ered an initial approach for test automation, which integrates
with other systems of testing projects. Moreover, our paper
discusses the results of effort metrics collected in the context
of a test factory and presents feasibility study results with
users.

3 Research Method
To guide the execution of the original study (Santos et al.,
2019), we used a methodology with steps that were based
on the transfer technology model proposed by Gorschek
et al. (2006). This model favors a cooperation between the
academia and the industry and can be beneficial for both. It
allows researchers to study relevant industry issues and val
idate their results in a real environment. The methodology
used in this paper has five steps. In this paper, we improved
the solution of Step 2 and the proof of concept of Step 3. We
also added Step 5 to perform the evaluation with users. The
steps are described thereupon.
Step 1 Identifying potential improvement areas based

on industry requirements: In this step, we performed ob
servations on the test activities of a real test project (see Sec
tion 4). To assist information gathering, involved researchers
asked the test team about needs regarding the testing process.
We identified improvement issues related to the test specifica
tion process execution. After that, test analysts of the project
were interviewed to gather more details about how the test
activities can be executed to reduce the effort2. As a result,
we identified the requirements of an automation tool for sup
porting the test analysis and specification.
The requirement for the solution is that it should not cause

too many modifications in the artifacts (e.g., use case and
test cases templates) of the process. This solution must also
be as practical as possible to reduce the effort related to for
mal specifications.Most of the solutions presented in Section
2 requires the introduction of additional models or modifica
tion of the use case templates. We also could not find an auto
mated solution that fulfill the projects needs, so a customized
solution must be implemented.

2Effort calculated in manhour

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Table 2. Used metrics during the proof of concept.
Group Metric Formula Interpretation
Test Effort Efficiency of the Test

Specification
Amount of Specified Test Cases
/ Total Time

The biggest is considered better

Test Coverage Coverage Require
ments

Amount of covered use case
flows / Total amount of use case
flows

The biggest is considered better

Test Coverage Test cases per require
ment

Total amount of test cases per re
quirement

N/A

Test Effort Economy Effort Variance [(Real Effort Estimated Effort)
/ Estimated Effort] * 100

Considering the formula, it is pos
sible to assume that: (i) When the
Effort Variance is positive, it means
that extra time (effort) will be nec
essary to complete the planned work.
(ii) When the Effort Variance is neg
ative, it means that it will be neces
sary less time (effort) to complete the
planned work. (iii) Otherwise, if the
Effort Variance is zero, it means that
it takes the estimated effort.

N/A Total Amount of Test
Cases

Total Amount of Test Cases N/A

Step 2 Solution design: After the previous step, we
started the elaboration of a solution. The goal was to use prac
tices and concepts from the literature that would best fit the
requirements of the industrial project. In order to do so, we
made a review of some solutions presented in the literature
that could help in the development of a customized solution.
As described in Section 2, many approaches are supported
by additional models to increase the effectiveness of the gen
erated tests. However, we chose to avoid modeldependent
approaches, since the objective was an easytoimplement
solution that does not require the manipulation of an addi
tional formalism or that could somehow affect the Sprints of
the project. As the use cases of the industrial project were
specified in the Portuguese language, we also chose not to
use NLPbased approaches, once the solutions found are de
signed for usage with the English language. Additionally, we
did not intend to use a fixed syntax to avoid impacts on the
specification of use cases. The latter was necessary because
the project employs a use case template in the requirements
elicitation that should not be changed.
Among the tools in the literature that propose test genera

tion, Specmate (Freudenstein et al., 2018) is one of the cur
rent tools with more features. Although it still depends on
additional models for test generation, its procedure specifi
cation and test data insertion process is straightforward and
does not depend on additional models. We follow similar in
teractions to build the user interface of our solution. Our steps
to generate the test scenarios draw similarities with the work
of Some and Cheng (2008), but with simpler coverage crite
ria.
Given the considerations mentioned above, we decided to

develop a tool that would partially automate the specifica
tion process of test procedures. Thus, test analysts could have
more control over the test specification. This tool should also
receive input data to create test cases.
Step 3 Performing a proof of concept: To perform an

initial evaluation of the tool, a proof of concept was made in
one Sprint of the same project used as the context to build
the solution, which was started in June 2019 and finished in
July 2019. This proof of concept was conducted by one of
the researchers and assisted by the test leader of the software
project. Aiming to analyze the impact of the tool in the test
ing teamwork, metrics related to the number of test cases,
requirements coverage, effort, and variance were collected.
These metrics are part of the Test Factory process (de Cas
tro Andrade et al., 2017) and are based on articles available
in white literature (Seela and Yackel) and academic work
(Lazic and Mastorakis, 2008). Table 2 summarizes the met
rics used and their respective formulas. Based on the pilot
results, which were presented in our previous paper (Santos
et al., 2019), we obtained initial data about the feasibility of
the tool and its benefits. We also identified some failures in
the tool, which were fixed before the tool was deployed. The
results of the proof of concept are presented in Section 6.

Step 4 Solution deploy: In this step, the elaborated so
lution is deployed in the project for use. In our case, we de
ployed the tool for use in our industrial project. Then, we
used our tool during some releases of the referred project.
The data collected during this usage is presented in Section
6.

Step 5 Carrying out a feasibility study with other
professionals: After the deployment of the solution, we per
formed a feasibility study with professionals from the testing
area of other software projects. The main objective of this
evaluation was to obtain data about the efficiency of the tool
with professionals from different contexts who have had ex
perience in the specification of tests based on use cases. The
results of this feasibility study are presented in Section 7.

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

4 Proof of Concept Environment
In this section, we present the environment in which the so
lution was created and the proof of concept in Section 6
was conducted. We performed the proof of concept in a Re
search, Development, and Innovation project concerned with
requirement elicitation and software testing of the Software
A3. This software aims to manage a passive optical network.

This project can be considered distributed since the client,
development and requirement/test teams belong to different
institutions and work in different locations. The team respon
sible for the Software A’s requirement/tests makes use of
the SCRUM (Schwaber and Beedle, 2002) framework with
Sprints that lasted a month.
This environment was the basis to build the tool presented

in Section 5. It was also used to conduct the proof of concept
to be presented in Section 6.
Subsection 4.1 presents the testing team’s profile. Sub

section 4.2 describes the tools and patterns adopted in the
project. Subsections 4.3 and 4.4 detail, respectively, the re
quirement and the test process used. These processes were
elaborated based on the previous experiences (Aragão et al.,
2017; Vieira et al., 2018b) of the GREat’s4 test factory in test
projects.

4.1 Team profile
The test factory team involved in Software A project is com
posed of a test manager, one requirement analyst, two test
analysts, one trainee (tester), and one researcher. Among the
members, only one of the analysts and the trainee executed
test cases. The analyst has a fourteenmonth experience in re
quirement elicitation andworked for one year and sixmonths
in test execution. The trainee has an experience of a year
and four months in requirement elicitation and test execution.
Both of them have a fourteenmonth experience in require
ment elicitation and test activities in the Software A project.
The requirement/test team performed both the requirement

and test activities, in which the use cases are the basis for
the test case specification. In addition to the tests based on
use cases, the team also conducted exploratory tests during
the execution of the Sprints. The high knowledge of Soft
ware A’s requirements allowed the test analysts to generate
more concise test documentation, thus providingmore agility
during the process. Therefore, the analysts executed the tests
based on the documents and their own experience. However,
concise test documentation can also be costly to create and
maintain, especially in a project with a lot of requirement
changes and fixed release date.

4.2 Tools and Patterns of the Internal Pro
cesses

To guide the activities of the requirement and test processes
(see Sections 4.3 and 4.4), the testing team used the fol
lowing tools: JIRA5, for use case and task management;

3The system name was omitted due to confidentiality agreement.
4http://www.great.ufc.br
5https://www.atlassian.com/software/jira

Figure 1. Example of patterns used to use case specification.

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Confluence6, for business rules and general documentation;
TestLink7, for test plan and test cases management; and the
browsers Google Chrome8 and Firefox9, for the test case ex
ecution.
Since the beginning of Software A project, the stakehold

ers decided to perform the requirement specification using
welldefined templates, aiming to improve the understand
ability for all stakeholders. Therefore, we used special sym
bols that ease the identification of elements in the use case
steps. Figure 1 shows a fictitious example of a use case to
edit a registered user, where the Basic Flow starts in the tag
[Basic Flow]. Likewise, in step 3 of the Basic Flow, the in
put fields are identified by double quotations. In step 4, the
clickable visual elements are written between <> symbols.
The use case also has information about the use case’s goal,
related mockups, preconditions, and the acceptance criteria.
The latter refers to the flows that should not have any crit
ical bug so the use case implementation can be considered
“done”.

4.3 Requirements Process
In order to organize the requirement engineering tasks, we
followed a requirement process with the following activities:
Elicitation, Analysis, Specification, and Validation. Accord
ing to Wiegers and Beatty (2013), these steps are essential
to requirement engineering in a software project. During the
implementation of the project, the analysts performed the re
quirements activities in a way its outputs could be used as
input to the Sprint’s backlog.
Although the project had agile characteristics, the client

requested the detailing of the documentation for Software A
because of its complex features. Thus, we specified the re
quirements through textual use cases. Each step task is pre
sented as follows.

1. Elicitation: This step aims to identify the system re
quirements by consulting the stakeholders. In this pro
cess, the team performs an interview with stakeholders
and the elaboration of usage scenarios with interface
prototyping using the Balsamiq10 tool.

2. Analysis: This step is responsible for verifying the
consistency, completeness, and viability of previous
elicited requirements. Hence, the stakeholders prioritize
the requirements aiming to identify which ones have a
faster and higher return of investment to the client and
final customer.

3. Documentation: In this step, the analysts specify the
requirements as use cases and communicate them to the
team. The system business rules are also documented.

4. Validation: In this step, the analysts assure that the re
quirements have acceptable description and can be sent
to the development. In this paper, this step also involves
the creation and validation of high fidelity prototypes.

6https://www.atlassian.com/software/confluence
7http://www.testlink.org
8https://www.google.com/chrome
9https://www.mozilla.org
10https://balsamiq.com/wireframes/

4.4 Testing Process
The testing process provides real feedback from the behav
ior of the software (Bertolino, 2007), and the organization of
activities allows its communication, monitoring, and improv
ing (Mette and Hass, 2008).
Processes can vary depending on the institution. Still, there

are generic processes (Mette and Hass, 2008; ISO/IEC29119
2, 2013) that can be adapted for the organization’s purposes.
GREat’s Test Factory project (de Castro Andrade et al., 2017)
is based on MPS.BR (Montoni et al., 2009) and has three
steps: (i) Planning; (ii) Elaboration; and (iii) Execution. In
the context of this project, the requirement analysts send the
documents, specified as described in Section 4.3, to the test
activities so that the specification and execution of the tests
are performed before the system is released. We present a
brief description of the main activities of this process as fol
lows:

1. Planning: This step consists in verifying the test goals
and perform the required actions to transform the test
strategy in an operational plan.

2. Specification: This step aims to elaborate tests to meet
the demands of the test plan. This also includes auto
mated test scripts specification, when necessary.

3. Execution: At last, the final step relates to executing
the tests and store results. In this step, the test analysts
must verify the test incidents. Therefore, the analysts
also generate a test report and send it to the client with
lessons learned.

It is worth noting that, during the whole process, the test
team controlled and kept track of the activities, allowing
them to make some improvements in the next process exe
cution.

5 Tool for SemiAutomatic Genera
tion of Tests Procedures

In our previous work (Santos et al., 2019), we introduced the
tool used to generate tests from use cases in the context of
the Software A project. In this paper, we will refer to this
tool as UC2Proc. This tool was mainly developed by one re
searcher and one test analyst. Regarding the improvements
of the tool (see Section 5.1), another test analyst was respon
sible for implementing additional features. The features of
the UC2Proc tool comprise processing structured textual use
cases from JIRA, the generation of test procedures from the
use case flows, the edition of the extracted test procedures,
the addition of input data to create test cases, and, finally,
sending generated test cases to the TestLink.
For the current study, our tool was improved based on the

pilot results. All the tool features and its improvements are
detailed in Subsection 5.1. In Subsection 5.2, we present its
package diagram, and in Subsection 5.3 we present some in
terfaces and how the tool works.

5.1 Tool Features
The features of the UC2Proc are described as follows:

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

(1) Integration with JIRA. In our tool, the test analyst
can search for the identifier of a use case issue from the JIRA
system. Next, regular expressions are used to extract the in
formation from the textual use cases, which processes the fol
lowing elements: objective, preconditions, flows, steps, refer
ences to other flows, and data entries in the steps. This opera
tion only works correctly if the use cases are strictly specified
according to the patterns configured in the tool.
(2) Testing Procedures Generation. The information ex

tracted from the textual use cases is used to generate test
procedures. To achieve so, the UC2Proc first creates test
scenarios that are composed of flow sequences to be vis
ited in the use cases. To accomplish this task, we used an
approach similar to the one presented by Some and Cheng
(2008). Then, we implemented an algorithm that generates
state sequences starting in the ’Basic Flow’ and visits all al
ternative/exception flows that depart from it. Thus, starting
from each of the alternative/exception flows, all their respec
tive steps are analyzed and the paths to other flows are visited.
This scenario of flow sequences are used to compile the input
steps and variables that will compose the test procedures.
In the current version of our tool, we also added a new

function that identifies the business rules referenced in the
use case. The tool then creates two tests for each rule: one
with the purpose of validating it and the other aiming at veri
fying the violation of the rule. The user then visualizes the ref
erence and manually fills the steps of the test procedure. The
coverage criteria, although simple, allows generating scenar
ios that go through all flows and some transitions. However,
a deep search for all state machine paths is not performed,
which could lead to the generation of some scenarios with
several flows. The intention of this functionality is to gen
erate test procedures similar to those that the test analysts
manually generate in the project.
Algorithm 1 explains the process to generate the scenarios

for each use case. Lines 1 to 5 declare the necessary vari
ables, where testScenerarios is the list of scenarios with the
use case flows, currentPath is an auxiliary variable and test
Procedures is the final list of test procedures. The first step
is to create a scenario for the basic flow. Thus, the algorithm
iterate over each step of the basic flow. From line 8 to line
11, a new scenario is created from basic flow to each flow
that is called in the basic flow steps. Next, the lines of each
alternative/exception flow are analyzed, and one scenario is
created starting from then to each new flow reference. In sum
mary, scenarios are generated by exploring a maximum of
one level from each flow. After creating the test scenarios,
the algorithm iterates over each scenario, creating a proce
dure containing title, goal, and preconditions from the sce
nario. Thus, the algorithm iterates over each business rules
from use case and creates a test procedure containing the ti
tle of the rule and blank space in steps and output, which the
user must manually fill. At last, the algorithm returns the list
of test procedures generated.
(3) Testing Procedures Management. The developed

tool allows the test analyst to add, edit, and delete a test proce
dure, as well as to manage the steps within a procedure. Our
tool also extracts and displays to the user the inputs listed
in the steps of each procedure. These inputs can be added,
edited, or removed when editing the steps, but it is not pos

Algorithm 1: Generation of Test Procedures
Result: List of test procedures

1 useCase← use case to be processed;
2 businessRules← list of business rules in useCase;
3 testScenarios← ∅;
4 currentPath← ∅;
5 testProcedures← ∅;
6 Comment: creation of scenarios
7 testScenarios← testScenarios∪ basic flow in

useCases;
8 for each flow in basic flow from useCase do
9 currentPath← basicflow ∪ flow;
10 testScenarios←

testScenarios ∪ currentPath;
11 end
12 for each remaining flow in useCase do
13 currentPath← reconstruct path from basic

flow to current flow;
14 for each flow reference in current flow do
15 testScenarios← currentPath∪ flow

reference;
16 end
17 end
18 Comment: creation of test procedures
19 for each scenario in testScenarios do
20 procedure← create test procedure with title,

goal, and preconditions from scenario;
21 for each flow reference in scenario do
22 Add user steps in procedure;
23 Add system steps in procedure;
24 end
25 testProcedures←

testProcedures ∪ procedure;
26 end
27 Comment: Creation of procedures to

bussiness rules
28 for rule in businessRule do
29 procedure← create new procedure with title of

businessRule Comment: the steps must be
created by the test analyst

30 testProcedures←
testProcedures ∪ procedure;

31 end

sible to automatically extract references of the screens mock
ups and actors of the use case.
(4) Testing Data Insertion. After generating the test pro

cedures, the test analyst can insert the test data and generate
instances of test cases with different input data.
(5) Integration with TestLink.After the generation of the

test procedures and addition of the data to generate test cases,
the tool sends the test suite to TestLink. For this, the test an
alyst must configure the test project name in which the gen
erated test cases must be uploaded.
(6) Template Customization. In our previous work (San

tos et al., 2019), the tool was limited to a fixed use case tem
plate. In the present work, we added new functionality that
allows the customization of the patterns to detect elements
of textual use cases. It is worth noting that the general struc

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

ture of the use cases is fixed and must be followed. However,
the user can create its own regular expressions using a form
in the tool. The major advantage of this functionality is that
it makes the tool more customizable, allowing it to adapt to
patterns of different projects or organizations.

5.2 Package Diagram
The UC2Proc tool was developed as a Web App using
the framework Ionic11 and the JavaScript programming lan
guage 12. We also used the JIRA and TestLink APIs to allow
communication with these services. Figure 2 presents a UML

Figure 2. Package Diagram of developed UC2Proc.

package diagram representing an overview of the tool’s archi
tecture. This figure highlights the main modules of the tool:
Issue,Use Case, Scenario, Test Data, Test Case and TestLink.
The Issue module manages the issues received from the

JIRA API, which uses the defined regular expressions to ex
tract the necessary elements from the issue. These elements
are used to instantiate the objects (e.g., Basic Flow, Business
Rules) used in the test generation process.
The Use Case module receives the issue extracted from

the previous module. Next, it instantiates a use case object
based on the information received in such a way that each
flow contains steps, the flow/event that triggers it, and the
flows possible to reach it.
After that, the Scenario module generates the usage sce

narios from the flows labeled in the Use Case module. The
generation process follows the algorithm presented in Sub
section 5.1. The Test Data module handles the manual input
of test data in the test scenarios.
Finally, the Test Case module generates the test cases that

will compose the test suite and uses the Testlink module to
send them to the test management tool.

11https://ionicframework.com/
12https://www.javascript.com/

5.3 Tool’s Usage
This section presents an example of the use of our tool, given
the use case presented in Figure 1. At first, to use the tool,
the user must configure the integration with external man
agement systems, detailed as follows:

• JIRA: The test analyst must provide the URL of the
JIRA API, username, and API key of an account. This
information can be obtained from the security page of
the JIRA user account; and

• Testlink: The test analyst must provide the URL of the
TestLink API, which can be obtained from the analyst
responsible for the maintenance of the TestLink in the
organization, and the API key, which can be found on
the user page in TestLink.

Figure 3. Tool’s issue searching.

Once the authentication information is configured, the user
must start by searching the use cases. In order to do so, it
should type the use case issued ID from JIRA in the field
“search”. The system then displays the search results and al
lows the found issues to be added by the “+” button, as shown
in Figure 3.
Thus, the user must click on the right arrow button and the

system runs Algorithm 1. Hence, it displays the generated
scenarios for each flow and business rule from the use case.
Assuming the structure of the use case presented in Figure 1,
the expected result must generate one test procedure for each
flow (Basic Flow, AF01, AF02, EF01) and two additional
procedures for the business rules.

Figure 4. Example of scenario generation.

Table 3 presents the test procedures generated with the
following fields: (i) Scenario, the test scenario generated;
(ii) Title, which is the test procedure title; and (iii) Actions

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Table 3. Example of test procedures generated by tool.
Id Scenario Title Actions Outputs
1 [Basic Flow] [Basic Flow] Edit User [Basic Flow] 1,3,4,6 [Basic Flow] 2,5

2 [Basic Flow],[AF01],[Basic Flow] [AF01] Admin checks Temporary field
[Basic Flow] 1
[AF01] 2,4

[Basic Flow] 4,6

[Basic Flow] 2
[AF01] 3

[Basic Flow] 5

3 [Basic Flow],[AF02],[Basic Flow] [AF02] Admin clicks on Cancel
[Basic Flow] 1,3

[AF02] 2
[Basic Flow] 6

[Basic Flow] 2,5

4 [Basic Flow],[EF02] [EF01] Email already registered
[Basic Flow] 1,3

[EF01] 2
[Basic Flow] 6

[Basic Flow] 2
[EF01] 4

5 BN001.01 Validates BN001.01 Blank Blank
5 BN003.02 Validates BN003.02 Blank Blank

Figure 5. Test cases exported to Testlink.

Figure 6. Example of Testlink integration popup.

and Outputs, which represent the steps and expected results
through the use case flow (between “[]”) and the step num
bers. For instance, the first row of 3 represents basic flow
scenario, which assumes steps 1, 3, 4 and 6, steps that con
tain “The Admin”, from use case as test actions, and steps
2 and 5, steps that contain “System”, as the expected result.
Thus, the user can add, remove, or modify test cases or test
data using the fields shown in Figure 4.
After the edition of the test procedures and generation of

the test cases, the user must click on the button “Send to
Testlink”, and choose the name of the project and test suite in
TestLink, as shown in Figure 6. The tool then creates a new

test suite into the chosen project and export all current test
procedures as test cases into Testlink.
An example of test cases generated from use case shown

in Figure 1 is depicted in Figure 5.

6 Proof of Concept

In this section, we detail the process of the study execution
after the deployment of the solution described in Section 3.
After that, we performed a proof of concept conducted in the
environment presented in Section 4.
Subsection 6.1 describes the steps to perform the evalu

ation. Subsection 6.2 summarizes and discusses the results
related to the test effort.

6.1 Proof of Concept Steps

We evaluated the tool in three steps: (1) selection of use cases,
which produces a list of requirements without previous test
cases; (2) effort estimation, where the analyst evaluates the
time to complete the task based on its experience; and, (3)
automatic generation of tests, comprising the actual use of
the generated solution. These steps were performed by one
of the researchers and the test analyst of the project.
These steps are described next.

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Figure 7. Process to SemiAutomatic Specification of Test Procedures.

Figure 8. Subprocess to Adjust Test Procedure.

1. Use Case Selection. The first step of the proof of con
cept was the selection of the use cases. To prevent the bias as
sociated with the analyst’s knowledge, we selected use cases
that were not analyzed and specified before. Taking into ac
count that textual patterns of the project were already applied
to documents, the analysts did not perform editions in the use
cases.
To present results as close as possible in the original con

text of Software A project, we selected use cases from a real
release of the software under development. Considering the
aforementioned conditions, the team used all the artifacts pro
duced during the proof of concept in the real release.
2. Effort Estimation. The test analyst estimated the man

ual effort to specify the tests in minutes. Then, the analyst
calculated the effort with a metric defined by the following
equation: 3 ∗ (NofF lows + NofBusinessRules) + W .
The number three is a multiplier factor representing the an
alyst’s effort in minutes to specify the tests for a use case
with N flows and N business rules. Additionally, the metric
includes a weight W that adds the extra time based on the
analyst’s perception. The cases with W equals to 1 refers to
flows with many repeated steps, which required lower test
specification effort. The greater the inexperience of the ana
lyst with the functionality under test, the greater the value of
theW weight.

The team of Software A project created the metric to fill
its needs of manual effort estimation, considering margins of
error based on the analyst’s opinion. The whole equation is
based on recent experience gained in the project. Despite the
metric is ad hoc and not validated in controlled experiments
or case studies, the results were accurate enough in our pre
vious evaluations (Santos et al., 2019).
3. Generation of Test Procedures. The test analyst must

perform the test cases generation based on use cases. The test
analyst carries this process using the proposed tool and the
TestLink, aiming to compare the required time to complete
the task and the estimation effort results. It is worth noting
that the test analyst did not specify the test cases manually
during the proof of concept.
To use the tool and generate the test cases, the test analyst

performed the activities following the process illustrated in
Figures 7 and 8. The details of each activity are presented as
follows.

1. Select Sprint’s use cases from JIRA: This activity re
ceives as input the list of selected use cases from back
log, which were selected at the beginning of the proof of
concept. At this point, the test analystmust select the use
cases for the automatic generation of test procedures.

2. Verify compliance of use cases with the organiza
tion’s patterns: In this activity, the test analyst checks

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Table 4. Tool results for selected use cases.
Id UC

flows
Business
rules

UC
steps

Template
correc
tion
time

Adjust
time

Testlink
correc
tion
time

Weight Estimated
time

Actual
time

Test
cases
gener
ated

1 1 0 4 00:01:14 00:00:32 00:00:10 2 00:05:00 00:01:56 1
2 3 0 11 00:01:11 00:00:44 00:00:43 3 00:12:00 00:02:38 3
3 1 0 4 00:01:02 00:00:18 00:00:25 2 00:05:00 00:01:45 1
4 3 1 32 00:02:41 00:02:28 00:00:56 3 00:15:00 00:06:05 5
5 3 0 16 00:01:27 00:00:41 00:00:41 3 00:12:00 00:02:49 3
6 6 2 34 00:01:45 00:07:21 00:00:33 2 00:26:00 00:09:39 6
7 3 0 17 00:03:12 00:00:54 00:00:25 3 00:12:00 00:04:31 3
8 3 0 18 00:03:45 00:01:01 00:00:45 3 00:12:00 00:05:31 3
9 3 2 17 00:02:12 00:07:29 00:00:50 0 00:15:00 00:10:31 7
10 3 2 16 00:01:26 00:02:35 00:00:50 0 00:15:00 00:04:51 7
11 3 1 12 00:02:53 00:02:33 00:00:39 2 00:14:00 00:06:05 5
12 4 3 25 00:01:31 00:05:30 00:01:42 1 00:20:00 00:08:43 13
13 2 1 13 00:04:47 00:01:58 00:00:26 0 00:09:00 00:07:11 5
14 2 1 10 00:02:08 00:00:40 00:00:26 0 00:09:00 00:03:14 2
15 9 1 40 00:02:03 00:01:53 00:00:41 10 00:40:00 00:04:37 13
16 8 3 54 00:03:58 00:07:00 00:01:06 2 00:35:00 00:12:04 11
17 4 2 24 00:02:46 00:01:37 00:01:00 0 00:18:00 00:05:23 6
18 6 1 27 00:02:00 00:03:06 00:00:44 4 00:25:00 00:05:50 9
19 1 1 7 00:00:57 00:01:16 00:00:22 1 00:05:00 00:02:35 2
20 5 5 30 00:00:43 00:04:52 00:01:11 0 00:30:00 00:06:46 10
21 4 2 24 00:02:00 00:09:55 00:01:16 0 00:18:00 00:13:11 7
22 9 3 47 00:05:02 00:05:07 00:00:30 4 00:40:00 00:10:39 12
23 6 1 26 00:01:31 00:04:49 00:00:30 4 00:25:00 00:06:50 8
24 8 3 47 00:06:00 00:04:00 00:01:21 2 00:35:00 00:11:21 12
Total 100 35 555 00:58:14 01:18:19 00:18:12 47 07:27:00 02:34:45 154

the compliance of use cases from the previous activity
regarding the organization’s patterns. The focus of this
activity is also to analyze whether the use cases follow
the patterns configured in the automated tool. The test
analyst must record any nonconformity in the corre
sponding JIRA task.

3. Use case update: In this subprocess, use cases that do
not follow the pattern configured in the tool must be up
dated by the requirements analyst. This activity receives
as input the list of incorrect use cases. In the end, the
requirements analyst must produce updated use cases
according to the established patterns.

4. Perform automatic specification of test procedures:
This activity contemplates the use of the tool to perform
the automatic generation of test procedures. In order to
do so, the test analyst must have access to verified use
cases. At the end of the process, a set of test procedures
must be generated.

5. Analyze the generated test procedures: After gener
ating the procedures, the test analyst should perform an
analysis of the generated steps. In this one, the test an
alyst assures the correct extraction of steps and outputs
from the use cases. If errors are found in the procedures,
the team records the occurrences in the JIRA.

6. Adjust the set of test procedures: This subprocess
consists of adjusting the set of test procedures when
there are nonconformities, and the test analyst is re

sponsible for performing them. The subprocess must
receive the list of test procedures for adjustments and
produces as output the adjusted set.

7. Generation of test cases: After analyzing the proce
dures and performing the necessary adjustments, the
test analyst should provide the test data to generate the
test cases. The test analyst repeats this action until the
desired coverage is obtained. The activity receives as in
put a set of test procedures and must produce as output
a suite of test cases.

8. Send test cases to the TestLink: The last activity of the
process is to send the test cases to TestLink. The activ
ity receives the test case suite as input and automatically
sends them to the TestLink tool. After sending the test
cases to TestLink, the test analyst must perform any ad
ditional update directly in the TestLink. If more tests
cases are generated for the the test suite already present
in the TestLink, the test analyst must also add themman
ually.

6.2 Metrics Results and Discussion

During the processing of use cases, the test analyst manu
ally collected the times obtained at the end of each activity.
Hence, the only instrument used in this step was a spread
sheet with the same fields of Table 4.
Table 4 shows the results of the tool usage. In this table, we

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

detail the main use case information, such as the number of
flows, steps, business rules, and the estimated modeling time
of the use case. The table also presents the time spent to cor
rect the nonconformity of patterns in the use case, the time
required to edit the test suit (e.g., the addition of the business
rules details), and, finally, the time necessary to adjust the
test cases to be exported to TestLink. In total, 24 use cases
were used, distributed among five Sprints, totaling 100 flows
and 555 steps.
As shown in Table 4, the use of the tool in the Sprint

yielded 154 test cases, taking, in total, 2 hours and 34 min
utes to be carried out. This represents a reduction of approxi
mately 65,38% in effort compared to the 7 hours and 27 min
utes of estimated manual effort.
From the results of the columns “Business rules”, “UC

steps number” and “Test Adjust Time” it is possible to verify
that, most of the times, the use cases with a higher number
of business rules and steps demanded a greater effort for cor
rection. This complements the results of our previous work,
which shows that the complexity of the use cases impacts
the generation of tests since the manual intervention of the
analysts is necessary.
In the previous paper (Santos et al., 2019), the result of

the pilot study was presented using nine use cases belong
ing to one System A project Sprint, which accounts for 41
flows and 186 steps. In this proof of concept, the test ana
lyst estimated the time needed for the modeling of each use
case and compared it with the time spent during automation.
The reduction of effort in the pilot was approximately 65%.
Thus, analyzing the results obtained, it is possible to identify
an effort below the estimated for the generation of test cases,
especially in use cases with a larger quantity of flows and
steps. Regarding the question raised in the title of the paper,
it can be said that this generation was worthwhile in the par
ticular context of the project. However, more research must
be carried out to generalize the findings.

6.3 Threats to Validity
After the proof of concept execution, we have identified
some limitations which must be discussed. So, we have car
ried out the presentation of these limitations as threats to va
lidity, as showed in (Wohlin et al., 2012). We discussed the
following threats.
Regarding the external validity, which determines the gen

eralization of results, we used ametric to estimate themanual
effort that could be a threat to the proof of concept. The met
ric estimates the time required to complete the specification
of the test cases, and it was created based on the recent expe
rience of the test analysts. However, the resultant value takes
into account specific characteristics related to the context of
the Software A, e.g., extra time to adjust the test cases after
the specification. Nevertheless, we believe that the metric is
simple enough to be adapted for other projects.
Also, regarding the generalization of the study, the usage

of patterns in the tool for data extraction can hinder the tool
usage by other teams. Tomitigate this, we tried to develop the
tool to read patterns as general as possible, but that still fit the
needs of the current project. Additionally, we also improved
the tool to allow users to create custom patterns with regular

expressions.
At last, the proof of concept was conducted by one of the

authors, who is also the test analyst in the project. To reduce
the possible bias of the evaluation, the test analyst used a
tool as similar as possible to the real context. Additionally,
the proof of concept was a pilot evaluation to analyze the
feasibility of the tool.

7 Feasibility Study
To analyze the viability of using the developed solution in
different contexts, we perform a proof of concept in a real
Sprint with users trained and used to project context of Soft
ware A. Aiming to obtain more data about the use of the
UC2Proc tool, we performed a feasibility study with test an
alysts from another industry project in partnership with the
GREat13 laboratory. This feasibility study focuses on mea
suring the tool’s efficiency from the user’s perspective, with
out previous experience with the developed solution in this
case. Additionally, we also collected users’ opinions about
the positive and negative points of the solution.
Subsection 7.1 details the methodology adopted to con

duct the feasibility study. Subsection 7.2 discusses the results
obtained after the feasibility study with the users. Subsection
7.3 explains some of the limitations in the conduction of the
work.

7.1 Methodology
We decided to plan the feasibility study using the DECIDE
framework proposed by Preece et al. (2004). This framework
aims to guide evaluations with users through a checklist with
welldefined activities ranging from defining objectives to
evaluating data. We selected DECIDE because it is easy to
apply in practice, allowing the assessment to be conducted by
inexperienced assessors (Preece et al., 2004). The following
paragraphs will describe the six activities related to planning
and execution.
(1) Define objectives. The first item on the DECIDE

checklist concerns the definition of the objectives that should
guide the feasibility study. Since our focus was to analyze
whether the solution generated was capable of reducing the
testing specification time, we defined the following objec
tives: (i) to evaluate the efficiency of using the tool to spec
ify tests by the test analyst and (ii) discover the positive and
negative perceptions of the test analyst about the use of the
tool.
(2) Explore questions. The second item of DECIDE is the

definition of the questions that must be answered at the end
of the study. Considering as our goal the analysis of the user
performance with the automated tool, we elaborated on the
following question: was the tool able to increase the testing
specification speed compared to the manual specification?
Regarding the objective of identifying positive and negative
aspects, we elaborated on the following question: what are
the positive and negative perceptions of the analyst during
the tool usage?

13http://www.great.ufc.br

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

(3) Choose the evaluation paradigm. The third item cor
responds to choosing the evaluation paradigm and techniques
to answer the questions of item two. In order to identify the
efficiency of the generated solution, the participants of the
feasibility study performed a manual and an automatic task.
The details of the activities are described as follows:

i Questionnaire for profile identification: the evaluators
applied this questionnaire to identify some general char
acteristics of the test analysts, such as their experience
with use cases and automated test specification tools.
The form filled by the users is presented in Table 6 of
the Appendix A with the name Professional Profile.

ii Manual specification of tests: the first task performed
by the test analyst concerns the manual specification of
tests related to a use case. In order to achieve it, the par
ticipant received a document describing the use case, be
ing instructed to make the specification in the TestLink.
The use case for this activity is a fictional system for cre
ating movie schedules in theaters, with a total of five
flows and 24 steps. During the performance of the ac
tivity, two evaluators made notes about the comments
and doubts of the participants and other considerations
about the execution of the task.

iii Tool presentation: after that, the researcher presented
the tool and showed an example of how to use it. The
use case employed in the example is the same as the one
in the manual task.

iv Semiautomatic specification: in the second task, the
test analyst received a use case document of music soft
ware that allows the creation of playlists. Even though
it is a different system, the use case has the same com
plexity (number of flows, steps, and references between
flows) as used in the manual task. Then, they were
instructed to process it with the tool and send it to
TestLink. The two evaluators also observed and made
notes just as in the manual task.

v Open questionnaire: finally, analysts needed to answer
an open questionnaire with questions about the positive
and negative aspects of the tool. The final form is pre
sented in Table 6 of the Appendix Awith the nameUser
 Tool Evaluation.

(4) Identify practical questions. The fourth item of DE
CIDE corresponds to identifying issues related to the selec
tion of users and materials to be used. The study population
was professionals working on software testing projects at the
Test Factory of GREat Lab. We selected two subjects for the
pilot study and four for the final evaluation. Besides that, all
tasks were performed in a controlled environment with the
aid of a computer.
(5) Decide how to deal with ethical issues. The purpose

of the fifth item concerns how to protect the privacy and other
issues related to the participants of the feasibility study. At
this point, test analysts were asked to sign a consent form
to participate in the research and were informed about the
purpose of the research, the data anonymization, and how it
would be conducted.
(6) Data evaluation. The last item of DECIDE is about

evaluating, interpreting, and presenting the data obtained dur
ing the evaluation. The performance of the users was evalu

ated by comparing the execution times of the tasks manually
and with the tool’s support. To answer the question regarding
the positive and negative aspects of using the tool, the two
evaluators analyzed and discussed the notes collected during
the execution of the tasks and the answers from the formwith
open questions. Both results were combined to provide the fi
nal topics related to positive/negative points of the solution.
Regarding the context of this project, it was impossible

to carry out evaluations with many users, so we did not use
statistical tests. Instead, we presented the data and discussed
the times obtained and the possible reasons that led to the
results. Given our focus on assessing efficiency, we did not
assess the correctness of the test cases produced, as coverage
requirements and specification type may change for different
projects.

7.2 Results
This subsection presents the results obtained after conduct
ing the feasibility study. Before the final evaluation, we con
ducted two pilot tests based on the planning of Subsection 7.1
to make possible improvements. The tests were performed
with a test analyst and a trainee in test analysis. After per
forming the tests, the evaluators detected inconsistencies in
the use cases of the tasks that were promptly corrected. We
also decided to reduce the size of the test cases to take less
time from the professionals’ work. Finally, we made a few
adjustments using forms and other evaluation materials.

Table 5. Experience of participants.

Participant ID Profession Experience
in software
testing (years)

Experience
with use cases
(years)

User 1 Test Analyst Intern 2 2

User 2 Test Analyst 4 0

User 3 Test Analyst 4 1

User 4 Test Analyst 5 2

Figure 9. Participants experience in test case specification with use case.

After the pilot tests were executed, we selected four par
ticipants from a different project. All of those participants
work as test analysts, but three of them were more experi
enced, and one of them was an intern. Table 5 summarizes
the profile of the four professionals in the way that it details
their experience with software testing and specification tests

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

based on use cases. Thus, as illustrated in the graph in Figure
9, most of the participants had some experience with speci
fying test cases in the industry, but none of them works with
use cases in their current projects.

Figure 10. Time required in minutes to execute the manual and tool sup
ported tasks.

During the performance of the manual tasks with and with
out the UC2Proc tool, we collected the total times per execu
tion. Figure 10 presents a chart comparing the total times in
minutes obtained by each of the four participants, in which
all of them achieved lower specification time using the tool.
While the average execution of the manual task was equal
to 28.25 minutes, the average obtained with the use of the
tool was equal to 14.50 minutes. Given the reduced size of
the sample of participants that we obtained, we chose not
to analyze statistical significance in the differences. There
fore, the answer to the first question of the feasibility study
(Was the tool able to increase the speed of tests specification
when compared to the manual activity?) gives more indica
tions that the developed solution can increase the specifica
tion speed. However, more evaluations are needed to gather
more data about its actual effectiveness.
After the activities were carried out, the participants were

instructed to fill out an open questionnaire to point out the
UC2Proc tool’s positive and negative points. It is worth men
tioning that the evaluators wrote down the participants’ com
ments during the execution of the tasks. The form used by
the evaluators is available in 6 of the Appendix A with the
name Evaluator Tool Evaluation.
The two researches that conducted the feasibility study per

formed a qualitative analysis of the questionnaire answers
and users’ comments during the evaluation. The evaluators
used the notes to complement answers of the questionnaire
about positive/negative points, so this results are presented
together. To accomplish this, we grouped the most repeated
and contrasting topics into the following categories about the
tool: efficiency, utility, understanding, and visual acceptance.
The content of these topics was then used to compose the list
of positive and negative points presented below.
As positive points, all participants mentioned that they felt

a reduction in the time by using the UC2Proc tool compared
to manual activity. It means that the analyst’s work could be
streamlined. Half of the participants also found positive the
integration of the tool with systems like TestLink and JIRA.
This last comment may be related to the participants’ work
ing context so that they are used to working with this suite of
systems to manage the testing activities.

The main negative point indicated by three of the four par
ticipants was about the titles generated by the tool. Theywere
not very intuitive and could be difficult to understand during
execution. This may happen because the UC2Proc tool cre
ates the test case’s title based on the titles of the last flow in
the generated sequence. For instance, a test procedure with
a flow sequence composed by Basic Flow, Alternative Flow
and Basic Flow will have the title of the Basic Flow. This
leads to test procedures with repeated titles.
Another negative point was the repetition of steps when

the tool moves between different flows more than once.
We observed it mainly from the Basic Flow to Alterna
tive/Exception Flows. Still regarding the steps, two partici
pants reported that it was necessary to correct some of them
because there were system responses without user actions.
It occurs because each system response has its own step in
the generation process, even though they are in sequence. Fi
nally, most of the users seemed confused when using the tool,
once the buttons were not very intuitive and it offered little
feedback on the actions. They also reported that some of the
test procedures contained outcomes without steps, but this is
how it is supposed to work, taking into account that the tool
produces steps with only one outcome.

7.3 Limitations

Subsections 7.1 and 7.2 presented the methodology used to
conduct the feasibility study and the results obtained, respec
tively. However, we identified some limitations in the eval
uation that deserve to be discussed. The first limitation con
cerns the small number of participants, making it difficult to
apply statistical tests to state the real difference betweenman
ual and automatic task times. Nevertheless, participants had
varied experience with software testing in the industry, hav
ing already worked with different types of systems, tools for
test process support, and types of requirements documents.
Therefore, the selected group can be considered suitable for
an initial evaluation outside the Software A project context.
Moreover, the participants used only fictitious systems

documentation because of the confidentiality of the Software
A. However, the use cases used are similar to the original doc
umentation of the software. We also tried to create new use
cases where they have complexities and interactions similar
to the use cases from Software A.
Regarding the execution of tasks, all participants executed

the manual task before the automated one. To mitigate this
threat and reduce bias in this approach, the analysts used dif
ferent use cases in both tasks.
Finally, during the feasibility study, some participants

pointed out problems in the tool procedures. The main con
cern was about the repetition of some steps, mainly during
the transition from Basic Flow to Alternative and Exception
Flows. In its current version, the tool can incorrectly repeat
some steps from the Basic Flow steps. Even so, we believe
that it was not of high impact for the execution of the evalu
ation, considering that the repeated steps could be easily ex
cluded.

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

8 Lessons Learned
As explained in Section 3, the performed study had activi
ties related to the specification of the procedure. While us
ing the tool during the Sprints, it was possible to obtain
lessons regarding the solution and its use circumstances, so
they are based on the researcher’s observations, opinion of
the requirements/tests team’s members, and analysis of the
collected metrics. These lessons represent some of the chal
lenges obtained with the use of the solution in a way that
actions taken during the Sprint were integrated into the pro
cess of using the tool. The main lessons learned during the
process are listed as follows:
LL1: The efficiency of a test case generator tool using

use cases is strongly related to the following of the writ
ing pattern.Use case modeling is a task that demands a high
degree of instruction, communication, and knowledge about
the software product. Being a manual activity, it is common
to create certain textual documents susceptible to attention
errors in the writing pattern. These errors could vary from
problems in the spelling, plural, blanks in the markup charac
ters (such as writing “[FA 01] instead of [FA01]”) or even
hidden logical loops. Such errors generated flaws in the tool
and needed to be corrected, implying additional time in the
process of semiautomated generation. Therefore, one action
taken was to perform a detailed inspection to determine if the
use cases follow the template of the project, thus making any
necessary corrections. Having a use case with the correct pat
tern as an example helped analysts to identify inconsistencies
more quickly and, consequently, enable the use of the tool.
For teams working with poorly detailed documentation, the
tool may not generate good results. However, it is possible
to address in future work, more specific scripts for different
types of projects and documentation.
LL2: The deployment of an automation tool may not

be worth the effort reduction. Throughout the design of
Software A, the number of flows and steps was used to esti
mate the time needed to generate the tests. In some cases, this
calculation inaccuracy is observed in use cases with a large
number of flows, but that could be easily modeled manually
or in an automated way. In this case, the tool has allowed a
negligible reduction in efficiency gains, so the effort to adapt
the use cases of a project to the presented template may not
compensate, especially if the use case is straightforward. In
these scenarios, the implementation of a semiautomated tool
may require a great deal of manual work to adjust the use
cases to a template and the generated procedures, which may
impact the project activities. Nonetheless, for most of the use
cases of Software A, there were indications that the time re
duction for the test specification compensated the implemen
tation of the tool in the Test Factory’s context.
LL3: Textual use cases do not express all the informa

tion necessary for good test coverage. In some use cases
of Software A, it was not possible to automatically obtain all
the necessary information to generate more test cases from
the use case documentation. The reason for this is that busi
ness rules were expressed in unstructured natural language
and screen prototypes were images. It prevented the extrac
tion of some input variables for the procedures; the used use
case patterns gave analysts freedom to specify. During the

use of the tool, the test analyst needed to continue consulting
the other documents during the analysis process and by that
ensure the desired coverage.
LL4: The integration of a solution with specific pro

cess tools is an important factor for efficiency gain. Dur
ing the execution of a requirements/test process, the analysts
may need to interact with different support tools to facilitate
the activities’ performance. Therefore, to facilitate the prac
tical application of an automation tool, it becomes essential
that the developed solution integrates with the other systems.
For example, in this report, the analysts originally cloned the
tests on TestLink, but the task generated many errors due to
the lack of options for the test data and interface problems.
In this sense, using the tool for specification activities and
then submitting the tests to TestLink helped to decrease the
errors.
LL5: Generating additional tests for business rules

were not advantageous in all cases. According to user re
ports, the implementation of the new functionality was ad
vantageous since it signaled the business rules referenced in
the case of use. On the other hand, three negative points were
reported about the functionality. The first one is that a good
part of the business rules could be covered with only one test
case, generating less useful tests. The second point is related
to use cases that were too specific and had detailed flows to
the business rules; this way, it was necessary to remove the
duplicate tests. Finally, the users needed to apply some effort
to complement the test cases based on business rules, since
only the title was generated.

9 Conclusion
This paper presented an experience report about the gener
ation of test procedures in an industrial context. This paper
is an extension of our previous work (Santos et al., 2019),
whose the main goal was to analyze the feasibility of insert
ing a tool to automate the generation of tests based on use
cases.
We implemented the solution in partnership with the in

dustry, thus enabling the generation of a product that better
suits the needs of the requirements/testing team, which leads
to the question of this paper: “Is it feasible to use a tool to
generate test cases from textual use cases in the test process
at a test factory?”.
Our previous results showed that the proposed solution

positively contributed to the analysts’ activities. Therefore,
we have extended the current work through the following
contributions: (i) improvements in the tool’s generation of
test procedures; (ii) data related tomore testing cycles of Soft
ware A; and (iii) feasibility study with test analysts.

Regarding the tool’s improvement, we realized that only
indicating the procedures of business rules to be tested might
not be sufficient. In suchmanner, we obtained low gain in the
effort. Therefore, the results reinforced the need for specifi
cation of business rules in a structured manner.
When it comes to the tool usage in more releases, we con

cluded that the effort reduction in the test generation was
maintained, as well as the relationship between the complex
ity of the use cases and the time spent in manual interven

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

tion during the specification process. The reduction in ef
fort equaled 65,38% in the context of the industry software
project. Furthermore, the majority of the effort required was
adjusting the test procedures generated by the tool.
In addition to the proof of concept, the feasibility study has

provided further insight into the efficiency of the solution.
Although all users completed the task more quickly using
the tool, they pointed out interface issues that can make the
software hard to use.
These evaluations also enabled the generation of one ad

ditional lesson learned regarding the generation of tests for
business rules, which demanded additional effort to remove
unnecessary tests. This set of lessons learned can give more
information about the introduction of an automated tool in a
testing process.
Considering the characteristics of Software A project, the

team decided for the development of a simple custom solu
tion. Nonetheless, finding the right degree to which the test
ing process had to adapt to the insertion of new tools was chal
lenging. Regardless of the decision about the usage of custom
solutions or other available solutions, we believe that more
work is needed to provide practical insights in the context
of test factories, which could benefit projects in distributed
scenarios.
Concerning future work, we plan to research how to doc

ument business rules to increase the efficiency of generating
test procedures. In the current work, this improvement has
become even more evident, considering the perceived effort
necessary to update procedures with partial descriptions of
business rules. The test analysts of Software A also pointed
out that several use cases needed corrections in its patterns.
Since this hinders the usage of the tool, we also plan to apply
techniques of static analysis in the requirements documen
tation. Finally, we intend to make improvements in the tool
based on user comments and analyze how the test procedures
can assist the generation of automated scripts for functional
tests.

A Instruments of the Feasibility
Study

Table 6 presents the following forms used in the evaluation:
(1) Professional Profile, used to to collect the professional
profile; (2) User Tool Evaluation, filled by the participants
to report the positive and negative points of the solution; and,
(3) Evaluator Tool Evaluation, used by the research to col
lect the time and general notes during the tasks.

References
R. M. d. C. Andrade, I. d. S. Santos, V. Lelli, K. M.
de Oliveira, and A. R. Rocha. Software testing process in
a test factoryfrom ad hoc activities to an organizational
standard. In ICEIS (2), pages 132–143, 2017.

B. Aragão, I. Santos, T. Nogueira, L. Mesquita, and R. An
drade. Modelagem interativa de um processo de desen
volvimento com base na percepção da equipe: Um relato

de experiência. In Anais do XIII Simpósio Brasileiro de
Sistemas de Informação, pages 428–435. SBC, 2017.

B. S. Aragão, R. M. C. Andrade, I. S. Santos, R. N. S. Cas
tro, V. Lelli, and T. G. R. Darin. Testdcat: Catalog of test
debt subtypes and management activities. In Testing Soft
ware and Systems, pages 279–295, Cham, 2019. Springer
International Publishing. ISBN 9783030312800.

A. Bertolino. Software testing research: Achievements, chal
lenges, dreams. In 2007 Future of Software Engineering,
FOSE ’07, pages 85–103, Washington, DC, USA, 2007.
IEEE Computer Society. ISBN 0769528295. . URL
http://dx.doi.org/10.1109/FOSE.2007.25.

R. M. de Castro Andrade, I. de Sousa Santos, V. Lelli, K. M.
de Oliveira, and A. R. C. da Rocha. Software testing pro
cess in a test factory from ad hoc activities to an organi
zational standard. In ICEIS, 2017.

D. Freudenstein, M. Junker, J. Radduenz, S. Eder, and
B. Hauptmann. Automated testdesign from requirements
the specmate tool. In 2018 IEEE/ACM 5th Interna
tional Workshop on Requirements Engineering and Test
ing (RET), pages 5–8. IEEE, 2018.

V. Garousi and M. Felderer. Living in two different worlds:
A comparison of industry and academic focus areas in soft
ware testing. IEEE Software, (1):1–1, 2017.

V. Garousi and M. V. Mäntylä. When and what to automate
in software testing? a multivocal literature review. Infor
mation and Software Technology, 76:92–117, 2016.

T. Gorschek, P. Garre, S. Larsson, and C. Wohlin. A model
for technology transfer in practice. IEEE software, 23(6):
88–95, 2006.

J. Gutiérrez, M. Escalona, and M. Mejías. A modeldriven
approach for functional test case generation. Journal of
Systems and Software, 109:214–228, 2015.

ISO/IEC291192. Iso/iec/ieee international standard soft
ware and systems engineering –software testing –part
2:test processes. ISO/IEC/IEEE 291192:2013(E), pages
1–68, Sept 2013. .

D. N. Jorge, P. D. Machado, E. L. Alves, and W. L. An
drade. Integrating requirements specification and model
based testing in agile development. In 2018 IEEE 26th
International Requirements Engineering Conference (RE),
pages 336–346. IEEE, 2018.

L. Lazic and N. Mastorakis. Cost effective software test met
rics. WSEAS Transactions on Computers, 7(6):599–619,
2008.

J. L. Massollar, R. M. de Mello, and G. H. Travassos. Struc
turing and verifying requirement specifications through ac
tivity diagrams to support the semiautomated generation
of functional test procedures. In 2012 Eighth International
Conference on the Quality of Information and Communi
cations Technology, pages 239–244. IEEE, 2012.

A. Mette and J. Hass. Testing processes. In Software Testing
Verification and Validation Workshop, 2008. ICSTW’08.
IEEE International Conference on, pages 321–327. IEEE,
2008.

M. A. Montoni, A. R. Rocha, and K. C. Weber. Mps. br: a
successful program for software process improvement in
brazil. Software Process: Improvement and Practice, 14
(5):289–300, 2009.

http://dx.doi.org/10.1109/FOSE.2007.25

Extraction of test cases procedures from textual use cases: is it worth it? Santos et al. 2020

Table 6. Forms of the feasibility study.
Form Fields Possible Answers

Professional
Profile

1. What is your age? Open
2. What is your position? Open
3. How much time do you have in software test
ing?

Open

4. Do you have previous experience
on test cases based on use cases?

1. I have knowledge about the specification
of tests based on use cases in the industry
2. I have knowledge about the specification
of tests based on use cases in the academia
3. I have not previous knowledge about

the specification of tests based on use cases
5. How much experience do you have with use
case based testing specification in the industry? Open

User Tool
Evaluation

1. What are the positive points of the tool used in
the evaluation?

Open

2. What are the negative points of the tool used in
the evaluation?

Open

Evaluator Tool
Evaluation

1. Time to complete task Open
2. General notes Open

G. J. Myers, T. Badgett, T. M. Thomas, and C. Sandler. The
art of software testing, volume 2. Wiley Online Library,
2004.

S. Nogueira, H. Araujo, R. Araujo, J. Iyoda, and A. Sampaio.
Test case generation, selection and coverage from natural
language. Science of Computer Programming, pages 84–
110, 2019.

J. Preece, Y. Rogers, and H. Sharp. Interaction design. Apo
geo Editore, 2004.

G. Samarthyam, M. Muralidharan, and R. K. Anna. Under
standing test debt. In Trends in Software Testing, pages
1–17. Springer, 2017.

E. B. d. Santos, L. S. d. Costa, B. S. Aragão, I. d. S. Santos,
and R. M. d. C. Andrade. Extraction of test cases pro
cedures from textual use cases to reduce test effort: Test
factory experience report. In Proceedings of the XVIII
Brazilian Symposium on SoftwareQuality, pages 266–275,
2019.

K. Schwaber and M. Beedle. Agile software development
with Scrum, volume 1. Prentice Hall Upper Saddle River,
2002.

S. Seela and R. Yackel. 64 essential testing metrics for mea
suring quality assurance success. URL https://www.
qasymphony.com/blog/64-test-metrics/.

H. M. Sneed. Requirementbased testingextracting logical
test cases from requirement documents. In International
Conference on Software Quality, pages 60–79. Springer,
2018.

S. S. Some and X. Cheng. An approach for supporting
systemlevel test scenarios generation from textual use
cases. In Proceedings of the 2008 ACM symposium on
Applied computing, pages 724–729. ACM, 2008.

L. S. Vieira, C. G. L. Barreto, E. B. dos Santos, B. S. Aragão,
I. de Sousa Santos, and R. M. C. Andrade. Automação
de testes em uma fábrica de testes: Um relato de experiên
cia. In Anais do XIV Simpósio Brasileiro de Sistemas de
Informação, pages 80–73. SBC, 2018a.

L. S. Vieira, C. G. L. Barreto, E. B. dos Santos, B. S. Aragão,
I. de Sousa Santos, and R. M. d. C. Andrade. Automação
de testes em uma fábrica de testes: Um relato de experiên
cia. In Anais do XIV Simpósio Brasileiro de Sistemas de
Informação, pages 80–73. SBC, 2018b.

K. Wiegers and J. Beatty. Software requirements. Pearson
Education, 2013.

C. Wohlin, P. Runeson, M. Höst, M. C. Ohlsson, B. Regnell,
and A. Wesslén. Experimentation in software engineering.
Springer Science & Business Media, 2012.

T. Yue, S. Ali, and M. Zhang. Rtcm: a natural language
based, automated, and practical test case generation frame
work. In Proceedings of the 2015 International Sympo
sium on Software Testing and Analysis, pages 397–408.
ACM, 2015.

https://www.qasymphony.com/blog/64-test-metrics/
https://www.qasymphony.com/blog/64-test-metrics/

	Introduction
	Related Work
	Research Method
	Proof of Concept Environment
	Team profile
	Tools and Patterns of the Internal Processes
	Requirements Process
	Testing Process

	Tool for Semi-Automatic Generation of Tests Procedures
	Tool Features
	Package Diagram
	Tool's Usage

	Proof of Concept
	Proof of Concept Steps
	Metrics Results and Discussion
	Threats to Validity

	Feasibility Study
	Methodology
	Results
	Limitations

	Lessons Learned
	Conclusion
	Instruments of the Feasibility Study

