
Journal of Software Engineering Research and Development, 2020, 8:7, doi: 10.5753/jserd.2020.744
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Understanding the Impact of Introducing Lambda Expressions
in Java Programs
Walter Lucas University of Brasília (UnB) waltimlmm@gmail.com
José Fortes University of Brasília (UnB) jose.fortes.neto@gmail.com
Francisco Vitor Lopes University of Brasília (UnB) fvitorlopes@gmail.com
Diego Marcílio Università della Svizzera italiana dvmarcilio@gmail.com
Rodrigo Bonifácio University of Brasília (UnB) rbonifacio@unb.br
Edna Dias Canedo University of Brasília (UnB) ednacanedo@unb.br
Fernanda Lima University of Brasília (UnB) ferlima@unb.br
João Saraiva University of Minho saraiva@di.uminho.pt
Abstract

Background: The Java programming language version eight introduced several features that encourage the func
tional style of programming, including the support for lambda expressions and the Stream API. Currently, there is
a common wisdom that refactoring legacy code to introduce lambda expressions, besides other potential benefits,
simplifies the code and improves program comprehension. Aims: The purpose of this work is to investigate this
belief, conducting an indepth study to evaluate the effect of introducing lambda expressions on program compre
hension. Method: We conducted this research using a mixedmethod approach. For the quantitative method, we
quantitatively analyzed 158 pairs of code snippets extracted directly either from GitHub or from recommendations
from three tools (RJTL, NetBeans, and IntelliJ). We also surveyed practitioners to collect their perceptions about the
benefits on program comprehension when introducing lambda expressions. We asked practitioners to evaluate and
rate sets of pairs of code snippets.Results: We found contradictory results in our research. Based on the quantitative
assessment, we could not find evidence that the introduction of lambda expressions improves software readability—
one of the components of program comprehension. Our results suggest that the transformations recommended by
the aforementioned tools decrease program comprehension when assessed by two stateoftheart models to esti
mate readability. Differently, our findings of the qualitative assessment suggest that the introduction of lambda
expression improves program comprehension in three scenarios when: we convert anonymous inner classes to a
lambda expression, use structural loops with inner conditional to an anyMatch operator, and apply structural loops
to filter operator combined with a collect method. Implications: We argue in this paper that one can improve
program comprehension when he/she applies particular transformations to introduce lambda expressions (e.g., re
placing anonymous inner classes with lambda expressions). Also, the opinion of the participants highlights which
kind of transformation for introducing lambda might be advantageous. This might support the implementation of
effective tools for automatic program transformations.

Keywords: Program Comprehension, Java Lambda Expressions, Empirical Studies

1 Introduction
Software evolves to adapt to social and technical needs (God
frey and German, 2008): users might request new features,
or performance constraints must be met. Indeed, the success
of a system depends on how easy its evolution is. If it does
not change to reflect the needs of their users (Lehman and
Ramil, 2001), it is doomed to failure. In the same vein, suc
cessful programming languages change over time (Overbey
and Johnson, 2009): programmers require more features and
more expressivity from language constructs.
Mainstream programming languages (e.g., Python and

C++) also evolve to support new programming styles, such
as the recent trend of imperative languages to adhere to the
functional style. Since version 2.0, Python language supports
features to facilitate list comprehension (Lott, 2018), a fea
ture originally found in functional languages (like Erlang and
Haskell). Similarly, C++ introduced lambda expressions in
C++ version 11 (Stroustrup, 2013).
Recently, Java has adopted a faster release cycle to fre

quently deploy new features. Some of these releases did

not significantly change the language semantics. Contrast
ingly, other releases present remarkable changes in language
constructs. This is the case for Java 8, which introduces
new features to facilitate functional programming and be
havior parameterization. Using these features, developers
can pass (anonymous) functions as arguments to other func
tions (Urma et al., 2014).

However, as languages evolve, programs’ source code
usually lag behind. When a language releases a new version,
source code that was uptodate suddenly becomes legacy
code and older constructs often persist in the system while
developers add new ones (Overbey and Johnson, 2009). The
coexistence of old and new constructs puts a toll on program
mers, requiring them to be familiar with different idioms that
implement a similar behavior. To mitigate the problem of
these old and new constructs coexisting, Overbey and John
son (2009) recommended using refactoring tools that aim to
help developers introduce new language constructs in legacy
programs automatically.

For instance, Gyori et al. (2013) proposed a tool to rejuve

https://orcid.org/0000-0001-7391-9622
mailto:waltimlmm@gmail.com
mailto:jose.fortes.neto@gmail.com
mailto:fvitorlopes@gmail.com
mailto:dvmarcilio@gmail.com
https://orcid.org/0000-0002-2380-2829
mailto:rbonifacio@unb.br
https://orcid.org/0000-0002-2159-339X
mailto:ednacanedo@unb.br
mailto: ferlima@unb.br
mailto:saraiva@di.uminho.pt

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

nate Java programs that replaces legacy constructs, such as
anonymous inner classes, with lambda expressions. The au
thors claim that the adoption of lambda expressions in Java
improves program comprehension, though without present
ing empirical evidence (Gyori et al., 2013). However, Dantas
et al. (2018) report that this kind of transformation might not
always improve the quality of the code, and developers often
reject patches applying this kind of transformation (Dantas
et al., 2018). Moreover, Mazinanian et al. (2017) found that
developers often perform this kind of transformation without
any tool support.
In previous work (Lucas et al., 2019), we investigated how

the introduction of lambda expressions impacts source code
comprehension. We found that stateoftheart metrics to
measure code readability fail to capture the benefits of intro
ducing lambda expressions. Nonetheless, based on the find
ings of a survey with practitioners, we disclosed that the in
troduction of lambda expressions improve program compre
hension only in a few specific scenarios, such using lambda
expressions as a substitute to anonymous inner classes.
In this paper, we extend our previous work, mitigating

two threats of that research: (a) the use of a small num
ber of pairs of code snippets (each pair comprising the code
before and after the introduction of a lambda expression)
during the qualitative assessment; and (b) the use of real
world code snippets collected from opensource projects,
whose versions after introducing lambda expressions could
also have additional modifications (such as a bug fix). There
fore, we report the results of an extensive empirical investi
gation on the benefits of introducing lambda expressions in
legacy code, considering 92 pairs of code snippets as sug
gested by automated tools. We review some aspects of our
previous work and present new evidence about:

• Scenarios that benefit from introduction lambda ex
pressions: We identified scenarios where the introduc
tion of lambda expressions improve program compre
hension. Tool developers might use this information to
customize techniques that find opportunities to refactor
a legacy code to use lambda expressions.

• Lambda expressions make the code more succinct:
Our findings provide evidence that the introduction
of lambda expressions makes the code more succinct
(in more than 80% of the scenarios, the total num
ber of lines of code reduced after introducing lambda
expressions)—even though this does not necessarily
lead to an improvement on code comprehension.

• Lambda expressions make debugging difficult: Our
results suggest that the introduction of lambda expres
sions can lead to pieces of code that are harder to debug.
We consider this as a possible negative side effect of in
troducing lambda expressions.

• Relevance of tooling support for rejuvenating Java
code: We also found that developers consider tooling
support to be important for performing transformations
introducing lambda expressions in Java legacy code.
Nonetheless, existing tools also recommend transfor
mations that need manual improvements, lead to small
benefits, or make the code harder to understand.

2 Background and Related Work
Program comprehension is a fundamental software attribute
that facilitates its maintenance and supports its evolu
tion (von Mayrhauser and Vans, 1995). Understanding ex
isting software enables maintainers to successfully evolve
functionality and/or integrate improvements for every type
of change commonly associated with software maintenance
and evolution, including adaptive, perfective, and correc
tive modifications (von Mayrhauser and Vans, 1995). Un
derstanding software is challenging due to several factors,
one of which is that large programs are often maintained
by developers with different skills and using different prac
tices (Storey et al., 2000). Moreover, in many cases, the
source code may be the only available and up to date refer
ence for a software (Storey et al., 2000), though poor design
and lack of good programming practices might compromise
program comprehension (Tilley et al., 1996).
The practices developers use to understand a software are

diverse and often are taskrelated (e.g., documenting part of
a system, fixing a bug, and implementing a new feature). In
deed, “programmers use domain knowledge, programming
knowledge, and comprehension strategies when attempting
to understand a program” (Tilley et al., 1996). Program com
prehension uses existing knowledge to acquire new knowl
edge to build a mental model of the software that might help
developers accomplish a specific task (von Mayrhauser and
Vans, 1995). While it is true that the skills and experiences
of a developer are relevant when he/she wants to understand
software, it has been reported that a set of recommended
practices (such as the use of programming idioms and code
formatting tools, design patterns, and refactoring) might also
support program comprehension, in particular when using a
bottomup strategy as defined by Pennington (1987). Con
versely, the use of some obscure programming constructs
(e.g., atoms of confusion) increases the rate of source code
misunderstandings (Gopstein et al., 2017). For instance, the
atoms of confusion conditional operator and logical as con
trol flow1 involve fundamental language constructs such as
math operators and if statements.
Althoughmany software characteristics might impact pro

gram comprehension (e.g., variable names (Avidan and Feit
elson, 2017) and atoms of confusion (Gopstein et al., 2017)),
in this paper, we are particularly interested in aspects re
lated to source code quality that might either facilitate or
hinder program understanding (Storey et al., 2000). Sev
eral research studies (Buse and Weimer, 2010; Posnett et al.,
2011; Scalabrino et al., 2016) have explored the use of mod
els for estimating the readability of the source code—which
directly affect program comprehension. Additionally, previ
ous research has already investigated the impact of coding
practices on software readability (Gopstein et al., 2017; dos
Santos and Gerosa, 2018). Our work builds upon these pre
vious efforts, using existing models for estimating software
readability (Buse and Weimer, 2010; Posnett et al., 2011),
and procedures to qualitatively assess the preference of de
velopers when considering sets of code snippets (dos Santos
and Gerosa, 2018). We apply these models in a different and

1https://atomsofconfusion.com/

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

particular scenario: the introduction of lambda expressions
into Java legacy code.
Lambda expressions were introduced in Java 8 to sup

port functional programming (Tsantalis et al., 2017), lift
ing function definitions to values, thus allowing develop
ers to pass a lambda function definition as an argument to
a method (Alqaimi et al., 2019). Developers can also use
lambda expressions in Java to abstract parallelism and re
move the boilerplate code necessary to write anonymous in
ner classes (Alqaimi et al., 2019). Moreover, lambda expres
sions enable chaining functional recursive patterns (e.g.,map
and filter) using the stream API methods as an alternative
way to iterate, filter, and collect data from a collection (Maz
inanian et al., 2017). For instance, consider the code snippets
in Figure 1 (filter 1 and filter 2), based on an implementation
of the 101Companies problem domain (Favre et al., 2012).
In this example, the goal is to filter a department’s employees
that have a salary greater than a given value. In the first snip
pet, the code uses an implementation without the language
features of Java 8. In the second, the implementation uses a
lambda expression as an argument to the filter method of
the Java 8 stream API.

Figure 1. Filtering employees with high salaries, being filter1 approach pre
vious to Java 8 and filter2 approach using lambda expressions and the Java
8 stream API.

public List<Employee> employeeWithHighSalaries(double salary) {
List<Employee> res = new ArrayList<>();
for(Employee e: employees) {
if(e.getSalary() > salary) res.add(e);

}
return res;

}

filter 1
public List<Employee> employeeWithHighSalaries(double salary) {
return employees.stream()

.filter(e →e.getSalary() > salary)

.collect(Collectors.toList());
}

filter 2

Previous research on Java lambda expressions focused
on their introduction via automatic techniques for refactor
ing legacy code to “make the code more succinct and read
able” (Gyori et al., 2013; Dantas et al., 2018)—in partic
ular situations that one can, for instance, replace either an
anonymous inner class or a loop over a collection by state
ments involving lambda expressions. Other approaches rec
ommend transformations that introduce lambda expressions
to remove duplicated code (Tsantalis et al., 2017) and to use
parallel features of Java 8 properly (Khatchadourian et al.,
2019). Also, Mazinanian et al. (2017) present a comprehen
sive study on the adoption of Java lambda expressions to un
derstand the motivations that lead Java developers to adopt
the functional style of thinking in Java. The authors pub
lished a large dataset with more than 100 000 real usage sce
narios. We use this dataset to understand program compre
hension benefits with the adoption of Java lambda expres
sions.
At first glance, the use of lambda expressions, due to its

conciseness, yields a more succinct and readable code (Gyori
et al., 2013; Dantas et al., 2018). However, this is not always

the case, as Dantas et al. (2018) produced automated refactor
ings for iterating on collections that developers judged less
comprehensible. We aim to investigate further which scenar
ios benefit from the introduction of lambda expressions. To
the best of our knowledge, previous research did not inves
tigate the assumption that the use of lambda expressions ac
tually lead to benefits on program comprehension.

3 Study Settings
The general goal of this research is to investigate the bene
fits on code comprehension after refactoring a Java method
to introduce a lambda expression, and thus answering the
research questions we present in Section 3.1. To this end,
we conducted a research in two phases, both using a mixed
methods approach.
In the first phase, whose results we presented in previ

ous work (Lucas et al., 2019), we carried out a quantitative
assessment of 66 pairs of code snippets, using stateofthe
art models for measuring software comprehension (see Sec
tion 3.2). Each pair corresponds to a method body before and
after introducing lambda expressions. We also conducted a
qualitative investigation (survey) considering the opinion of
28 practitioners that answered questions that also aim to com
pare the code before and after the introduction of lambda ex
pressions in nine pairs of code snippets.
In the second phase we mitigated some possible threats

that we identified in the first study: a small number of code
snippets used in the survey of the first phase and the assess
ment of code snippets that might contain not only a man
ual program transformation, but actually a manual program
transformation and an additional contribution to the program
(e.g., a bug fix). As such, in the second phase we leveraged
existing support of program transformation tools to refactor
legacy code of open source systems to introduce lambda ex
pressions. Considering the outcomes of these program trans
formation tools, we again conducted a quantitative assess
ment (using stateoftheart models for measuring software
comprehension) of a random sample of 92 pairs of code snip
pets and a surveywith 182 practitioners that evaluated at least
five code snippets from this sample of 92 pairs.

3.1 Research Questions
We investigated the following research questions in our
study.

(Q1) Does the use of lambda expressions improve program
comprehension?

(Q2) Does the introduction of lambda expression reduce
source code complexity?

(Q3) What are the most suitable situations to refactor a code
to introduce lambda expressions?

(Q4) How do practitioners evaluate the effect of introducing
a lambda expression into a legacy code?

(Q5) What is the practitioners’ opinion about the recom
mendations from automated tools to introduce lambda
expressions?

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

We conducted this research using an iterative approach,
and after investigating a given question, new subquestions
and hypothesis emerged. For instance, we investigated
whether or not the reduction in the size of a code snippet, af
ter introducing a lambda expression, has an influence on the
perception of the participants about the quality of the trans
formation.

3.2 Metrics of the Quantitative Study
Wemeasured the complexity of a code snippet using twomet
rics: number of source lines of code (SLOC) and cyclomatic
complexity (CC). Both metrics have been used in a num
ber of studies (Riaz et al., 2009; Baggen et al., 2012; Land
man et al., 2016). In addition, we used two models to esti
mate and compare the readability of each pair of code snip
pets considered in our research. Readability is one of the as
pects used for assessing program comprehension, and here
after both terms (readability and program comprehension)
are used interchangeably. The first model we used to esti
mate program comprehension is based on the work of Buse
and Weimer (2010). It estimates the comprehensibility of a
code snippet considering a regression model that takes as in
put several characteristics, including the length of each line
of code in a code snippet, the number of identifiers in a code
snippet, and the length of the identifiers present in a code
snippet (Buse and Weimer, 2010).
The second model was proposed by Posnett et al. (2011),

which builds upon the Buse and Weimer model, though con
sidering a smaller number of characteristics. Based on this
model, we can estimate the readability of a code snippet us
ing Eq. (1) and Eq. (2); and the constant C = 8.87.

E(X) = 1
1 + e−Z(X) (1)

Z(X) = C + 0.40L(X) − 0.033V (X) − 1.5H(X) (2)

That is, in the Posnett et al. model, we calculated pro
gram comprehension using threemain components: the num
ber of lines of a code snippet (L(X)), the volume of a code
snippet (V (X)), and the entropy (H(X)) of a code snip
pet. The volume of a code snippet X is given by V (X) =
N(X)log2n(X), where N(X) is the program length of the
code snippet and n(X) is the program vocabulary. These
measures are defined as

• Program Length (N(X)) is given by N(X) =
N1(X) + N2(X), where N1(X) is the number of op
erators and N2(X) is the number of operands of a code
snippet.

• Program Vocabulary (n(X)) is computed using the
formula n(X) = n1(X) + n2(X), where n1(X) is the
number of unique operators and n2(X) is the number
of unique operands of a code snippet.

The entropy of a document X (in our case a code snip
pet) is given by Eq (3), where xi is a token in X , count(xi)
is the number of occurrences of xi in the document X , and
p(xi) is given by Eq (4). The entropy (H(X)) in our context
estimates the degree of disorder of the source code.

H(X) = −
n∑

i=1

p(xi) log2 p(xi) (3)

p(xi) = count(x)∑n

j=1 count(xj)
(4)

We used an existing tool2 to estimate the comprehensibil
ity of the code snippets using the Buse and Weimer (2010)
model. We developed our own tool to automate the computa
tion of the comprehensibility model by Posnett et al. (2011).3
We executed these computations for all pairs of code snip
pets that we collected either from real scenarios (first phase)
or from the outcomes of the program transformation tools
(second phase).

3.3 Code Snippets’ Datasets
In the first phase of this research, we used an existing tool
(MinerWebApp) and a dataset from a previous work (Maz
inanian et al., 2017), to identify code snippet candidates
to our research. MinerWebApp monitors the adoption of
Java lambda expressions in open source projects hosted on
GitHub, and has been used in previous research on the adop
tion of lambda expressions (Mazinanian et al., 2017). The
goal of MinerWebApp is to identify and classify the use of
lambda expressions code snippets. MinerWebApp classifies
the occurrences of lambda expressions into three categories:

• New method: When a new method containing lambda
expressions is added to an existing class;

• New class:When a new class is added to the project, and
this class contains methods with lambda expressions;

• Existing method: When a lambda expression is intro
duced into an existing method.

The decision of using an existing tool and dataset simpli
fied our process of collecting real usage scenarios of lambda
expressions.We randomly selected 59 code snippets from the
MinerWebApp dataset—considering exclusively the code
snippets of the third category (Existing method). We also col
lected 29 code snippets of refactoring scenarios we gener
ated using RJTL (Dantas et al., 2018) and submitted via pull
requests to open source projects. In total, we selected 88 code
snippets from 22 projects, including code snippets from the
Elastic Search, Spring Framework, and Eclipse Foundation
projects. We manually reviewed these code snippets and re
moved 22 pairs that clearly do not correspond to a refactoring
or that already had a lambda expression in the first version of
the code. This cleanup lead to a final dataset with 66 pairs of
code snippets from 19 projects that we considered in the first
phase of the research. In Table 1 we show the number of pairs
of code snippets we collected from the GitHub repositories,
coming either from MinerWebApp or from RJTL transfor
mations.
All procedures to collect and characterize the code snip

pets from GitHub pages have been automated, using a
crawler and additional scripts for computing source code

2http://www.arrestedcomputing.com/readability/
3https://github.com/rbonifacio/programcomprehensionmetrics

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Table 1. Selected projects in the first phase.

Project Snippets from
MinerWebApp

Snippets from
RJTL

seleniumQuery 0 10
elasticsearch 0 4
CoreNLP 0 15
vertxexamples 2 0
Swagger2Markup 2 0
SpongeAPI 4 0
tailor 2 0
Agrona 1 0
RxAndroidBle 2 0
optaplanner 7 0
RxJavaAndroidSamples 3 0
kaa 1 0
jersey 4 0
uhabits 2 0
graylog2server 1 0
FluentLenium 1 0
qualitymatters 1 0
jbpm 1 0
springintegration 3 0

metrics (Figure 2 shows an overview of the approach). The
crawler expects as input a CSV file, where each line specifies
the project, the url of the commit, the start and end lines of
the code snippet, and the type of the refactoring (e.g., anony
mous inner class to lambda expression, foreach statements
to a recursive pattern using lambda expressions, and so on).

crawler compute metrics store

Figure 2. Procedures for collecting code snippets and calculating metrics

In the second phase, we used three automated refactor
ing tools (RJTL tool, NetBeans IDE, and Intellj IDE) to find
opportunities and then introduced lambda expressions glob
ally into the methods of five opensource systems (see Ta
ble 2). We chose these systems because they have been used
to assess the performance of Lambdaficator (Gyori et al.,
2013)—lately integrated into NetBeans to assist developers
to migrate legacy systems towards Java 8. We were also able
to build and execute the test cases of these systems, before
and after applying the transformations. After executing the
three tools in the five systems, we generated a dataset of
1987 transformations recommending refactorings to intro
duce lambda expressions (Table 2 shows the details).

Table 2.Number of refactoring recommendations each tool (RJTL,
NetBeans IDE, and IntelliJ) produced.

Project RJTL NetBeans IDE IntelliJ IDE

junit4r4.13rc2 9 104 39
tomcat7.0.98 3 354 105
fitnesse20191110 4 319 70
antlrworks1.5.1 89 316 118
antivyrel2.5.0 23 389 45

We followed a set of steps in order to validate and create
our second dataset of transformations. We first downloaded
and built the last (stable) version of the systems, before ex
ecuting the refactoring tools. After that, for each program
transformation tool, we created a specific Git branch, exe
cuted the program transformation tool, and built the system
again—looking either for a compilation or test execution fail
ure. We checked out the files that, after applying a transfor
mation, introduced a failure, removing spurious transforma
tions. Accordingly, we built a dataset with 1987 transforma
tions. We then randomly selected 92 pairs of code snippets
to explore in the second phase of our research. We classified
this final set of 92 transformations (Appendix A details the
taxonomy) and computed the source code metrics and read
ability models. We stored the code snippets and the results of
the metric calculations into a database. Table 3 summarizes
this final set of 92 transformations.

Table 3. Number of transformation grouped by Type and Tool.

Type RJTL Netbeans IDE IntelliJ IDE

Anonymous inner class 17 13 28
Reduce 0 2 0
Chaining 0 6 0
ForEach 0 9 0
Map 0 2 0
Filter 2 1 0
AnyMatch 12 0 0

We finally investigated the situations where at least two
tools recommended a refactoring in the same code snippet.
Considering the initial set of 1987 transformations, we found
357 cases (17.96%) of code snippets having recommenda
tions from more than one tool. Nonetheless, the recommen
dations are not exactly the same. For instance, the code snip
pets of Figure 3 present transformations recommended to the
same original code (Figure 3(a)), but suggested byNetBeans
IDE, IntelliJ IDE, and RJTL. In this example, it is possible to
realize that the IntelliJ IDE leverages the mechanism of type
inference, while NetBeans IDE and RJTL do not. Moreover,
there is a slight difference in the indentation of the resulting
code from the NetBeans IDE and RJTL recommendations.
We removed this kind of duplication in our dataset with 100
code snippets, leading to a final dataset of 92 pairs of code
that we used in the second phase of our research.

3.4 Procedures of the Qualitative Study

Regarding the qualitative study, we conducted the research
using an approach based on a previous work (dos Santos and
Gerosa, 2018). That is, we designed an online survey that al
lowed the participants to evaluate pairs of code snippets. In
the first phase we only invited professional developers with
some background in Java programming, from a convenient
population of developers in our own professional network.
Table 7 details the characteristics of the survey participants
from the first phase of our research. The survey was orga
nized in two sections. The first section aimed to character
ize the experience of the participants; while the second one
aimed to investigate the benefits (or drawbacks) of introduc

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Figure 3. Transformations recommended to the same code snippet sug
gested by RJTL, NetBeans,and IntelliJ.

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener(new ActionListener() {
public void actionPerformed(ActionEvent e) {
performToggleButtonAction(tag);

}
});
components2toggle.put(c, b);
return b;

}

(a) Original Code

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener((ActionEvent e) →{
performToggleButtonAction(tag);

});
components2toggle.put(c, b);
return b;

}

(b) Code after applying the NetBeans transformation

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener(e →performToggleButtonAction(tag));
components2toggle.put(c, b);
return b;

}

(c) Code after applying the IntelliJ transformation

public XJRotableToggleButton createToggleButton(String title...) {
XJRotableToggleButton b = new XJRotableToggleButton(title);
b.setFocusable(false);
b.addActionListener((ActionEvent e)→ { performToggleButtonAction(tag); });
components2toggle.put(c, b);
return b;

}

(d) Code after applying the RJTL transformation

ing lambda expressions into legacy code. This second section
comprised the following (survey) questions.

• S1Q1: Do you agree that the adoption of lambda ex
pressions on the right code snippet improves the read
ability of the left code snippet? This is a Likert scale
question—(1) meaning Strongly disagree and (5) mean
ing Strongly agree, which focuses on the readability as
pect.

• S1Q2: Which code do you prefer? This is a yes or no
question, which aims to understand if the new code
improves general quality attributes. The same question
has been explored in a previous work (dos Santos and
Gerosa, 2018).

• S1Q3: Would you like to include any additional com
ment to your answers? This is an open question that al
lowed the participants to optionally present further de
tails about their answers.

We first conducted a pilot with five students, to evaluate
whether our online survey tool would be able to properly cap
ture the opinion of the developers. After conducting this pi
lot, we implemented several adjustments in the layout and in
the functionalities of the tool, in order to increase our confi
dence in the tool for the next executions of the survey. The
pilot also revealed that answering all pairs of code snippets
was a timeconsuming activity. For this reason, we split the

pairs of code snippets into two groups, and then randomly
assigned the participants to answer the survey questions con
sidering code snippets either from the first or from the second
group. The participants should answer the survey’s questions
for a set of a minimum three and a maximum of six pairs of
code snippets—randomly selected from the first or second
groups of code snippets.
Considering the second phase of our study, we used the set

of 92 randomly selected pairs of code snippets whose trans
formed code correspond to a recommendation from RJTL,
NetBeans IDE, or IntelliJ. In this phase, the participants an
swered the following questions.

• S2Q1: What is your opinion about the following sen
tences?
(a) The new code is easier to comprehend,
(b) The new code is more succinct and readable,
(c) The intention of using a lambda expression in the

new code is clear, and
(d) The new code is harder to debug.
Respondents presented their opinion about these sen
tences using a Likert scale—(1) meaning Strongly dis
agree and (5) meaning Strongly agree. The first three
sentences are claims that motivate the adoption of
Lambda expressions in Java programs (Gyori et al.,
2013). The fourth sentence came from our own experi
ence in debugging pieces of code that use Java lambda
expressions.

• S2Q2: How often would you perform this type of trans
formation? This is a Likert scale question— (1) mean
ing Never and (5) meaning Always. The goal was to
evaluate how often developers would perform a specific
transformation to introduce lambda expressions.

• S2Q3: How important is the automated support for
this kind of transformation? This is a Likert scale
question— (1) meaning Not important at all and (5)
meaning Extremely important. The goal of this ques
tion was to evaluate how important the use of tools to
support a specific transformation is.

• S2Q4: Would you perform this transformation? Why?
This is an open question that allowed the participants to
optionally present further details about their opinion.

In the second phase of our research, we used a set of so
cial media tools to invite developers to answer the survey.
That is, we sent a message to specific communities of Java
Developers, including communities from Facebook, Reddit,
Telegram, and mailing list of Java developers (e.g. NetBeans
Developers, JDK Developers). We presumed that the devel
opers have a good experience with Java programming. This
phase had 182 participants located in 32 different countries
(see Table 4). The developers needed 04:23 minutes (on av
erage) to complete the questionnaire, where they evaluated
a maximum of 5 transformations and answered a set of 7
questions regarding each pair of code snippet. In this phase,
we generated a survey randomly selecting five pairs of code
snippets for each participant. Tables 5 and 6 summarize the
number of participants considering the level of education and
professional experience of the respondents, respectively.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Table 4. Distribution of respondents according to their location.

Country Respondents Percentage

Brazil 71 39.01
United States 25 13.74
Germany 16 8.79
Portugal 8 4.40
India 7 3.85
United Kingdom 6 3.30
Netherlands 5 2.75
Spain 4 2.20
Other countries 40 21.97

Table 5. Characterization of the Survey’s Participants in the second
phase over the level of education.

Developers Degree Number of participants Percentage

Some high school 5 2,74%
High school graduate 13 7,14%
Undergraduate 21 11,53%
Bachelor’s degree 58 31.86%
Master’s degree 76 41.75%
Doctorate degree 9 4.94%

Table 6. Characterization of the Survey’s Participants in the second
phase over developer experience.
Developers Experience Number of participants Percentage (%)

Less than one year 14 7.69%
Between one and four years 52 28.57%
Between five and ten years 48 26.37%
More than ten years 68 37.36%

We crossvalidated the results of the qualitative assess
ment with the results of the quantitative assessments, by cor
relating the results of the estimates for program comprehen
sion from the two models discussed in the previous section
with the results of the surveys. We also explored the results
of the survey considering the measurements of SLOC and
CC, for all pairs of code snippets in the survey.

3.5 Data Analysis
We used exploratory data analysis (EDA) to answer our first
two research questions. EDA is a method that allows re
searchers to build a broad understanding about the data, using
descriptive statistics (e.g., median and mean) and graphical
methods (e.g., histograms and boxplots). We also leveraged
hypothesis testing to further explore the first two research
questions.
Regarding the remaining research questions, which we ad

dressed using surveys as the main method for data collection,
we also relied on EDA to consolidate the answers to the Lik
ert scale based questions (in terms of descriptive statistics
and plots); while the answers to the survey’s openend ques
tions were literally quoted. Since we collected a more sig
nificant feedback for the openended questions in the second
phase of the research (177 answers in total), we also consoli
dated the answers to the second phase’s openended question
using Thematic Analysis (Silva et al., 2016; Shrestha et al.,
2020).
We conducted our thematic analysis in four steps. In the

first, we carried out an initial reading of the answers to the

fourth question of our survey (S2Q4), preparing the scene
before starting the coding stage. In the second step, we per
formed an initial coding for each answer. Next, in the third
stage, we analyzed the codes with the goal of finding themes
(that is, grouping of related codes). Finally, in the fourth step,
we reviewed and merged the themes, generating a new, more
comprehensive list of topics. We included a small phase of
crossvalidation, in which two authors gave feedback on the
assignments. These two authors did not contribute to the ini
tial assignment of codes and themes to the answers.

4 Results of the First Phase
In this section we present the results from the first phase of
our research. Initially we discuss the outcomes of the quan
titative assessment, which considers the models of Buse and
Weimer (2010) and Posnett et al. (2011) (Section 4.1). After
that, we present the results of the qualitative assessments and
compare the findings of the two studies (Section 4.2).

4.1 Quantitative Assessment
We considered the 66 pairs of selected code snippets dur
ing the quantitative assessment. For each pair, we calculated
the number of lines of code (SLOC), the cyclomatic com
plexity (CC), the estimate comprehensibility using the Buse
and Weimer and the Posnett et al. models. We addressed two
main hypothesis in order to answer our research questions.

H1: The introduction of lambda expressions improves
program comprehension, according to the stateofthe
art readability models.

Conversely, our first null hypothesis (H10) investigates
whether the introduction of lambda expressions does not
change program comprehension, according to stateofthe
art readability models. We used a signal test (Wilcoxon
SignedRank Test Wilcoxon (1945)) to investigate this hy
pothesis, considering the comprehensibility assessments us
ing the models of Buse and Weimer and Posnett et al.
For each pair of code, the introduction of lambda expres
sions might have increased, decreased, or unchanged the
comprehensibility, according to both models. As such, the
Wilcoxon SignedRank Test tested the null hypothesis that
the comprehensibility of the source code before and after the
introduction of lambda expressions are identical (Wilcoxon,
1945). Table 8 summarizes the results, considering all pairs
of code snippets.
Although the Posnett et al. method builds upon the model

of Buse and Weimer, our analysis revealed a lack of agree
ment in the results from the two models. The outcomes of
the test revealed that the introduction of lambda expres
sions actually decreases program comprehension (pvalue
< 0.0001), when considering the Buse and Weimer model.
Nonetheless, when we considered the Posnett et al. model,
we could not reject the null hypothesis, and this result sug
gested that the introduction of lambda expressions does not
affect the comprehension of the code snippets (pvalue =
0.668). Due to these conflicting results, we compared both

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Table 7. Characterization of the Survey’s Participants in first phase.

ID Gender Degree Experience
Lambda

Experience
functional

programming
Experience

1 Male Master Student No 14 years 4 years
2 Male BSc degree Yes 14 years 2 years
3 Male Master Student Yes More than five years 11 years
4 Male BSc degree Yes 14 years 4 years
5 Male Master Student Yes 14 years 10 years
6 Male BSc degree No 5+ years 11 years
7 Male Master Student Yes 14 years 11 years
8 Male Master Student Yes More than five years 11 years
9 Male Master Student No No Experience 7 years
10 Male BSc degree Yes 14 years 5 years
11 Male BSc degree Yes 5+ years 5 years
12 Male PhD degree Yes No Experience 10 years
13 Male BSc degree Yes 1 year 11 years
14 Female Master Student No No Experience 5 years
15 Male Master Student Yes No Experience 7 years
16 Female PhD degree No 45 years 5 years
17 Male Master Student Yes 1 year 4 years
18 Male BSc degree Yes 14 years 2 years
19 Female Undergraduate Student No 1 year 1 years
20 Male BSc degree Yes No Experience 7 years
21 Male Master Student Yes More than five years 11 years
22 Male Undergraduate Student Yes No Experience 1 year
23 Male BSc degree Yes 1 year 1 year
24 Male Undergraduate Student Yes No Experience 1 year
25 Male Undergraduate Student Yes 1 year 4 years
26 Male Master Student Yes 45 years 5 years
27 Male BSc degree No No Experience 1 year
28 Male BSc degree Yes No Experience 11 years

Table 8. Number of pairs of code snippets that have increased the
readability, decreased the readability, and unchanged the readabil
ity; after the introduction of lambda expressions.

Model Increased Decreased Unchanged

Buse and Weimer 13 44 9
Posnett et al. 31 35 0

models to the results of the qualitative assessment (Sec
tion 4.2).

H2. SLOC and CC can be used to predict the benefits
(or drawbacks) on program comprehension, according
to the readability models considered in this research.

We investigated this hypothesis using a regression model.
First, we calculated the differences in the SLOC (∆s) and
CC (∆cc) metrics, considering the code snippets before and
after the introduction of lambda expressions. We then built
two regression models, one considering as response variable
the difference in the Buse andWeimer model (∆bw) and one
considering as response variable the difference in the Posnett
et al. model (∆p).

∆bw = b0 + b1 ∆s + b2 ∆cc (5)
∆p = c0 + c1 ∆s + c2 ∆cc (6)

Accordingly, we unfolded H2 in two alternative hypothe

ses, one for each readability model. That is, the null hypothe
ses for H2 are as follows.

• H2.10: There is no relationship between ∆bw and the
predictors ∆s and ∆cc.

• H2.20: There is no relationship between ∆p and the
predictors ∆s and ∆cc.

Table 9 and Table 10 show the results of the regression
analysis, considering the first and second models of Eq (5)
and Eq (6). Considering a significance level < 0.05, we could
not predict the benefits/drawbacks of introducing lambda ex
pressions, according to the Buse and Weimer model to esti
mate readability, in terms of lines of code (pvalue = 0.08)
and cyclomatic complexity (pvalue = 0.98). This result sug
gested that we should not reject the null hypothesis H2.10,
and there is a negligible relationship between the predic
tors (∆s and ∆cc) with the response variable ∆bw. Finally,
only 2% of the variability in ∆bw was explained by the lin
ear regression of Eq. (5) (Adjusted Rsquared: 0.02). Simi
larly, variables ∆s and ∆cc did not explain the variability
in ∆p (Adjusted Rsquared: 0.05). Nonetheless, considering
the second regression model (Eq. (6)), the result suggested
that there is a relationship between SLOC and ∆p (pvalue
= 0.01)—though it is a small correlation (ρ = −0.188 using
the Spearman correlation method).
In summary, the results of the regression analysis refuted

our hypothesis H2: ∆s and ∆cc presented a negligible re

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

lationship with ∆bw and ∆p; and thus they could not ad
equately predict the variability in the response variables of
Eq. (5) and Eq. (6).

Table 9. Summary of the regression model to estimate the differ
ence on the Buse and Weimer estimates, using SLOC and CC

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0309 0.0128 2.41 0.0190
∆s 0.0052 0.0029 1.77 0.0816

∆cc 0.0003 0.0199 0.01 0.9888

Table 10. Summary o the regression model to estimate the differ
ence on the Posnett et al. estimates, using SLOC and CC

Estimate Std. Error t value Pr(>|t|)

(Intercept) 0.0184 0.0161 1.14 0.2567
∆s 0.0088 0.0037 2.41 0.0190

∆cc 0.0099 0.0249 0.40 0.6937

4.2 Qualitative Assessment
Considering the qualitative assessment, 28 participants with
a substantial experience in Java programming evaluated a
number between three and six pairs of code snippets. For
each pair of code snippet, these participants answered the
survey questions S1Q1, S1Q2, and S1Q3. Recall that we split
the code snippets into two groups, and thus each code snippet
was evaluated by 14 participants. The data collection lasted
16 days, and, on average, each participant spent 2:30 minutes
to evaluate each pair of code snippet.
We used two forms of data analysis in this assessment.

First, we summarized the responses to SQ1 and SQ2 using ta
bles and plots, which allowed us to build a broad view of the
closed questions’ answers. In the second analysis, we con
sidered the answers to the open questions literally (some of
them are quoted here), to draw a broader understanding about
the implications of refactoring Java legacy code to introduce
lambda expressions.

4.2.1 Improvements on Readability

The goal of the first question of our survey (Do you agree that
the adoption of lambda expressions on the right code snip
pet improves the readability of the left code snippet?) was to
evaluate if, according to the perception of Java developers,
the introduction of lambda expressions improve the compre
hension of the code snippets. We used a Likert scale to inves
tigate this. Considering the answers to all pairs of code snip
pet, 11.1% and 39.7% either strongly agree or agree that the
introduction of lambda expressions improve the readability
of the code, respectively; while 24.6% of the responses were
neutral, 21.4% disagree, and 3.2% strongly disagree with the
SQ1 statement (see Table 11). Therefore, we found develop
ers leaning towards a readability improvement after the in
troduction of lambda expressions.
To better understand this result, we analyzed the an

swers for each pair of code snippet (see Figure 4). Trans
formations 1035, 1052, and 1180 present more than 60%

Figure 4. Answers to the first question of the survey, considering the pairs
of code snippets

29%

14%

14%

7%

29%

21%

43%

36%

29%

57%

64%

71%

57%

36%

64%

21%

43%

43%

14%

21%

14%

36%

36%

14%

36%

21%

29%

100 50 0 50 100

1027

1035

1052

1062

1166

1180

1182

1183

1192

Percentage

Response Strongly Disagree Disagree Neutral Agree Strongly Agree

of positive answers (i.e., introducing lambda expressions
improves the readability of these code snippets). Differ
ently, the pair of code snippet 1182 on Figure 5 received
79% of answers either neutral or negative (i.e., the intro
duction of lambda expressions seems to reduce the read
ability of this code snippet). In this particular case, a
for(obj: collection) {...} statement is replaced by
a collection.forEach(obj -> {...}) loop, which in
cludes a lambda expression. Most of the participants did not
agree that the introduction of a lambda expression improved
the readability of the source code in this situation. One of the
participants stated:

“(considering the code snippet 1182) I think that replac
ing a normal for each by a collection.forEach()
would only bring benefits when there are additional
calls either to the map or filter methods, or perhaps
calls to some other method list processing.”

Figure 6 shows the pair of code snippet 1180. In this ex
ample, an instance attribute (duplicate) was first initialized
using an anonymous inner class (Figure 6(a)). This anony
mous inner class was later replaced by a lambda expression
(Figure 6(b)), and 64% of the participants either agree or
strongly agree that this transformation improves the readabil
ity of the code snippet. Regarding this pair of code snippet,
one of the participants stated that:

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Table 11. Summary of the answers for the question Do you agree
that the adoption of lambda expressions on the right code snippet
improves the readability of the left code snippet?

S1Q1 Answers Percentage Cum. Percentage

Strongly disagree 4 3.2% 3.2%
Disagree 27 21.4% 24.6%
Neutral 31 24.6% 49.2%
Agree 50 39.7% 88.9%
Strongly Agree 14 11.1% 100.0%
Total 126 100.0%

Figure 5. Pair of code snippet 1182

assertEquals(numRequests, responses.size());
for(TestResponse t: responses) {
Response r = t.getResponse();
assertEquals(t.method, r.getRequestLine().getMethod());
...

}

(a)
assertEquals(numRequests,responses.size());
responses.forEach(t →{
Response r = t.getResponse();
assertEquals(t.method, r.getRequestLine().getMethod());
...

});

(b)

“Here the transformation makes sense, because it elim
inates the use of anonymous inner class with a trivial
method body (often used to implement the Command de
sign pattern in Java)”

Figure 6. Pair of code snippet 1180

private Function duplicate = new Function() {
public String apply(String in) {
return in + in;

}
};

(a)
private Function duplicate = (String in) →{ return in + in; };

(b)

Considering all pairs of code snippets we used in the sur
vey, only in two pairs of code snippets (1166 and 1182)
we observed a tendency towards either a neutral or a dis
agreement opinion that the introduction of lambda expres
sions improves the readability of the code. More specif
ically, in these two cases, the percentage of agree and
strongly agree was under 50%. Both are examples of trans
formations that replace a regular for each statement to a
collection.forEach(...) using a lambda expression.

4.2.2 Source Code Preference

The goal of the second question of our survey (Which code do
you prefer?) was to understand if the practitioners had a pref
erence for the code before or after the introduction of lambda
expression. Considering the nine pairs of code snippets of the
survey (that we randomly select from the initial population),
only the pair of code snippet 1166 received more selections
for the first version of the code (i.e., before the introduction

of lambda expressions). Therefore, we found some evidence
in this survey that the participants identify the introduction
of lambda expressions as a transformation that improves the
quality of the source code. Surely, this preference depends
on the experience of the developers, as one of the partici
pants state:

“It depends on the practical knowledge on functional
programming, since programmers of the 1980s and
1990s are likely to consider easier to understand code
where loops, control variables, and pointers are ex
plicit.”

We used the Spearman correlation test to verify whether
the reduction on lines of code and the reduction on cyclo
matic complexity could explain the preference of the partic
ipants for the pieces of code after the introduction of lambda
expressions. We found a moderate to high correlation (0.67)
between the reduction on the lines of code and the number
of votes in favor of the code after the introduction of lambda
expressions. Therefore, in the cases that a source code trans
formation to introduce lambda expressions reduced the num
ber of lines of code, it might have also improved the gen
eral quality of the code—according to the perceptions of the
participants. Differently, we found a weak correlation be
tween the reduction on cyclomatic complexity and the num
ber of choices in favor (or against) of the code snippets using
lambda expressions. We could understand this result because
the introduction of lambda expressions did not reduce the cy
clomatic complexity in several cases.

5 Results of the Second Phase
In this section, we replicate the process executed in the first
phase, but only considering transformations suggested by au
tomated tools. Section 5.1 presents the results of the quanti
tative assessment, taking into account the models of Buse
and Weimer (2010) and Posnett et al. (2011). After that,
we present the results of the qualitative assessments and
compare them to the results of the quantitative study (Sec
tion 5.2).

5.1 Quantitative Assessment
We considered the 92 pairs of code snippets randomly se
lected from the set of recommendations to introduce lambda
expressions suggested by RJTL, NetBeans, and IntelliJ. For
each pair, we estimated the code comprehension of the ver
sions before and after applying the suggested transforma
tions, using both the Buse and Weimer (2010) and Posnett
et al. (2011) models. We also calculated the SLOC and CC
metrics for both versions of code snippets.
To investigateH1 (The introduction of lambda expressions

improves program comprehension, according to stateofthe
art readability models), we executed the Wilcoxon Signed
Rank Test considering the two models to measure code com
prehension. First, we evaluated the situations where a trans
formation increased, decreased or unchanged code com
prehension according to the models. After that, we executed

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

theWilcoxon SignedRank Test. Table 12 summarizes the re
sults, showing that, in most of the cases, the introduction of
lambda expressions suggested by automated tools actually
reduces code comprehension, according to both stateofthe
art readability models.

Table 12. Number of pairs of code snippets that have increased the
readability, decreased the readability, and unchanged the readabil
ity; after the introduction of lambda expressions.

Model Increased Decreased Unchanged

Buse and Weimer 25 63 4
Posnett et al. 20 67 5

The results of the Wilcoxon SignedRank Test suggested
that the introduction of lambda expressions decreases the
comprehensibility of the pairs of code snippets (pvalue <
0.0001). For instance, Figures 7 and 8 show pairs of snip
pets that have been evaluated using the readability metrics.
The transformation of an anonymous inner class led to an im
provement according to Buse andWeimer (2010) metric: the
readability for the code before the transformation according
to this model is 0.29; and 0.50 after introducing a lambda
expression. However, considering a transformation that re
places a for loop by a lambda expression, the metric’s result
worsened significantly, reducing from 0.72 to 0.13 after the
source code transformation.

Figure 7. Pair of code snippet 528. Replacing an anonymous inner class.

public synchronized String getResolverName(ModuleRevisionId mrid) {
ModuleSettings ms = moduleSettings.getRule(mrid, new Filter<ModuleSettings>()
{
public boolean accept(ModuleSettings o) {
return o.getResolverName() != null;
}

});
return ms == null ? defaultResolverName : ms.getResolverName();
}

(a)
public synchronized String getResolverName(ModuleRevisionId mrid) {
ModuleSettings ms = moduleSettings.getRule(mrid, (ModuleSettings o)→{
return o.getResolverName() != null

;});
return ms == null ? defaultResolverName : ms.getResolverName();
}

(b)

To investigate the H2 hypothesis (SLOC and CC can be
used to predict the benefits (or drawbacks) on program com
prehension, according to the readability models considered
in this research.), we calculated the differences in the SLOC
(∆s) and CC (∆cc) metrics, considering the code snippets
before and after the introduction of lambda expressions.
Accordingly, we explored the null hypotheses H2.10 and
H2.20 (Section 4). Tables 13 and 14 summarize the results
of the regression analysis considering a significance level <
0.05.
After performing the regression analysis, both models led

to a pvalue > 0.05, w.r.t the SLOC metric. However, dif
ferently from the results of the first phase, the analyses led
to a pvalue < 0.05 when considering the CC metric. Such
results suggested that cyclomatic complexity can be used to
estimate the impact on code comprehension after the intro

Figure 8. Pair of code snippet 499. Replacing a structural for loop.

public void rewind(int start) {
currentTokenIndex = start;
/** Remove any consume and lookahead attribute for any token with index
* greater than start
*/
for (Integer idx : inputTokenIndexes) {

if (idx >= start) {
indexToConsumeAttributeMap.remove(idx);
lookaheadTokenIndexes.remove(idx);

}
}

}

(a)
public void rewind(int start) {

currentTokenIndex = start;
/** Remove any consume and lookahead attribute for any token with index
* greater than start
*/
inputTokenIndexes.stream().filter((idx) →(idx >= start)).map((idx) →{

indexToConsumeAttributeMap.remove(idx);
return idx;

}).forEachOrdered((idx) →{
lookaheadTokenIndexes.remove(idx);

});
}

(b)

duction of lambda expressions. Therefore, the results con
firmed our second hypothesis with respect to the cyclomatic
complexity metric, being possible to estimate the effect on
the readability metrics using the difference on the CC met
ric. We further detail these results in Section 6.

Table 13. Summary of the regression model to estimate the differ
ence on the Buse and Weimer estimates, using SLOC and CC

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0318 0.0220 1.44 0.1522
SLOCDiff 0.0038 0.0056 0.67 0.5034

CCDiff 0.0623 0.0136 4.59 0.0000

Table 14. Summary of the regression model to estimate the differ
ence on the Posnett et al. estimates, using SLOC and CC

Estimate Std. Error t value Pr(>|t|)
(Intercept) 0.0100 0.0161 0.62 0.5357
SLOCDiff 0.0043 0.0041 1.05 0.2975

CCDiff 0.0253 0.0100 2.54 0.0130

5.2 Qualitative Assessment

In the qualitative assessment, we report the results of a sec
ond survey with practitioners, to capture the perception of
the developers about the impact on the readability of the
code after applying transformations that introduce lambda
expressions. These transformations had been recommended
by automated tools only. We present the distribution of re
sponses in the form of plots to build a broad perspective of
the opinion of the respondents to every closed question. We
then show the insights we got after conducting a thematic
analysis of the openended questions, highlighting the par
ticipants’ opinions with quotations and code examples.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

5.2.1 The Impact of Introducing Lambda Expressions

In our second survey, our first question asked the opinion
of the respondents about four sentences, which we use to un
derstand the impact of introducing lambda expressions in the
pairs of code snippets. We organize this section according to
the sentences of the first question of the second survey.

The new code is easier to comprehend. The purpose of this
sentence was to evaluate if the transformations to introduce
lambda expressions (recommended by automated tools) im
prove program comprehension. Contrasting with the over
all claims about the benefits of introducing lambda expres
sions (Gyori et al., 2013), we found that almost all types
of transformations the automated tools suggest do not im
prove the readability of the programs.Interestingly, except
for three types of transformations (Anonymous Inner Class
to Lambda, For loop to Any Match, and For loop to Filter),
the respondents most often did not agree that the introduc
tion of lambda expressions makes the code easier to compre
hend. Actually, according to Figure 9, 68% of the respon
dents stated that they did not agree that transformations in
volving the chaining of different stream operations improve
program comprehension, and we observed the same trend for
other typical recursive patterns (e.g., map, reduce, and for
each).

Figure 9. Summary of the developers’ answers to the sentence The new
code is easier to comprehend of the survey.

17%

28%

68%

28%

39%

50%

50%

67%

54%

8%

50%

26%

33%

17%

16%

18%

24%

22%

35%

17%

33%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Strongly Disagree Disagree Neither agree or disagree Agree Strongly Agree

It is worth to link these results to the answers to the open
ended question. That is, according to the participants, replac
ing an anonymous inner classes by a lambda expressions of
ten improves program readability. Figure 10 shows an exam
ple of this particular type of transformation. After introduc
ing the lambda expression, the code is more succinct because
it removes some of the boilerplate code necessary to imple
ment anonymous inner classes. Regarding the code snippet
of Figure 10, one participant stated:

“(the code on the right is…) easier to read, usually
lambda also makes the code cleaner and compact.”

This comment suggests that this is a situation where the in
troduction of a lambda expressions improves program com
prehension.
Differently, transformations involving chaining of the

stream API methods received 68% of responses as either

Figure 10. Pair of code snippets 480. Replacing an anonymous inner class
into lambda expression.

private ThrowingRunnable evaluateWithException(Exception e) {
return new ThrowingRunnable() {

public void run() throws Throwable {
statement.nextException = e;
statement.waitDuration = 0;
failOnTimeout.evaluate();

}
};

}

(a)
private ThrowingRunnable evaluateWithException(Exception e) {

return () →{
statement.nextException = e;
statement.waitDuration = 0;
failOnTimeout.evaluate();

};
}

(b)

Strongly disagree or Disagree, characterizing possible sce
narios where the introduction of lambda expressions does not
improve code comprehension. Another case involved trans
formations of for loops into forEach statements, which had
39% of negative answers (either Strongly disagree or Dis
agree. The type of transformations with the recursive pat
terns map and reduce received 50% of negative responses.
With respect to a transformation involving chaining, one

of the respondents stated the following about the example of
Figure 11.

“It’s a bad example ... although I use lambdas a lot, I
would never use them in exactly this way.”

Considering the same example of code in Figure 11, an
other participant discussed that:

“(I would) almost never (execute this transformation).
Transforming for loops into forEach statements with
lambda expressions provides little benefit other than us
ing a maybe slightly more concise syntax. “Readabil
ity” in my mind is such a subjective criterion that it is
close to useless as a metric for making any decisions:
someone coming from a functional language will find a
map/filter/reduce pipeline easier to “read”, and some
one coming from a structured programming language
will naturally tend towards nested loops.”

This is an example of transformation that replaces for
each statements by lambda expressions. According to the
respondents, it does not improve program comprehension.
Based on these results, we disclose that transformations of
type Replacing anonymous inner class with lambda expres
sions, Replacing a for loop with the filter pattern and Re
placing a for loop with the AnyMatch method improve code
comprehension; while the transformations Replacing a for
loop with a foreach statement, Replacing a for loop with the
reduce pattern , Replacing a for loop with the map pattern,
and Replacing a for loop with a Chaining of operators of
ten do not improve program comprehension according to the
developers’ opinion.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Figure 11. Pair of code snippet 489. Replacing Loop to forEach, filter
and forEachOrdered.

private void postConfigure() {
List<Trigger> triggers = settings.getTriggers();
for (Trigger trigger : triggers) {

eventManager.addIvyListener(trigger, trigger.getEventFilter());
}
for (DependencyResolver resolver : settings.getResolvers()) {

if (resolver instanceof BasicResolver) {
((BasicResolver) resolver).setEventManager(eventManager);

}
}

}

(a)
private void postConfigure() {

List<Trigger> triggers = settings.getTriggers();
triggers.forEach((trigger) →{

eventManager.addIvyListener(trigger, trigger.getEventFilter());
});
settings.getResolvers()
.stream()
.filter((resolver) →(resolver instanceof BasicResolver))
.forEachOrdered((resolver) →{
((BasicResolver) resolver).setEventManager(eventManager);

});
}

(b)

The new code is more succinct and readable. The purpose
of this sentence was to assess whether or not the introduction
of lambda expressions makes the code more succinct and im
proves its readability. Figure 12 summarizes the results of the
developers’ responses to this particular sentence. In this case,
we found a more positive tendency, and the transformations
from anonymous inner class into lambda expressions and the
transformations resulting in the map, reduce, filter, and
anyMatch patterns present a leaning towards positive an
swers (Agree or Strongly agree). However, the assessment
revealed that two types of transformations do not improve
readability: transformations involving forEach and chain
ing of the stream API methods received more than 49% of
negative responses (Strongly Disagree and Disagree).

Figure 12. Summary of the developers’ answers to the sentence The new
code is more succinct and readable of the survey.

12%

19%

62%

28%

50%

33%

17%

82%

51%

22%

44%

31%

50%

58%

6%

29%

16%

28%

19%

17%

25%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Strongly Disagree Disagree Neither agree or disagree Agree Strongly Agree

The transformation in Figure 13 shows a scenario that
replaces a for each statement by a call to the forEach
method of the stream API. Although this is a straightfor
ward situation where a developer might use a forEach, it
does not improve the quality of the code, and most of the
respondents considered that this particular scenario does not
make the code more succinct and readable (more than 80%

of the respondents are either neutral or does not agree that
his transformation brings these benefits). Regarding this pair
of code snippets, one of the respondents clearly stated this
perception.

“(this) transformation does not improve readability and
makes debugging more difficult.”

Figure 13. Pair of code snippet 504. Replacing a for loop by a forEach
pattern.

public ContextConfigurator updatedWith(Properties newProperties) {
for (String key : newProperties.stringPropertyNames()) {
withParameter(key, newProperties.getProperty(key));

}
return this;

}

(a)
public ContextConfigurator updatedWith(Properties newProperties) {
newProperties.stringPropertyNames().forEach((key) →{
withParameter(key, newProperties.getProperty(key));

});
return this;

}

(b)

Differently, Figure 14 shows an example of transformation
that makes the code more succinct and readable, according to
the opinion of the respondents. In this case, more than 80% of
the answers were either neutral or present a leaning towards
the agreement that the resulting code is more succinct and
readable.
Altogether, from these observations, we argue that trans

formations replacing for loops by a forEachmethod call and
the composition of stream operations (sec:chaining) do not
improve readability or make the code more succinct. On the
other hand, the other types of transformations have shown
benefits regarding code readability.

Figure 14. Pair of code snippet 465. Replacing Anonymous inner class.

public FitNesse(FitNesseContext context) {
this.context = context;
RejectedExecutionHandler handler = new RejectedExecutionHandler() {
@Override
public void rejectedExecution(Runnable r, ThreadPoolExecutor e) {
LOG.log(WARNING, ”Could not handle request. Thread pool ...”);

}
};
//...

}

(a)
public FitNesse(FitNesseContext context) {
this.context = context;
RejectedExecutionHandler handler = (Runnable r, ThreadPoolExecutor e) →{

LOG.log(WARNING, ”Could not handle request. Thread pool ...”);
};
//...

}

(b)

The intention of using a lambda expression in the new
code is clear. The purpose of this question was to investi
gate whether or not developers are able to understand the
motivation for using the lambda expressions introduced in

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

the new code. Figure 15 summarizes the results of the de
velopers responses to this question. Similarly to the previous
sentence, we found a more negative leaning when we consid
ered the transformations that replace a for loop by a call
to the forEach method and transformations that introduce
a chaining of stream operations. The remaining types of
transformations seemed to make clear the intention of using
either a lambda expression instead of an anonymous inner
class or a recursive pattern (e.g., filter, anyMatch, map or
reduce) instead of a for loop.

Figure 15. Summary of the developers’ answers to the sentence The inten
tion of using a lambda expression in the new code is clear of the survey.

12%

6%

51%

39%

44%

25%

33%

78%

88%

32%

61%

41%

50%

50%

10%

7%

16%

0%

15%

25%

17%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Strongly Disagree Disagree Neither agree or disagree Agree Strongly Agree

Transformations introducing a call to the forEachmethod
received 44% of negative (Strongly Disagree or disagree)
responses. This suggests a neutral opinion regarding the
clear intention of introducing a lambda expression. Figure 16
shows an example of code that replaces a for loop by the
forEach pattern, where 66% of the respondents considered
unclear the intention of the code. In particular, a participant
stated that:

“(I would never) perform this transformation. The for
loop makes it clear and explicit that we are iterating
over the elements in the collection—it is a fundamental
part of the language that we all understand. The (use
of) lambda expression does not.”

Figure 17 shows an example of transformation that makes
the intention of the code clearer. This transformation replaces
a for loop by a call to the anyMatch method, and 88% of
the respondents assigned either a neutral or a positive answer
(Agree or Strongly agree) with respect to the clear intention
of using a lambda expression in this example. A respondent
also claimed that:

“…The new code is more elegant and makes the inten
tion of finding some occurrence where the condition is
true clearer.”

Altogether, from these observations, we argue that trans
formations replacing for loops by calls to the forEach
method and the composition of stream operators (chaining)
do notmake clear the intention of introducing lambda expres
sions. On the other hand, the other types of transformations

Figure 16. Pair of code snippets 502. Replacing a for loopwith the forEach
pattern.

protectedMap<Object, Object> cSort(List<?> list, int col) {
TypeAdapter a = columnBindings[col].adapter;
Map<Object, Object> result = new HashMap<>(list.size());
for (Object row : list) {
try {
a.target = row;
Object key = a.get();
bin(result, key, row);

}
catch (Exception e) {
// surplus anything with bad keys, including null
surplus.add(row);

}
}
return result;

}

(a)
protectedMap<Object, Object> cSort(List<?> list, int col) {
TypeAdapter a = columnBindings[col].adapter;
Map<Object, Object> result = new HashMap<>(list.size());
list.forEach((row) →{

try {
a.target = row;
Object key = a.get();
bin(result, key, row);

}
catch (Exception e) {

// surplus anything with bad keys, including null
surplus.add(row);

}
});

return result;
}

(b)

Figure 17. Pair of code snippet 548. Replacing a for loopwith the anyMatch
pattern

private static boolean isAssignableToAnyOf(Class<?>[] typeArray, Object target) {
for (Class<?> type : typeArray) {

if (type.isAssignableFrom(target.getClass())) {
return true;

}
}
return false;

}

(a)
private static boolean isAssignableToAnyOf(Class<?>[] typeArray, Object target) {

return typeArray.stream()
.anyMatch(type →type.isAssignableFrom(target.getClass()));

}

(b)

have shown benefits, making it clear the intention of replac
ing anonymous inner classes with lambda expressions and
the use of other recursive patterns (filter, anyMatch, map,
and reduce).
The new code is harder to debug. The goal of this sentence
was to assess whether or not the introduction of lambda ex
pressions makes the code more difficult to debug. The results
in Figure 18 show that practically all types of transformations
present the side effect of hindering the task of debugging,
apart from the transformations that replace anonymous inner
classes by lambda expressions.
Transformations involving calls to the filter and

chaining methods of the stream API received more than
70% of negative responses—that is, respondents eitherAgree
or Strongly agree that the transformations make the code
harder to debug. Differently, transformations that replace

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

anonymous inner classes by lambda expressions received
53% of positive answers (respondents consider that this kind
of transformation does not hinder debugging activities).

Figure 18. Summary of the developers’ answers to the sentence The new
code is harder to debug of the survey.

53%

29%

3%

17%

26%

25%

25%

31%

49%

84%

72%

39%

67%

58%

16%

22%

14%

11%

35%

8%

17%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Strongly Disagree Disagree Neither agree or disagree Agree Strongly Agree

Figure 19 shows an example of a transformation that in
troduces a forEach statement. In this case, 88.33% of the
respondents were either neutral or presented a positive feel
ing that this transformation does not hinder debugging tasks.
Interesting, one participant claimed that this transformation
made the code harder to debug (due to obfuscating the types
of variables), although he/she was still leaning towards con
sidering the transformation beneficial.

“Obfuscating the types of the variables used makes the
code easier to change, but at the same time may make it
harder to debug. I would still perform the transforma
tion though.”

Figure 19. Pair of code snippet 510. Replacing loop to forEach pattern.

public synchronized void addError(Test test, Throwable e) {
fErrors.add(new TestFailure(test, e));
for (TestListener each : cloneListeners()) {

each.addError(test, e);
}

}

(a)
public synchronized void addError(Test test, Throwable e) {

fErrors.add(new TestFailure(test, e));
cloneListeners().forEach((each) →{

each.addError(test, e);
});

}

(b)

Figure 20 shows an example of transformation that also
makes the code hard to debug (more than 85% of the respon
dents either Agree or Strongly agree that this transformation
hinders debugging tasks). However, in the opinion of a de
veloper, an improvement in the transformation could actually
make the resulting code easier to debug.

“Yes (I would perform this transformation), in a hurry,
but with a minute more time I’d extract the filter into its

own function. However, the suggested refactoring is in
itself valuable because it does bring out the important
part. If an automated tool did this to a whole codebase,
it would make debugging easier, especially for junior
developers.”

Figure 20. Pair of code snippet 491. Replacing anonymous inner class with
lambda expressions.

public File[] getConfigurationResolveReportsInCache(final String resolveId) {
final String prefix = resolveId + ”−”;
final String suffix = ”.xml”;
return getResolutionCacheRoot().listFiles(new FilenameFilter() {
public boolean accept(File dir, String name) {
return name.startsWith(prefix) && name.endsWith(suffix);

}
});

}

(a)
public File[] getConfigurationResolveReportsInCache(final String resolveId) {
final String prefix = resolveId + ”−”;
final String suffix = ”.xml”;
return getResolutionCacheRoot().listFiles((dir, name) →
name.startsWith(prefix) && name.endsWith(suffix));

}

(b)

In summary, from these observations, we argue that evolv
ing a legacy code to use the stream API and lambda expres
sions often makes the resulting code harder to debug. This
undesired side effect does not happen in the case of transfor
mations from anonymous inner classes into lambda expres
sions.

5.2.2 How often would you perform this type of trans
formation?

The purpose of this question was to assess how often devel
opers would perform the set of 98 transformationswe explore
during the survey. Interesting, besides the possible side ef
fect of hindering debugging activities, respondents presented
a positive tendency to accept 72% of the transformations
in our dataset—respondents rejected 22% of the transfor
mations and were neutral with respect to 6% of the trans
formations. Nonetheless, when we discarded the transfor
mations involving anonymous inner classes, the number of
transformations that the respondents would accept dropped
from 72% to 44.44%, and the respondents would reject 50%
of the transformations.
Figure 21 summarizes the responses to this question,

which presents options related to frequency (from Never to
Always). It is possible to observe that the respondents would
not perform some of the transformations. For instance, the re
spondents would never or rarely replace a for loop by a call
to the forEach method in 50% of the scenarios. We found
a similar result when considering transformations that intro
duce the map recursive pattern. Differently, the respondents
stated they will either Often or Always perform transforma
tions replacing for loops by a call to the anyMatch method
(61%) and inner classes by lambda expressions (60%). Ta
ble 15 presents a different perspective about the answers to
this question, without splitting them using the type of the
transformations.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Figure 21. Summary of the developers’ answers to the questionHow often
would you perform this type of transformation? of the survey.

17%

10%

38%

22%

59%

42%

17%

60%

61%

11%

22%

13%

25%

17%

23%

29%

51%

56%

28%

33%

67%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Never Rarely Sometimes Often Always

Table 15. Summary of the answers for the question How often
would you perform this type of transformation?

S2Q2 Answers Percentage Cum. Percentage

Never 55 8.65% 8.65%
Rarely 92 14.5% 23.5%
Sometimes 173 27.2% 50.35%
Often 160 25.2% 75.5%
Always 156 24.5% 100.0%
Total 636 100.0%

5.2.3 How important is the automated support for this
kind of transformation?

The purpose of this question was to assess the importance of
using tools to perform transformations that introduce lambda
expressions. Figure 22 summarizes the results for this ques
tion, where the options range from Not important at all to
Very Important. We can observe in the figure that respon
dents considered the support of automated tools eitherMod
erately Important or Very Important to apply the transfor
mation, in more than 50% of the cases. This might indicate
that developers prefer to perform these transformations using
some code refactoring tool. However, transformations intro
ducing the forEach recursive pattern received most of the
responses between Not important at all and Low important,
which perhaps supports that this particular kind of transfor
mation does not improve the source code. Finally, the trans
formation classified as Replacing a for loop with a Chaining
of operators received most responses in Neutral (38%).
Based in these results, we can argue that developers con

sider worth the use of refactoring tools to introduce lambda
expressions and rejuvenate Java programs. However, there is
some room for improving these tools, as we discuss possible
scenarios in the next section.

5.2.4 Synthesis of the Responses to the Openended
Question

In this section we present a synthesis of answers to the open
ended question of our second survey, using the thematic
analysis procedures we detailed in Section 3. We found three
recurrent themes that might explain the reasons for accept
ing a transformation:More Succinct Code, Easier to Under
stand, and Clear Code Intention. We also identified three re
current themes that might justify why a given transforma

Figure 22. Summary of the developers’ answers to the question How im
portant is the automated support for this kind of transformation? of the
survey.

16%

29%

32%

6%

46%

17%

17%

65%

58%

30%

50%

31%

50%

67%

19%

12%

38%

44%

22%

33%

17%

100 50 0 50 100

Anonymous inner class

AnyMatch

Chaining

Filter

ForEach

Map

Reduce

Percentage

Response Not important at all Low importance Neutral Moderately Very important

tion should not be applied: Small Benefit, Harder to Under
stand, and Wrong Scenario for using a lambda expression.
Finally, several answers claim that the transformations could
be improved (the Need Improvements theme that appears in
transformations marked either as accepted or rejected). Sev
eral answers provided an alternative to the modified version
of the code (often using a textually description, but in a few
cases, the participants also shared as code example using a
Gist4).
Most recommendations to improve the resulting code (i.e.,

the code after applying a transformation) relate to the source
code format, e.g.: “No need of curly braces and semicolon
on the second statement” and “I would always perform this
transformation, but I would use line breaks and filters to
make the code more readable”. Perhaps, refactoring engines
that introduce lambda expressions could benefit from ad
vanced code format tools (e.g., the approach by Parr and
Vinju (2016)). Other possible improvements are trickier,
which might indicate the need to follow a careful code re
view process after applying code transformations (Carvalho
et al., 2020). For instance, one of the participants argued that:

“[…] streams should produce collections as results, not
populate them as sideeffects. If we fixed that, and broke
to a new line before each transformation or filter, then
I think it would be OK.”

Other possible improvements stress the use of the type in
ference mechanism: “I don’t think you need to specify (File
file), do you? You could just say ”file” and let the type get in
ferred [, right]? Unless CollectionUtils.select is overloaded
and takes multiple different functional types.” We found that
the transformation engines of NetBeans IDE and RJTL do
not explore the type inference mechanism in their refactoring
recommendations. Participants also suggested that the intro
duction of lambda expressions brings small benefits, and, as
such, they would rarely change a legacy code that is working
just to introduce new language constructs or idioms.

“I would not rewrite legacy code to introduce a lambda
expression in this way, unless the inner code itself would
have to be rewritten.”

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Table 16. Features that point to code improvements after introducing lambda expressions.
Themes Frequency Description Representative Examples Participants

More Succinct Code 19 They are transformations to introduce lambda expressions that
make the code more succinct.

”yes, perfect case for lambda, short, clear”;

”Yes, I would because nowadays languages have improved their syntax
to provide a better and easy code to developers make their softwares,
Java 8 introduced Lambda, where you can write less code and do more.”;

”I would sometimes make this change, but not always because it is only
making the code more succinct”;

P203, P285,
P749

Easier to understand 15 They are transformations to introduce lambda expressions that
make the code more comprehensibly.

”Yes. The new code, besides looking cleaner, is also really easier to read
and comprehend.”;

”Yes, code readability was a factor”;

”Easier to read, usually lambda also makes the code cleaner and compact”;

P803, P334,
P337

Clear Code Intention 14 They are transformations to introduce lambda expressions that
make the code more clear.

”Yes, since it looks more ”straight forward”, and it makes the code
itself cleaner”;

”I would do it because it’s easier to write and the code gets cleaner.”;

”Yes, absolutely, clearer intent, more expressive, easier to read
and comprehend.”;

P803, P635,
P229

Table 17. Features that point to code worsening after introducing lambda expressions.
Themes Frequency Description Representative Examples Participants

Small benefit 27 They are transformations to introduce lambda expressions that
have little or no benefit.

”No. The benefit isn’t big enough to perform the transformation.”;

”I believe, in this example, the transformation is a small part of the method
and it does not influence positively or negatively at all the legibility of the
method.”;

”I consider both versions to be similar”;

P268, P138,
P166

Harder to understand 5 They are transformations to introduce lambda expressions that
make code less comprehensibly.

”This is still pretty hard to read and understand on account of a) the hard cast
of the lambda to Callable<Object>, which seems weird is this necessary?
Isn’t it at least a Callable<T>? b) Why a ”checkThat” method is calling
”checkSucceeds” which seems a little like jumping to a conclusion.”;

”Maybe not a complex return on one line”;

”I would never perform this transformation. The for loop makes it clear an explicit
that we are iterating over the elements in the collection it is a fundamental part
of the language that we all understand.”;

P229, P203,
P583

Wrong scenario 5 They are transformations to introduce lambda expressions that
shouldn’t be done.

”Since this is a void method it will, by definition, never be truly functional.
Splitting the original code into a map – with a side effect, no less! – and a terminal
operation with forEach construct does not really improve anything in my mind.”;

”I tend to avoid trycatch in lambda expressions. I don’t think it’s bad to do so,
but I personally don’t do it, even if it means using an anonymous inner class.”;

P694, P547

Table 16 and Table 17 summarize the frequency of the re
current themes. As a future work, our goal is to consider the
answers to this openended question to improve the RJTL im
plementation. All code snippets and datasets we used in our
research are available in the paper’s companion website 5.

6 Discussion
As explained in the previous section, we found conflicting
results in our research. In the first phase, the models for es
timating readability diverge from one another. That is, the
Buse and Weimer (2010) model suggests that when a de
veloper introduces a lambda expression into Java legacy
method, the readability of the method decreases. Differently,
the model of Posnett et al. (2011) suggests that the introduc
tion of lambda expressions does not impact program compre
hension in the first phase. Contrasting, in the second phase,
both models suggest that the introduction of lambda expres
sions decreases program comprehension. The main differ
ence between the two phases is that the second one only con
sider transformations suggested by automated tools. Perhaps,
manual transformations fix some problems related to read
ability.
Nonetheless, the results of the qualitative assessments

4Gist is a GitHub feature that allow developers to share code
5https://waltim.github.io/jserd.html

with practitioners suggest that the introduction of lambda
expressions improves program comprehension in particu
lar cases. For instance, the replacement of anonymous inner
classes by lambda expressions often improve readability—
according to the results of our surveys. Other scenarios that
the introduction of lambda expressions might be positive
are the replacement of for loops with simple recursive pat
terns like filter and anyMatch. We believe that these con
flicting results are partially due to the limitations of both
models on identifying improvements in finergrained trans
formations. Considering the results of both quantitative and
qualitative studies, we answer our research questions in Sec
tion 6.1 and present some lessons learned in Section 6.2. Fi
nally, we present some threats to the validity of our study in
Section 6.3.

6.1 Answers to The Research Questions

When using amixedmethods approach, the best scenario oc
curs in situations where the results of a quantitative studies
support the findings and explains the results of the qualita
tive ones (or viceversa). Considering Table 18, which com
bines the results of the quantitative and qualitative assess
ment for the transformations that replace anonymous inner
classes with lambda expressions, it is possible to observe
differences between the outcomes of both readability mod
els and the developers perceptions of code comprehension.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

We are in favor of the results of the qualitative study. There
fore, considering our first research question (Does the use of
lambda expressions improve program comprehension?), our
findings revealed that refactoring a legacy code to introduce
lambda expression improves program comprehension in the
specific scenarios we discussed earlier.

Table 18. Number of code snippets that increased readability,
decreased readability and unchanged readability; after replacing
anonymous inner classes with lambda expressions by the tools.

Evaluator Increased Decreased Unchanged

Buse and Weimer 23 32 3
Posnett et al. 11 43 4
Developers 51 3 4

After these results, we investigated whether the code com
plexity metrics (SLOC and CC), independently, could pre
dict if a transformation of a legacy code to introduce lambda
expressions improves the readability of the code. To perform
this investigation, we calculated the differences in SLOC
(∆s) and CC (∆cc) metrics, considering the code snippets
before and after the introduction of lambda expressions. Af
ter that, we ran the Pearson’s correlation test (Mukaka, 2012),
to assess whether these differences correlate with possible
improvements in program comprehension according to the
survey respondents. We found that (∆cc) has no relation
to the answers of developers about comprehension. On the
other side, the (∆s) presents a moderate correlation (ρ =
0.5324 and pvalue < 0.05). Such results revealed that the
greater the reduction of lines after the introduction of lambda
expressions, the better the comprehension of the code ac
cording to the developers opinion—independently of reduc
ing the cyclomatic complexity or not. Therefore, tool devel
opers could use SLOC to automatic learn good situations to
suggest transformations that introduce lambda expressions.
Regarding the second research question (Does the intro

duction of lambda expressions reduce source code complex
ity?), after assessing the impact of introducing lambda ex
pressions in 158 pairs of code snippets (66 of the first phase
and 92 from the second phase of this research), we found
that introducing lambda expressions (a) reduces the size of
the code (SLOC) in 70% of the cases and (b) reduces the cy
clomatic complexity in 40% of the cases. Only in a few cases,
the introduction of lambda expressions increased SLOC. We
did not find any case in which a transformation increases cy
clomatic complexity. Considering our third research ques
tion (What are the most suitable situations to refactor code
to introduce lambda expressions?), we found that replacing
anonymous inner class by a lambda expressions might be
considered the killer application to introduce lambda expres
sions in legacy Java code. In addition, scenarios replacing for
loops having internal conditional with an anyMatch opera
tor often improved the readability of the code and makes the
intention of using the lambda expression more clear. Differ
ently, just replacing a simple for over a collection statement
with a collections.forEach() did not bring any benefit,
according to the participants of our surveys. We also found
that the chaining of stream methods and the introduction of
recursive patterns (e.g., filter and map) hinders debugging

activities according to the developers.
Regarding our fourth research question (How do practi

tioners evaluate the effect of introducing lambda expressions
into a legacy code?), developers agreed that the introduc
tion of lambda expressions improve the quality of the code
(in particular when removing the boilerplate code related to
anonymous inner classes), though it might introduce some
challenges to debugging activities in general. Developers
would actually accept most of the RJTL, NetBeans, and In
telliJ transformations (72%), and they considered worth the
existence of automated support to introduce lambda expres
sions and thus rejuvenate Java legacy code.
Finally, with respect to our last research question (What is

the practitioners’ opinion about the recommendations from
automated tools to introduce lambda expressions?), the re
sults suggested that the use of automated tools to rejuvenate
Java programs is promising. Again, considering only recom
mendations from NetBeans IDE, RJTL, and IntelliJ IDE, de
velopers agreed that transformations replacing anonymous
inner class by lambda expressions improve program com
prehension. Still, the feedback from the participants revealed
several weaknesses of these tools, and thus we found some
space to improve these refactoring engines, as we discuss in
the next section.

6.2 Lessons Learned

Need for reviewing comprehensibility models. The state
oftheart models for estimating code readability could not
capture the benefits of introducing lambda expressions, as
the participants of our survey report. We believe that a fur
ther investigation is necessary, in order to understand if these
models fail to capture the benefits of finegrained transfor
mations similar to the introduction of lambda expression, or
if they also fail when evaluating general transformations such
as more popular refactorings. Nonetheless, both models are
sensitive for code formatting decisions, including the number
of blank characters. Similar conclusions have been reported
in a recent research work Fakhoury et al. (2019).
Recommendations for Refactoring Tools.We found that

transforming anonymous inner class into lambda expres
sions is the scenario that brings more benefits for code com
prehension. We also found that replacing for loops having
an internal conditional by an anyMatch and filter pat
terns improves the code readability. Nonetheless, we con
sider that it is not recommended to blindly apply automatic
transformations from simple for loop statements into a
collections.forEach() statement. This kind of transfor
mations does not improve code readability. Several features
might also help to identify the situations where introducing
a lambda expression do not improve the code. For example,
according to the participants, we should avoid combining the
functional and imperative styles in the same method. Simi
larly, several transformations led to pieces of code with a
wrong indentation (e.g., comprising long lines or unneces
sary curly braces). According to the practitioners, some rec
ommendations decreased the readability of the code due to
indentation issues.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

6.3 Threats to Validity
There are two main threats to our work. First, our results de
pend on the representativeness of the code snippets used in
the investigation. Although we used a sample from real sce
narios that introduce lambda expressions in legacy code, this
sample might not correspond to a representative population
that would be recommended to conclude our quantitative as
sessment.We evaluated nine pairs of code snippets in the first
survey. To circumvent such a threat, we replicated the study
and evaluated 92 pairs of code snippets. This number is sim
ilar to the number of code snippets evaluated in a previous
study (Posnett et al., 2011).
The second threat is related to external validity. Initially,

our research participants belonged to a relatively small group
of professional developers, who despite having great experi
ence in Java, were a small group of developers in our cy
cle. During the replication of the study, we were able to sig
nificantly increase the number of participants from different
locations in the world. We believe that, with this variety of
participants, our results became more reliable, allowing us to
generalize our findings to this population.
Finally, we could have used other models to estimate read

ability, which have been previously discussed in the litera
ture (Scalabrino et al., 2016). However, we only found an
implementation of one of these models, the one by Buse and
Weimer (2010). We also implemented the computation for
an additional model by Posnett et al. (2011), but it would be
difficult to provide implementations for all models available
in the literature.

7 Final Remarks
In this paper we presented the results of a mixedmethod
investigation (i.e., using quantitative and qualitative meth
ods) about the impact on code comprehension with the adop
tion of lambda expressions in legacy Java systems. We used
two stateoftheart models for estimating code comprehen
sion (Buse and Weimer, 2010; Posnett et al., 2011), and
found conflicting results. Both models (Posnett et al., 2011)
and (Buse andWeimer, 2010) suggested that the introduction
of lambda expressions does not improve the comprehensibil
ity of the source code. Differently, the results of the quali
tative studies (surveys with practitioners) indicated that the
introduction of lambda expressions in legacy code improves
code comprehension in particular cases (particularly when
replacing anonymous inner classes by lambda expressions).
After considering these conflicting results, we argue that (a)
this kind of source code transformation improves software
readability for specific scenarios and (b) we need more ad
vanced models to understand the benefits on program com
prehension after applying finergrained program transforma
tions.

Acknowledgements
We would like to thank the anonymous reviewers for their valu
able comments, which helped us to improve the quality of this pa
per. This work was partially supported by FAPDF, research grant

05/2018.

References
Alqaimi, A., Thongtanunam, P., and Treude, C. (2019). Au
tomatically generating documentation for lambda expres
sions in java. In Proceedings of the 16th International
Conference on Mining Software Repositories, MSR ’19,
pages 310–320, Piscataway, NJ, USA. IEEE Press.

Avidan, E. and Feitelson, D. G. (2017). Effects of variable
names on comprehension an empirical study. In Scan
niello, G., Lo, D., and Serebrenik, A., editors, Proceedings
of the 25th International Conference on ProgramCompre
hension, ICPC 2017, Buenos Aires, Argentina, May 2223,
2017, pages 55–65. IEEE Computer Society.

Baggen, R., Correia, J. P., Schill, K., and Visser, J. (2012).
Standardized code quality benchmarking for improving
software maintainability. Software Quality Journal,
20(2):287–307.

Buse, R. P. L. and Weimer, W. (2010). Automatically doc
umenting program changes. In Pecheur, C., Andrews, J.,
and Nitto, E. D., editors,ASE 2010, 25th IEEE/ACM Inter
national Conference on Automated Software Engineering,
Antwerp, Belgium, September 2024, 2010, pages 33–42.
ACM.

Carvalho, A., Luz, W. P., Marcilio, D., Bonifácio, R., Pinto,
G., and Canedo, E. D. (2020). C3PR: A bot for fixing
static analysis violations via pull requests. In Kontogian
nis, K., Khomh, F., Chatzigeorgiou, A., Fokaefs, M., and
Zhou, M., editors, 27th IEEE International Conference on
Software Analysis, Evolution and Reengineering, SANER
2020, London, ON, Canada, February 1821, 2020, pages
161–171. IEEE.

Dantas, R., Carvalho, A., Marcilio, D., Fantin, L., Silva, U.,
Lucas, W., and Bonifácio, R. (2018). Reconciling the
past and the present: An empirical study on the applica
tion of source code transformations to automatically re
juvenate java programs. In Oliveto, R., Penta, M. D., and
Shepherd, D. C., editors, 25th International Conference on
Software Analysis, Evolution and Reengineering, SANER
2018, Campobasso, Italy, March 2023, 2018, pages 497–
501. IEEE Computer Society.

dos Santos, R. M. and Gerosa, M. A. (2018). Impacts of
coding practices on readability. In Khomh, F., Roy, C. K.,
and Siegmund, J., editors, Proceedings of the 26th Con
ference on Program Comprehension, ICPC 2018, Gothen
burg, Sweden, May 2728, 2018, pages 277–285. ACM.

Fakhoury, S., Roy, D., Hassan, S. A., and Arnaoudova, V.
(2019). Improving source code readability: Theory and
practice. In Proceedings of the 27th International Confer
ence on Program Comprehension, ICPC ’19, pages 2–12,
Piscataway, NJ, USA. IEEE Press.

Favre, J.M., Lämmel, R., Schmorleiz, T., and Varanovich,
A. (2012). 101companies: A community project on soft
ware technologies and software languages. In Furia, C. A.
and Nanz, S., editors, Objects, Models, Components, Pat
terns, pages 58–74, Berlin, Heidelberg. Springer Berlin
Heidelberg.

http://www.fap.df.gov.br/

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Godfrey, M. W. and German, D. M. (2008). The past,
present, and future of software evolution. In 2008 Fron
tiers of Software Maintenance, pages 129–138.

Gopstein, D., Iannacone, J., Yan, Y., DeLong, L., Zhuang,
Y., Yeh, M. K.C., and Cappos, J. (2017). Understanding
misunderstandings in source code. In Proceedings of the
2017 11th Joint Meeting on Foundations of Software En
gineering, ESEC/FSE 2017, pages 129–139, New York,
NY, USA. ACM.

Gyori, A., Franklin, L., Dig, D., and Lahoda, J. (2013).
Crossing the gap from imperative to functional program
ming through refactoring. In Proceedings of the 2013 9th
Joint Meeting on Foundations of Software Engineering,
ESEC/FSE 2013, pages 543–553, New York, NY, USA.
ACM.

Khatchadourian, R., Tang, Y., Bagherzadeh, M., and Ahmed,
S. (2019). Safe automated refactoring for intelligent par
allelization of java 8 streams. In Proceedings of the 41st
International Conference on Software Engineering, ICSE
’19, pages 619–630, Piscataway, NJ, USA. IEEE Press.

Landman, D., Serebrenik, A., Bouwers, E., and Vinju, J. J.
(2016). Empirical analysis of the relationship between
CC and SLOC in a large corpus of java methods and C
functions. Journal of Software: Evolution and Process,
28(7):589–618.

Lehman, M. M. and Ramil, J. F. (2001). Rules and tools for
software evolution planning and management. Annals of
software engineering, 11(1):15–44.

Lott, S. F. (2018). Functional Python Programming: Dis
cover the power of functional programming, generator
functions, lazy evaluation, the builtin itertools library,
and monads. Packt Publishing Ltd.

Lucas, W., Bonifácio, R., Canedo, E. D., Marcilio, D., and
Lima, F. (2019). Does the introduction of lambda expres
sions improve the comprehension of java programs? In
do Carmo Machado, I., Souza, R., Maciel, R. S. P., and
Sant’Anna, C., editors, Proceedings of the XXXIII Brazil
ian Symposium on Software Engineering, SBES 2019, Sal
vador, Brazil, September 2327, 2019, pages 187–196.
ACM.

Mazinanian, D., Ketkar, A., Tsantalis, N., andDig, D. (2017).
Understanding the use of lambda expressions in java.
Proc. ACM Program. Lang., 1(OOPSLA):85:1–85:31.

Mukaka, M. M. (2012). A guide to appropriate use of cor
relation coefficient in medical research. Malawi medical
journal, 24(3):69–71.

Overbey, J. L. and Johnson, R. E. (2009). Regrowing a lan
guage: Refactoring tools allow programming languages to
evolve. In Proceedings of the 24th ACM SIGPLAN Con
ference on Object Oriented Programming Systems Lan
guages and Applications, OOPSLA ’09, pages 493–502,
New York, NY, USA. ACM.

Parr, T. and Vinju, J. J. (2016). Towards a universal code
formatter through machine learning. In van der Storm,
T., Balland, E., and Varró, D., editors, Proceedings of
the 2016 ACM SIGPLAN International Conference on
Software Language Engineering, Amsterdam, The Nether
lands, October 31 November 1, 2016, pages 137–151.
ACM.

Pennington, N. (1987). Stimulus structures and mental rep
resentations in expert comprehension of computer pro
grams. Cognitive Psychology, 19(3):295 – 341.

Posnett, D., Hindle, A., and Devanbu, P. T. (2011). A sim
pler model of software readability. In van Deursen, A.,
Xie, T., and Zimmermann, T., editors, Proceedings of the
8th International Working Conference onMining Software
Repositories, MSR 2011 (Colocated with ICSE), Waikiki,
Honolulu, HI, USA, May 2128, 2011, Proceedings, pages
73–82. ACM.

Riaz, M., Mendes, E., and Tempero, E. (2009). A systematic
review of software maintainability prediction and metrics.
In 2009 3rd International Symposium on Empirical Soft
ware Engineering and Measurement, pages 367–377.

Scalabrino, S., LinaresVásquez, M., Poshyvanyk, D., and
Oliveto, R. (2016). Improving code readability models
with textual features. In 2016 IEEE 24th International
Conference on ProgramComprehension (ICPC), pages 1–
10.

Shrestha, N., Botta, C., Barik, T., and Parnin, C. (2020). Here
we go again: Why is it difficult for developers to learn an
other programming language? In Proceedings of the 42nd
International Conference on Software Engineering, ICSE.

Silva, D., Tsantalis, N., and Valente, M. T. (2016). Why
we refactor? confessions of github contributors. In Zim
mermann, T., ClelandHuang, J., and Su, Z., editors, Pro
ceedings of the 24th ACM SIGSOFT International Sympo
sium on Foundations of Software Engineering, FSE 2016,
Seattle, WA, USA, November 1318, 2016, pages 858–870.
ACM.

Storey, M. D., Wong, K., and Müller, H. A. (2000). How do
program understanding tools affect how programmers un
derstand programs? Sci. Comput. Program., 36(23):183–
207.

Stroustrup, B. (2013). The C++ Programming Language.
AddisonWesley Professional, 4th edition.

Tilley, S. R., Paul, S., and Smith, D. B. (1996). Towards a
framework for program understanding. In WPC ’96. 4th
Workshop on Program Comprehension, pages 19–28.

Tsantalis, N., Mazinanian, D., and Rostami, S. (2017). Clone
refactoring with lambda expressions. In 2017 IEEE/ACM
39th International Conference on Software Engineering
(ICSE), pages 60–70.

Urma, R.G., Fusco, M., and Mycroft, A. (2014). Java 8 in
Action: Lambdas, Streams, and functionalstyle program
ming. Manning Publications Co.

von Mayrhauser, A. and Vans, A. M. (1995). Program com
prehension during software maintenance and evolution.
IEEE Computer, 28(8):44–55.

Wilcoxon, F. (1945). Individual comparisons by ranking
methods. Biometrics Bulletin (JSTOR), 1(6):80–83.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

A Taxonomy of Lambda Expression
Transformations

This appendix introduces a simple taxonomy used to classify
the lambda expression transformations. For each member of
the taxonomy, we present a brief description and an example.

Replacing anonymous inner class with lambda
expressions

A developer might use this transformation to convert an
anonymous inner class into a lambda expression. Figure 23
shows an example of this transformation.

Figure 23. Pair of code snippet 551. Replacing the Anonymous Inner Class.

public void runTest() {
runBeforesThenTestThenAfters(new Runnable() {

public void run() {
runTestMethod();

}
});

}

(a)
public void runTest() {

runBeforesThenTestThenAfters(()→ { runTestMethod();});
}

(b)

Replacing a for loop with the map pattern

A developer might use this transformation to convert a for
loop into a map recursive pattern of the stream API. Fig
ure 24 shows an example of this transformation.

Figure 24. Pair of code snippet 495. Replacing loop to Map pattern.

public void draw(Graphics2D g) {
for (Color c : shapes.keySet()) {

g.setColor(c);
g.draw(shapes.get(c));

}
}

(a)
public void draw(Graphics2D g) {

shapes.keySet().stream().map((c) →{
g.setColor(c);
return c;

}).forEachOrdered((c) →{
g.draw(shapes.get(c));

});
}

(b)

Replacing a for loop with the reduce pattern

A developer might use this transformation to convert a for
loop into a reduce pattern of the stream API. Figure 25
shows an example of this transformation. In this example,
there is a composition between a map and a reduce, though
the goal is to reduce a collection of test classes into the num
ber of test methods.

Figure 25. Pair of code snippet 513. Replacing Loop to reduce.

public int countTestCases() {
int count = 0;
for (Test each : fTests) {

count += each.countTestCases();
}
return count;

}

(a)
public int countTestCases() {

int count = 0;
count = fTests.stream()

.map((each) →each.countTestCases())

.reduce(count, Integer::sum);
return count;

}

(b)

Replacing a for loop with a foreach statement

A developer might use this transformation to convert a for
loop into a forEach statement. Figure 26 shows an exam
ple of this transformation. Respondents of our survey do not
consider that this kind of transformation improves the quality
of the code.

Figure 26. Pair of code snippet 500. Replacing Loop to forEach pattern.

public List<String> getPotentialFixtureClassNames(Set<String> elements) {
List<String> candidateClassNames = new ArrayList<>();
if (!isFullyQualified()) {
for (String packageName : elements) {
addBlahAndBlahFixture(packageName + ”.”, candidateClassNames);

}
}
addBlahAndBlahFixture(””, candidateClassNames);
return candidateClassNames;

}

(a)
public List<String> getPotentialFixtureClassNames(Set<String> elements) {
List<String> candidateClassNames = new ArrayList<>();
if (!isFullyQualified()) {

elements.forEach((packageName) →{
addBlahAndBlahFixture(packageName + ”.”, candidateClassNames);

});
}
addBlahAndBlahFixture(””, candidateClassNames);
return candidateClassNames;

}

(b)

Replacing a for loop with the filter pattern.

A developer might use this transformation to convert a for
loop into the filter recursive pattern of the stream API.
Figure 27 shows an example of this transformation. Respon
dents in our survey consider that this type of transformation
improves the quality of the code.

Understanding the Impact of Introducing Lambda Expressions in Java Programs Walter Lucas et al. 2020

Figure 27. Pair of code snippet 547. Replacing loop to Replacing a for loop
with the filter pattern recursive pattern.

public ClassPath(List<ClassPath> paths) {
this.elements = new ArrayList<>();
this.separator = paths.get(0).getSeparator();
for (ClassPath path : paths) {

for (String element : path.getElements()) {
if (!elements.contains(element)) {

elements.add(element);
}

}
}

}

(a)
public ClassPath(List<ClassPath> paths) {
elements = path.getElements().stream()
.filter(e →!elements.contains(e)).collect(Collectors.toList());}

}

(b)

Replacing a for loopwith the AnyMatchmethod.

A developer might use this transformation to convert a for
loop and conditional if into the anyMatch method. Fig
ure 28 shows an example of this transformation. Respondents
in our survey consider that this type of transformation im
proves the quality of the code.

Figure 28. Pair of code snippet 555. Replacing a for loopwith the AnyMatch
pattern.

private boolean isOverridenWithoutAnnotation(Method[] methods,
Method superclazzMethod, Class<? extends Annotation> annotation) {

for (Method method : methods) {
if (isMethodOverride(method, superclazzMethod)

&& (method.getAnnotation(annotation) == null)) {
return true;

}
}
return false;

}

(a)
private boolean isOverridenWithoutAnnotation(Method[] methods, Method

↪→ superclazzMethod, Class<? extends Annotation> annotation) {
return methods.stream().anyMatch(method →isMethodOverride(method,

↪→ superclazzMethod) && (method.getAnnotation(annotation) == null))
↪→ ;

}

(b)

Replacing a for loop with a Chaining of opera
tors.

A developer might use this transformation to convert a
for loop into the Chaining operators. Figure 29 shows
an example of this transformation where is addition a se
quence of distinct patterns (Map and Filter) followed by
forEachOrdered statement.

Figure 29. Pair of code snippet 493. Replacing Loop to chain of stream
operators.

private void rememberAllOpenedDocuments() {
final List<String> docPath = new ArrayList<String>();
for (XJWindow window : XJApplication.shared().getWindows()) {

final XJDocument document = window.getDocument();
if(XJApplication.handlesDocument(document)) {

docPath.add(document.getDocumentPath());
}

}
AWPrefs.setAllOpenedDocuments(docPath);

}

(a)
private void rememberAllOpenedDocuments() {

final List<String> docPath = new ArrayList<String>();
XJApplication.shared().getWindows().stream().map((window) →window.

↪→ getDocument()).filter((document) →(XJApplication.
↪→ handlesDocument(document))).forEachOrdered((document) →{

docPath.add(document.getDocumentPath());
});
AWPrefs.setAllOpenedDocuments(docPath);

}

(b)

	Introduction
	Background and Related Work
	Study Settings
	Research Questions
	Metrics of the Quantitative Study
	Code Snippets' Datasets
	Procedures of the Qualitative Study
	Data Analysis

	Results of the First Phase
	Quantitative Assessment
	Qualitative Assessment
	Improvements on Readability
	Source Code Preference

	Results of the Second Phase
	Quantitative Assessment
	Qualitative Assessment
	The Impact of Introducing Lambda Expressions
	How often would you perform this type of transformation?
	How important is the automated support for this kind of transformation?
	Synthesis of the Responses to the Open-ended Question

	Discussion
	Answers to The Research Questions
	Lessons Learned
	Threats to Validity

	Final Remarks
	Taxonomy of Lambda Expression Transformations

