
Journal of Software Engineering Research and Development, 2023, 11:9, doi: 10.5753/jserd.2023.967
 This work is licensed under a Creative Commons Attribution 4.0 International License..

Software Architectural Practices: Influences on the Open Source
Ecosystem Health
Simone da Silva Amorim [Federal Institute of Bahia | simone.amorim@ifba.edu.br]
John D. McGregor [Clemson University | johnmc@clemson.edu]
Eduardo Santana de Almeida [Federal University of Bahia | esa@rise.com.br]
Christina von Flach Garcia Chavez [Federal University of Bahia | flach@ufba.br]

Abstract. The health state of a software ecosystem has been determined by its capacity for growth and longevity.
Three health indicators represent a healthy software ecosystem: robustness, productivity, and niche creation. Studies
focusing on understanding the causes and processes of the health state of ecosystems have used these indicators
largely. Researchers have intensified studies to understand how to achieve a good health state. Despite the growing
number of studies, there is little knowledge about influences and actions to achieve health, and more specifically,
studies that consider the effects of the software architecture on the ecosystem. This article presents a study exploring
seven open source ecosystems within different domains to describe the influence of architectural practices on the
software ecosystem health in terms of their motivations and effects. Our main goal was to understand how the
software architecture and related practices can contribute to a healthy ecosystem. We conducted a netnography-
based study to gather practices used to create and maintain the software architecture of these ecosystems. Our
study brings evidence that architectural practices play a critical role in the achievement of ecosystems’ health. We
found fifty practices that have influenced different aspects of health indicators. We highlight the importance of five
influential factors – business goals, experience, requirements, resources, and time-to-market – for motivating the
adoption of such practices. These factors may also contribute to understanding different strategies used to achieve
a good health state. Moreover, we proposed a novel health indicator, trustworthiness, that accounts for the normal
operation of a healthy software ecosystem.

Keywords: software ecosystems, ecosystem health, software practices, netnographic study

1 Introduction

Over the years, the development of large-scale software has
been problematic and overpriced. Most software companies
spend a lot of time fixing problems, and there is not enough
time to release the necessary features. Releasing software
components suffers delay constantly, consequently deliver-
ing value to the customer has been a complex challenge. In
trying to solve these problems, companies are using a range
of techniques to manage the complexity of software devel-
opment. Bosch and Bosch-Sijtsema introduced trends guid-
ing themodern large-scale software development (Bosch and
Bosch-Sijtsema, 2010). One of these trends is to provide a
software platform and open its boundaries to the community
around, sharing work and challenges. This community de-
velops relevant solution elements to satisfy customer needs,
composing a software ecosystem.
Software ecosystems are platforms that allow developers

to build new capabilities, providing value based on the ex-
change between businesses and people. The benefits of plat-
form technologies permit sharing decisions, risks, and prof-
its, causing significant growth in collaboration and platform-
minded reasoning (Liu, 2017). Several organizations follow
the ecosystem strategy and have kept their success for several
years, such as Hadoop, Amazon, and Apple (Satell, 2016).
For instance, Apple rapidly gained the smartphone market in-
troduced in 2007, when this ecosystem sold 270,000 iPhones
in the first 30 hours which it was available (West and Mace,
2010). Currently, Apple continues to be the market leader
in the fourth quarter of 2020 with its iPhone sales, when it

grew almost 15%, and it was the first time revenue passed the
$100 billionmark, $65.6 billion of that was from iPhone sales
(Silverman, 2021). However, there are some cases of failure,
like Nokia and BlackBerry. Nokia had a dominant position
in the market in the early 2000s but failed by adopting sev-
eral strategies in building an ecosystem around their products
causing its downfall in 2011 when happened the shift from
Symbian to theWindows phone (Bouwman et al., 2014). An-
other example of the downfall was the BlackBerry. By 2006,
it was a market leader providing services such Blackberry
Messenger(BBM), Email and QWERTY keyboard. How-
ever, from 2009 until 2013, blackberry started to decline, and
in 2017 Blackberry finally decided to end the hardware de-
velopment of mobile devices (Mittal, 2019). Understanding
the reasons for the failures and successes of these ecosystems
can address the mechanism of governancemore efficiently to
achieve a healthy ecosystem. A metaphor defined by Iansiti
and Levien describes a healthy ecosystem with “the growing
and continuity of the software ecosystem remaining variable
and productive over time” (Iansiti and Levien, 2002). Hav-
ing awareness of the health status of a software ecosystem is
relevant to support decision-making in different areas such as
business processes, software design, and social interactions.
Stakeholders can decide to enter or leave the ecosystem, or to
keep their participation in it. By assessing the health of soft-
ware ecosystems, Iansiti and Levien proposed three health
indicators: robustness, productivity, and niche creation (Ian-
siti and Levien, 2002).

The health evaluation of a software ecosystem is a com-
plex activity and faces hard challenges. Several factors may

http://orcid.org/0000-0001-5757-8995
mailto:simone.amorim@ifba.edu.br
mailto:johnmc@clemson.edu
mailto:eduardo.almeida@ufba.br
mailto:flach@ufba.br

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

influence the achievement of possible health states, includ-
ing the software architecture. Health evaluations are often
performed using the set of indicators defined by Iansiti and
Levien (2002), however, there has been little research on
the relationship between software architecture and the health
state of a software ecosystem, mainly with regard to software
architecture practices (da Silva Amorim et al., 2017). To bet-
ter understand this research topic, we decided to investigate
the software architectural practices more deeply to know the
used practices in the ecosystem scenarios, what factors influ-
ence their use and determine their adoption, and how these
practices can influence the health indicators. By knowing
factors of adoption for a practice, governance mechanisms
can be created to define the proper adoption of a practice,
and its consequent influence on the health of the ecosystem.
Moreover, defining how many architectural practices influ-
ence the health of software ecosystems will allow us to figure
out the strength and weaknesses of software development in
this environment. Based on proper information, guidelines
for success can be created to drive efforts for other organi-
zations. This paper addresses the problem by presenting “a
netnography-based study of the architectural practices and
their influences on the health of open source ecosystems”.
Netnography is an adaptation of the ethnography methodol-
ogy that considers new conditions of interactions intermedi-
ated by computers on the internet (Kozinets, 2009). High-
level descriptive findings explain the motivations and effects
of architectural practices on the ecosystem health.

Our findings were derived using a nethnography-based
methodology adapted to the context of software ecosystems
that explore the relationships around the architectural prac-
tices used. They allowed us to develop substantive results
based on data that includes explanations of how things are
related to each other. Our results describe the experience of
the authors based on a systematic analysis of such practices.
We observed that none of the studied ecosystems adopted
all the identified practices. Besides, some of them developed
singular practices in accordance with their needs. We argue
in our discussion that software architecture has a key role
in software health. So far, there is no research considering
this influence. From the architectural practices, we can ana-
lyze possible effects on the health indicators. Based on the
awareness of the influence from practices, we highlight the
importance to focus not only on metrics already suggested
by other studies (da Silva Amorim et al., 2017), but also on
the investigation of proper architectural practices to evaluate
the ecosystem health.

The rest of this paper is structured as follows. Section 2
provides some theoretical background on software ecosys-
tems, architecture, and health. Section 3 introduces related
work in accordance with our study, and section 4 presents
the research methodology. Section 5 describes the influence
factors on the architectural practices and health indicators.
Section 6 discusses our findings and the relationship be-
tween practices and health indicators, and section 7 presents
some threats and limitations of the study. Finally, section 8
presents our conclusions.

2 Software Ecosystems, Architecture,
and Health

This section provides some background on software ecosys-
tems, software architecture, and software ecosystem health.

2.1 Software Ecosystems

Bosch and Bosch-Sijtsema define software ecosystems as “a
software platform, a set of internal and external developers
and a community of domain experts in service to a community
of users that compose relevant solution elements to satisfy
their needs” (Bosch and Bosch-Sijtsema, 2010). This idea is
based on external developers building applications on top of
a platform, extending their products to attend specific needs.
By opening the boundaries of the platform, the organization
can increase its consumer base faster. In addition, the orga-
nization allows third-party to build components to address
specific segments of the market which it cannot provide in a
determined amount of time. Therefore, the ecosystem strat-
egy contributes to organizations accelerating innovation and
at the same time sharing the cost of this innovation (Bosch,
2009).
Adopting an ecosystem strategy is not a trivial task. In

this scenario, new dependencies are created connecting third-
party applications on the top of the platform. From this mo-
ment, software evolution should be coordinated, involving
all stakeholders. Internal and external teams should be syn-
chronized to furnish the interests of all group participants.
Interfaces between the platform and products should be de-
veloped in collaboration, including all developers affected by
the changes. Also, external developers should validate new
releases of the platform to reduce breaks in the components
launched in this context (Bosch and Bosch-Sijtsema, 2010).
Software ecosystem characteristics are commonly orga-

nized in three-dimensional views (Campbell and Ahmed,
2010; dos Santos and Werner, 2011). These views consider
characteristics identifying aspects of business, social, and ar-
chitectural scenarios. Based on our studies (da Silva Amorim
et al., 2017), we provide our characterization of software
ecosystems composed by business, community, and techni-
cal views: (i) Business views define policies to guide ef-
forts to achieve sustainable growth through proper commu-
nication, attracting and retaining developers; (ii) Community
views lead to challenges as coordinatingwork andmaking de-
cisions, and the delay in performing some tasks acting in con-
junction with third-parties; (iii) Technical views encompass
software platforms and mechanisms for building software
considering primarily the technology, methods, and tools.
Furthermore, there is an important classification for soft-

ware ecosystems, considering their openness degree. Accord-
ing to Manikas and Hansen, a software ecosystem can be
proprietary (commercial), Free or Open Source Software
(FOSS), or hybrid. The openness degree is related to the level
of access to the platform resources. Proprietary ecosystems
control access to the source code and artifacts. Information
is protected, so developers should have some kind of permis-
sion to engage in the ecosystem. On the other hand, in FOSS
ecosystems, developers have other motivations besides the fi-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

nancial return. For instance, theymaywant to get new knowl-
edge or improve their skills (Manikas and Hansen, 2013).
They are often opened to any participant willing to join. Our
work is focused on the scenario of open source ecosystems.

2.2 Software Ecosystem Architecture
According to Pelliccione, “software architecture plays a key
role in managing software ecosystems and their evolution”.
Indeed, dependencies among the platform and applications
working on top of that generate a set of architectural issues
that should be considered during software development. The
software architecture will express the business goals of stake-
holders through technical mechanisms. Especially, the archi-
tecture of the platform will define the boundaries of the evo-
lution of the ecosystem and how and how many developers
can work to extend their features. Regarding the large num-
ber of software connections found in software ecosystems,
architectural decisions have a key role, since wrong deci-
sions can cause serious harm for the balance of the ecosys-
tems. These decisions should consider internal and external
influences attending different types of business goals. Also,
quality attributes affect the actions of developers that should
adapt their applications to work well in sync with the core
platform (Pelliccione, 2014).
In brief, software architecture has a critical role in soft-

ware ecosystems. Some researchers study its impact and
challenges to manage the architecture correctly in this sce-
nario (Bosch, 2010; Pelliccione, 2014). However, there are
few studies addressing the impact of architectural practices
on the health of software ecosystems.

2.3 Software Ecosystem Health
Iansiti and Levien argued that a healthy ecosystem provides
“durably growing opportunities for its members and for those
who depend on it”. They pointed out that in an ecosystem,
there are a lot of connections among their members. Be-
sides, the health of individual organizations or their prod-
ucts depends on the health of the whole ecosystem. Business
decisions and strategies of operation influence directly the
health of the ecosystem. The well-being, longevity, and per-
formance of the ecosystem depend on the choices of its mem-
bers. In this work, the authors also proposed a framework for
assessing different strategies adopted by participants of an
ecosystem. This approach involves the result of interactions
among their members. For this, they defined three indicators
for the ecosystem health based on biological ecosystems: ro-
bustness, productivity, and niche creation (Iansiti and Levien,
2002).
Robustness expresses the capability of the ecosystem to

survive to crises and disruptions. Productivity denotes the
ability to transform inputs to new functions or products at a
low cost. Last, niche creation consists of the ability of provid-
ing new competences aggregating innovation to the ecosys-
tem (Iansiti and Levien, 2002). The indicators proposed by
Iansiti and Levien provide the basis for the majority of stud-
ies conducted for assessing the health of software ecosys-
tems (da Silva Amorim et al., 2017). However, no theories
support the health concepts applied by now.

Our research aims to understand the impacts of architec-
tural practices on ecosystem health. We argue that ”the way”
software architecture is designed and maintained influences
the operation of related software components. Consequently,
architectural practices may interfere with the performance
and longevity of the ecosystem, affecting directly the ecosys-
tem health. In particular, we aim to improve our knowledge
on the influence of architectural practices used during soft-
ware architecture design and evolution on the ecosystem
health. In previous work, we coined the term “architectural
health of software ecosystem” to represent the weight of
architectural practices on ecosystem health (Amorim et al.,
2017).

3 Related Work
Recently, challenges and gaps related to the health of soft-
ware ecosystems have attracted the attention of the re-
search community. Several studies have focused on how
to define and measure the health by means of indica-
tors (da Silva Amorim et al., 2017). However, none of
these studies were concerned with understanding the health
achievement from different perspectives, and figuring out
the influence of architectural practices on it. In the follow-
ing paragraphs, we outline studies similar to ours concern-
ing the discovery of processes and practices on open source
ecosystems (Jensen and Scacchi, 2004; Bogart et al., 2021;
Jansen, 2020), the experience of conduction of qualitative
studies on open source communities (Sigfridsson and Shee-
han, 2011), the aspects that can influence the health of
the ecosystem Dijkers et al. (2018); Avelino et al. (2019);
Charleux and Viseur (2019), and approaches to evaluating
the health of ecosystems using metrics and some related pro-
cesses (Franco-Bedoya et al., 2015; Wnuk et al., 2014; Liao
et al., 2019; Goggins et al., 2021).

Jensen and Scacchi (2004) explored techniques for dis-
covering development processes from openly available open
source software community. They presented a new approach
to identify software processes through mining information
from development repositories. The use of techniques such
as text analysis, link analysis, and the usage and update of the
repositories patterns allowed us to understand the processes
used by the community. In another work, Jensen and Scac-
chi (2005) introduced an approach to recognize processes in
open source projects, basically by searching for information
on the internet. In addition, Bogart et al. (2021) conducted
a mix of methods such as survey, repository mining, and
document analysis across 18 ecosystems to discover values
and practices of breaking changes, and understand how hap-
pens the planning, management, and coordination of these
breaking changes inside open source ecosystems. Besides,
Jansen (2020) proposed a software ecosystem governance
maturity model (SEG-M2), describing governance practices
for ecosystem coordinators. He collected the practices for
the maturity model from literature studies, also performing
techniques of snowballing forward and backward. Follow-
ing, he tested the practices in six case studies at four com-
panies to validate and improve his model. All of these au-
thors applied different methodologies to discover different

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

practices with distinct goals. Two authors used repository
mining to collect open source practices, and understand how
diverse process occurs in the ecosystem. The third one col-
lected practices focused on general ecosystem governance to
create a maturity model. Our work used another methodol-
ogy to gather specific practices related to creation and main-
tenance of software architecture. By using the netnography-
based approach, we extracted practices from the literal texts
transcription available on websites, also analyzing the con-
text in which the transcription is included.
Sigfridsson and Sheehan (2011) used qualitative method-

ologies to study principles and practices used by free and
open source software (FOSS) communities. This study con-
tributed to relevant issues about the application of qualita-
tive research as virtual ethnography on open source commu-
nities. Findings covered the potential problems of applying
qualitative methodologies and highlighted the importance of
maintaining an active relationship with the core community
group. The authors also performed a case studywith the PyPy
community to provide examples on the challenges faced by
FOSS communities. Despite the similarity to our study, our
approach included only the participant observation, without
engagement in the community and application of question-
naires. Besides, the case study with PyPy spent an extensive
period of time, and we used a condensed period of time for
each ecosystem. Moreover, we focused only on practices re-
lated to create and maintain the software architecture. How-
ever, this study provided us with some insights to understand
the dynamics and development of an open source ecosys-
tem, in particular, supporting issues about the qualitative ap-
proach.
Concerning the health of open source ecosystems, differ-

ent aspects have been raised by researchers in the last years.
These aspects can influence the health of the ecosystem
through different forms. Dijkers et al. (2018) explored the
effects of the software ecosystem health on the financial per-
formance of the open source companies. They conducted a
case study on two open source companies, Cloudera and Hor-
tonworks by looking at the companies individually and after
comparing the companies. The results showed that productiv-
ity did not influence the relationship between financial per-
formance and ecosystem health. The robustness has a middle
influence on this relation, and the niche creation is the main
contributor to this relationship. In another study, Avelino
et al. (2019) investigated the abandonment and survival of
open source projects. In this study, they aimed to discover the
frequency of project abandonment and survival, the differ-
ences between abandoned and surviving projects, and themo-
tivation and difficulties faced when assuming an abandoned
project. Both studies pointed important aspects that can influ-
ence on the ecosystem health, however, the practices related
to financial performance and abandonment of the project
are not directly addressed. Closer to the practices dimension,
Charleux andViseur (2019) studied themanagerial decisions,
exploring their impacts and community composition on the
health of open source projects. They conducted a longitudi-
nal single case study and a qualitative study based on forty-
six complementary interviews with open source community
members to identify key managerial changes impacting on
the community activity. They concluded that the health de-

pends on the business model and governance. By comparing
these studies with our work, we perceived that aspects such
as financial performance, abandonment of the community,
and managerial decisions influence the ecosystem health,
and although it is apparently not related to software archi-
tecture, we captured some practices, connected with these
aspects, that can also influence the health indicators.
Last, regarding the evaluation of ecosystem health, Liao

et al. (2019) created an approach to measure the health of
the GtiHub ecosystem. They proposed new health indica-
tors to define the structure and resilience of the health of the
GitHub ecosystem. Also, they proposed a health prediction
method. This study is an example of an analysis quantitative
of health and did not consider the influence of practices on
the health state as our investigation. Following, we found
two studies performing measurement of the health through
activities and/or processes (da Silva Amorim et al., 2017).
Franco-Bedoya et al. (2015) introduced a model to measure
the quality of open source ecosystems. Based on a literature
review, they collected several metrics used to measure the
health of an ecosystem. After, they analyzed relationships
among quality characteristics that can be assessed by these
metrics and proposed the QuESo quality model, composed
of quality characteristics and measures. Basically, the pro-
posed model considered health as a kind of quality attribute
and extracted a set of values to all model areas. In spite of
QuESomodel to be a large model, it did not address practices
and health indicators defined by Iansiti and Levien (2002).
QuESo defines quality characteristics and measures, but our
work considers practices in a detailed point of view to in-
fluence different types of health indicators. The other model
was proposed by Wnuk et al. (2014). They conducted an
evaluation of the governance model proposed by Jansen
et al. (2013) and Jansen and Cusumano (2013). A hardware-
dependent ecosystem called Axis was evaluated, considering
processes and practices preserving and improving the health
of software ecosystems. They analyzed governance activities
to gather the degree in which some activities were performed
to support the health indicators (productivity, robustness, and
niche creation). Governance activities in diverse areas com-
pose this model, influencing the ecosystem health through
their indicators. They operate with a set of general practices
composing these governance activities. Our work is focused
only on practices related to software architecture design and
evolution. Finally, Goggins et al. (2021) described the work
performed by the Linux Foundation’s CommunityHealthAn-
alytics in Open Source Software (CHAOSS) project over
four years to understand how to achieve open source ecosys-
tem health. The main strategy adopted by the group was to
define metrics to provide a full understanding of the open
source project health over time. This group also provided
tools to work with these metrics, trying to discover how
healthy and sustainable is an ecosystem community. In spite
of our study has similar objectives on how to understand the
open source ecosystem health, we adopted a different strat-
egy. We focused specifically on architectural practices and
their influence on health indicators.
All these studies guided us to investigate and extract infor-

mation from open source communities and the relationship
between practices and ecosystem health. However, there is

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

a lack of approaches and evidence to support these connec-
tions, especially, in the software architecture setting. Hence,
this work is an initial effort towards understanding these re-
lationships.

4 Methodology
Kozinets (2009) argues a qualitative approach is useful to ex-
plore and understand a context, and the choice of the research
method must match the nature and scope of the questions. He
also claims qualitative techniques help to map new terrain in
a constantly evolving on the internet environment. In this en-
vironment, netnography is an appropriate approach to study
virtual communities that manifest important social interac-
tions virtually. Given the nature of our research questions,
aiming to understand the universe of architectural practices
in open source ecosystems and their relationships with the
health of these ecosystems, we chose the netnography using
an observational approach in an environment with ample in-
formation available. As a result, we could understand the be-
havior of the community, as well as its internal structure, to
answer our research questions.
We conducted a qualitative study on seven open source

ecosystems to approach our research questions. We decided
to use mixed empirical methodologies, a netnography-based
approach for data collection and a grounded theory-inspired
approach for data analysis (Kozinets, 2009; Stol et al., 2016).
The netnography-based study adapts common ethnographic
procedures for observing the research object in the physi-
cal world to be used in the virtual universe mediated by
computers. By conducting the netnography-based study, we
followed the guidelines proposed by Kozinets (2009) and
adapted the steps from the general protocol of the ethnog-
raphy for our study: study planning, data collection and in-
terpretation, a guarantee of ethical standards, and research
representation.
Regarding the netnography-based approach, we per-

formed the following steps: (i) 1st step - we defined our re-
search question aiming to identifying what practices were
adopted by each ecosystem and their influences, as well as
open source ecosystems as the focus communities of our re-
search; (ii) 2nd step - we chose the seven ecosystems de-
scribed in Section 4.2; (iii) 3rd step - we joined to the com-
munity, but we did not engage as a member, our participation
was observational to monitor the dynamics of the work and
collect data; (iv) 4th step - we performed data analysis and
interpreted the results using a grounded theory-inspired ap-
proach; (v) 5th step - we reported the research results in Sec-
tion 5. Figure 1 shows the steps defined by Kozinets (2009)
and used to conduct our netnography-based study.

Kozinets (2009) introduced the netnography method as
an observational and participatory approach, in which the re-
searcher should be immersed for an extended time in a com-
munity or culture. The researcher should conduct several on-
line interactions through online interviews, engagement in
the community, and observation. Our approach is an adapta-
tion of the method proposed by Kozinets (2009). We named
the approach netnography-based because we only performed
the observational part without interacting directly with mem-

bers of the communities. Also, we could not do an immersion
for an extended time into the seven ecosystems.
Concerning ethical standards, Kozinets (2009) argues the

netnographer participatory should follow a short protocol to
identify himself and ask permission to work with the commu-
nity since he is engaged in the community. In our case, when
the netnography is only observational, we had not needed to
ask permission to the community. All information collected
was published in public space and the access was free. In
addition, we respected all copyright, and we cited and recog-
nized data from each community when published. Also, we
did not publish the names ofmembers or pseudonyms to iden-
tify individuals in particular. Our research was conducted by
characterizing data related to participants and the commu-
nity, avoiding damage to community members, as well as fol-
lowing the guidelines defined by the netnography approach.

Kozinets (2009) also suggested two types of data anal-
ysis for netnography studies: analytical methods based on
coding and hermeneutic interpretation. We chose to apply
the first one because it supported us in handling the whole
volume of data collected during our study. The grounded
theory method generates a theory that considers the context,
conditions, strategies, and results from data. This method is
used in qualitative research, inductive paradigm, to develop
a theory from situations in the real-world (Stol et al., 2016).
However, our goal was not to create a theory but to pro-
vide an understanding of the influence that architectural prac-
tices exert on the health of open source ecosystems. In ad-
dition, we aimed to gather useful contributions that provide
new foundations to consolidate such influences. Therefore,
we decided to borrow some elements from the grounded the-
ory method to restrict coding techniques (data analysis, con-
structing codes and categories, constant comparativemethod,
writing memos), characterizing a grounded theory-inspired
approach following the guidelines for coding from Charmaz
(2006); Saldaña (2009); Stol et al. (2016). Charmaz (2006)
also states data should be analyzed to emerge a theory, not
from preconceived deduced hypotheses. In our case, we ap-
plied grounded theory techniques to capture the connection
between architectural practices and existing health indicators.
The concepts of ecosystem health are preconceived, but their
possible existing connections have been not investigated yet.
Finally, by applying the netnography study, as Kozinets

(2009) states, the researcher is compelled to make assump-
tions about cultural meanings that he does not fully under-
stand. He offers a purely descriptive analysis of the content
found online, when the researcher is not a participant in the
community. In our study, some practices were already de-
fined explicitly on the webpages or there was data allowed
to deduce an adoption of an existing practice. Concerning the
second approach, Charmaz (2006) advocates that grounded
theory uses an abductive inference method since it consid-
ers the possible theoretical explanations for the data, and
then form hypotheses to search for possible explanations un-
til it finds the most probable explanation. We applied the
grounded theory-inspired approach to uncover how connec-
tions between software architectures and ecosystem health
happen, applying the reasoning about experience for making
theoretical conjectures jointly with their verification through
additional experiences. The use of grounded theory-inspired

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

is to discover possible explanations for these connections,
aimed to find themost probable explanation. Through coding
techniques, the approach allowed, not to generate a theory,
but to clarify relationships and influences existing between
two different conceptual worlds.

4.1 Research Questions
The goal of this study is to identify and understand possi-
ble practices used to create and maintain the software archi-
tecture of software ecosystems. By elucidating potential rea-
sons for making architects adopt specific practices, and figur-
ing out if any architectural practice might influence the open
source ecosystem health, we defined the following research
questions:

RQ1. What are the factors that can influence the adoption
of architectural practices in the design of open source
ecosystems?

RQ2. How can architectural practices influence the health
of the open source ecosystem?

As described previously, the software architecture has a
crucial role in the development and evolution of a software
ecosystem. Problems with the platform can cause serious
damage to the ecosystem. Therefore, the investigation of fac-
tors that influence the practices adopted by architects, and the
effects of these practices on the ecosystem health, contribute
to the definition of ecosystem strategies. Findings can guide
decisions and concerns about the software architecture that
help keep the whole ecosystem balanced.

4.2 Research Context
Our study analyzed seven open source ecosystems: Git-
Lab, Jenkins, KDE, MapServer, Node.js, Open edX, and
WordPress. In accordance to the classification proposed by
Manikas (Manikas and Hansen, 2013), GitLab, Open edX,
and WordPress are hybrid ecosystems that adopt the open
source strategy concerning software platform development.
In addition, all the ecosystems fit to the definition of software
ecosystems provided by Bosch and Bosch-Sijtsema (Bosch
and Bosch-Sijtsema, 2010). They have a community with in-
ternal and external members working to create relevant solu-
tions upon a software platform. The criteria used to choose
these ecosystems were their degree of openness and the avail-
ability of documentation on their websites. This enabled us
to access documents, diagrams, artifacts, and code. Besides,
ecosystems with diverse sizes and domains were considered
to allow a large range for the generalization of practices
adopted in the open source context. In addition, we observed
the working environment of the community. This way, we
could identify practices adopted by them to capture the dy-
namics in their entirety.

• GitLab1 started as a git-based software repository man-
ager. It was created in Ukraine by Dmitriy Zaporozhets
in 2011. Nowadays, their functions were extended, and

1https://about.gitlab.com

it supports all stages of the DevOps lifecycle for prod-
uct, development, quality assurance, security, and op-
erations of a software project. The code is mainly writ-
ten in Ruby. GitLab has a different characteristic regard-
ing its license because it has two software: GitLab CE
which is open source and GitLab EE which is closed
source. The company proprietary of the GitLab EEman-
ages the open source project. We consider our work the
GitLab CE community, which follows the behavior of
open source ecosystems.

• Jenkins2 is an automation server that helps to automate
the non-human part of the software development pro-
cess. It provides automation for several tasks related to
building, testing, and delivering or deploying software,
implementing continuous integration, and contributing
to implement continuous delivery. The initial release
was launched in February 2011 and came from a project
originally named Hudson. After a dispute with Oracle,
which had forked the Hudson project, Jenkins was a
name chosen for the project through an election in the
community. The code is mainly written in Java. Nowa-
days, Jenkins provides various infrastructure tasks and
an extensive library of over one thousand and three hun-
dred plugins.

• KDE3 provides a platform to easily build new applica-
tions upon, not to mention the advanced graphical desk-
top and set of applications for communication, work,
education, and entertainment. KDE was founded by
Matthias Ettrich in 1996. It has a strong community
spread by several countries sharing experiences and
contributing to strengthening one of the largest active
open source ecosystem communities. The code is writ-
ten mostly in C++ into a mature codebase. The platform
KDE Frameworks allows building all kinds of applica-
tions upon. Presently, KDE has the ambition of provid-
ing a reliable monopoly-free computer solution.

• MapServer4 is a platform for publishing spatial data
and interactive mapping applications to the web. It was
created at the University of Minnesota in 1994. Written
in language C, MapServer renders geographic data and
allows the image of maps to work on the internet, pro-
viding a spatial context for these maps. This ecosystem
is supported by several organizations that manage funds
for the adoption of the open geospatial technology.

• Node.js5 provides a JavaScript run-time environment to
perform JavaScript code outside of a browser. It allows
for building dynamic web page content before the page
is sent to the final browser. Applying an event-driven
non-blocking I/O model, Node.js has a lightweight for
applications running across distributed devices. The
initial release was in 2009, and it is written in C++,
JavaScript, and Assembly.

• Open edX6 is the open source platform for massively
scalable learning. As a provider of massive open online
courses (MOOC), the platform produces weekly learn-

2https://jenkins.io
3https://kde.org
4https://mapserver.org
5https://nodejs.org
6https://open.edx.org

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Table 1. Open Source Ecosystems Studied
Name Foundation Age Klocs Contributors
GitLab GitLab Inc. 8 years 752,409 2,530
Jenkins Continuous Delivery Foundation 8 years 1,031,859 2,132
KDE KDE Foundation 22 years 57,899,444 5,539
MapServer OSGeo Foundation 25 years 413,852 147
Node.js Node.js Foundation 9 years 6,340,475 2,871
Open edX edX Inc. 7 years 1,114,609 727
WordPress WordPress Foundation 16 years 560,703 541

Figure 1. Steps to perform the netnography methodology (Kozinets, 2009)

ing sequences of courses. These courses include tutorial
videos, online discussion forums, and textbooks. Open
edXwas created by TheMassachusetts Institute of Tech-
nology and Harvard University in May 2012, and it is
mostly written in Python.

• WordPress7 is an online publishing platform that sup-
ports users, even those without a technical background,
to quickly create blogs, apps, or websites. They keep
the site free, but also offer some paid plans with tools
to improve the user experience. WordPress is built on
PHP and MySQL. It was created in 2003 byMike Little
and Matt Mullenweg.

Table 1 presents more information about the studied open
source ecosystems in accordance with Open Hub8.

4.3 Data Collection
Conducting data collection from open source ecosystem, we
have extracted data from different online sources. The set
of communication tools found in open source ecosystems
such as forums, newgroups, blogs, gitHub pages, and wikis,
as well as some external websites connected to the ecosys-
tem such stack overflow, reddit, bugzilla, and others provides
relevant information for researchers outside the community
context. It is possible to observe behaviors, rules, and values
that guide the community steps. The communication leaves
traces that are easily observable, recorded, and copied. In-
formation can be widely captured and recorded. In this envi-
ronment, the processes of accessing and analyzing data are
facilitated (Kozinets, 2009). Although open source ecosys-
tems make available several dynamic communication chan-
nels such as internet relay chats (IRCs), we kept our focus
on extracting data from widely published information about
work in the community on webpages reached through links
provided by the ecosystem home pages. We did not consider
analyzing conversations in chat format to analyze official

7http://wordpress.org
8https://www.openhub.net/

practices released by the community board. For each ecosys-
tem, we started the research from the initial page (Home
page) and navigated to several weblinks.
Since the practices were identified, we classified them in

a set of seven software architecture key areas introduced
by our previous work (Amorim et al., 2017). Each prac-
tice should fit into one of these areas. They represent the
architectural design decisions through a division in logical
areas. Architects should focus on these key areas to exer-
cise their activities such as architectural knowledge, exter-
nal management, choice of technology, resources manage-
ment, design-making, quality management, and change man-
agement. Each key area is classified in one of the three soft-
ware ecosystem views: community, technical, or business.
The key areas are classified according to the objective of the
ecosystem views. In this way, the practices of each area fit
by affinity to the objective of each ecosystem view in which
it is allocated. For example, the key area named architec-
tural knowledge that encompasses practices of knowledge
management in the community is allocated to the commu-
nity view and so on. Table 2 presents the mapping of the key
areas by ecosystems views.

Table 2.Mapping of key areas by views (Amorim et al., 2017)
View Key Areas

Community Architectural Knowledge
External Management

Business Choice of Technology
Resources Management

Technical Design-Making
Quality Management
Change Management

• Architectural Knowledge. Practices related to this key
area support tasks to manage and share architectural
knowledge with the community.

• External Management. External Management encom-
passes practices keeping the diversity of contributions
of the community and support the management of ar-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

chitectural interfaces used by third-party developers.
• Choice of Technology. This key area is related to the
choice of the best technologies to build the systems.

• Resources Management. This key area comprises prac-
tices used to supporting architectural process.

• Design-Making. This key area encompasses practices
related to taking technical decisions.

• Quality Management. This key area is responsible for
controlling all practices satisfying quality criteria previ-
ously defined.

• ChangeManagement. ChangeManagement controls all
practices used to regulate and keep the balance into the
architecture facing all the implemented changes.

Based on these seven areas, we defined fourteen search
topics to facilitate the search of the practices on the websites.
These search topics aimed to cover common topics of soft-
ware development and that could be included within a key
area. In addition, a search topic can cover more than one key
area. For example, Business organization could have prac-
tices in several key areas.
Table 3 shows these search topics.
When we identified a candidate practice that could fit into

a search topic, we registered information such as ecosystem
foundation, date, url, description, type of website, and the
topic of activity of this practice. These records concentrate
data about the practice found on the websites. The descrip-
tion is exactly the clipping of the text as found on the web-
site. For instance, regarding the MapServer ecosystem, we
collected the description “PSC management responsibilities:
setting the overall development road map and project infras-
tructure (e.g. GitHub, CVS/SVN, Trac/Bugzilla, hosting op-
tions, etc…)”.

Table 3. Search topics of the netnography-based study
ID Search Topics ID Search Topics
1 Business organiza-

tion
8 Release launching

2 Communication 9 Resources
3 Coding 10 Security
4 Documentation 11 Taking decisions
5 Financial 12 Training
6 Meetings 13 Translation
7 Quality 14 Tests

Data extraction was focused on the documentation and
guidelines on each web page. We also analyzed information
about activities to create and manage the software architec-
ture found in code repositories. However, we did not conduct
a code analysis itself to identify practices.
Navigation always started on the initial web page of the

ecosystem. For each search topic, we searched for pages with
related information to the current search topic, guiding the
navigation on the ecosystemwebsite.We read the entire page
in search of some information related to the current search
topic. Finding some related information, we analyzed it to see
if any practice could be extracted. Then, we went through the
links on the page to search for more information related to the
current search topic. This search process through the pages

Figure 2. Steps to collect data

continued until the page no longer contains related informa-
tion and no further links were found on the page related to
the search topic. In the majority of cases, we arrived at pages
where there were no more links and no way to go to another
page. Besides, there were a few cases, where we arrived at cy-
cles clicking by links that sent us to go back to the initial page.
During each search process, we focused our data collection
only on information related to the search topic conducted at
the moment to capture architectural practices related to the
topic. Figure 2 presents the steps performed in the data col-
lection process. We did not record the different levels that we
went through in the search for practices, since each ecosys-
tem has a different infrastructure for building and organizing
the pages on the website. Besides, the level of navigation be-
tween pages varied according to each current search topic in
the same ecosystem.
Regarding the registration process, Kozinets (2009) ar-

gues smaller or more limited investigations of online commu-
nities and cultures may employ manual coding, categoriza-
tion and classification, as well as hermeneutic interpretive
analysis, to gain insights. Besides, a semiautomatic (manual
and computer-assisted) method can be used to organize dif-
ferent levels of coding and abstraction using a spreadsheet
tool. Our research was restricted to identifying and collect-
ing architectural practices and their context. Although we
had collected a reasonable amount of data, we were able to
manage data using this semiautomaticmethod. Therefore, we
used a general spreadsheet tool to support data collection and
data analysis processes, instead of using sophisticated soft-
ware packages.

At the end of this process, a set of architectural practices
were identified. The selection process aimed at identifying all
practices related to software architecture in some way, based
on the researcher’s background. Moreover, we included prac-
tices that are not directly related to the technical view, but
which are also relevant practices for the business and the
community views. For example, the practice “(P33) Define
a financial board to manage the financial resources” in-
fluences the software architecture when the financial board
team provides resources to support the architecture such as
hardware, software, developers, and it also defines market
guidelines that need to be met at any given time. It is closely
connected to the business area, but also ensures the provision
of technical operation.

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

4.4 Data Analysis

From the netnography-based study, we started the process
to discover the architectural practices adopted in the ecosys-
tems. So, the first step of the data analysis was to define a
common text for practices found in the seven open source
ecosystems. Based on the description of each practice, we de-
fined a practice specific and a practice catalogued. The prac-
tice specific describes the practice in a more abstract level,
and practice catalogued describes the practice in a formal
way suitable for all the observed ecosystems. For example,
regarding the MapServer ecosystem, we collected a descrip-
tion “PSC management responsibilities: setting the over-
all development road map and project infrastructure (e.g.
GitHub, CVS/SVN, Trac/Bugzilla, hosting options, etc…)”.
So, the practice specific was defined as “PSC committee is re-
sponsible to define technology”, and the practice catalogued
was “The project leaders define specific technology that im-
pacts into the work of project community”. By analyzing the
practice specific, we checked if the practice fit into any ex-
isting practice catalogued that could be attributed to it, other-
wise, this practice originated a new practice catalogued. This
process was conducted for all practices found in all ecosys-
tems. As a result, we catalogued fifty architectural practices.
Following data analysis, we started to analyze all practices

and information about their context to answer the research
questions. According to Saldaña (2009) coding is the initial
step before a powerful analysis and interpretation for report-
ing. He states that the quality of the code used is essential to
gather important information from the research history. In ad-
dition, qualitative codes allow the establishment of patterns
and facilitate the development of categories from their con-
nections. Coding is a way to organize things systematically
to infer some classification (Saldaña, 2009). Moreover, re-
search should be critical about data asking questions to iden-
tify relevant practices (Charmaz, 2006). In this context, we
adapted questions from (Charmaz, 2006) to evaluate the prac-
tices: (i) What are they doing?; (ii) What are they saying?;
(iii) Who is doing?; (iv) Why are they doing?; and (v) When
are they doing it?
During data collection, we addressed our search to answer

these questions and registered information for each practice
identified in the process. For example, the practice (P34) in
WordPress ecosystem had the following answers: (i) What
are they doing? - “Provide financial resources to support
meetings face-to-face”; (ii) What are they saying? - “Com-
panies that sponsor WordPress community events support
the WordPress open source project by helping our volunteer-
organized, local events provide free or low-cost access for
attendees”; (iii) Who is doing it? - “global community spon-
sors”; (iv) Why are they doing? - “They believe that a
casual, non-commercial, and educational event permit dis-
cussingWordPress issues face-to-face easily and strengthens
the community”; and (v) When do they do it? - “during the
WordCamp, an annual conference for local WordPress com-
munities”. A similar practice was also observed in the other
6 ecosystems (see appendix A) and the answers to these ques-
tions were recorded by each ecosystem.
By conducting the data analysis in our grounded theory-

inspired of the answers jointly with other data collected, we

performed the followings steps for coding: (a) Identifying
and labeling data using a code reflecting its meaning; (b) Per-
forming a constant comparison searching for patterns that
point to concepts; (c) Grouping similar concepts in a high-
level abstraction called categories. This process occurs until
no new conceptual relationships emerge for categories; (d)
Writing memos to describe ideas and relationships among
codes, concepts, and categories; (e) Developing an under-
standing of the studied phenomenon, in our case, the factors
that motivate the adoption of the practices and the influence
of the practices on the health of open source ecosystems.
The steps described previously present some key compo-

nents of the grounded theory (Charmaz, 2006; Coleman and
O’Connor, 2007):

• Codes.They are words used to provide meaning to the
data. They summarize and reflect the experience de-
scribed.

• Concepts. They are ideas derived from a set of codes
and organized in a high-level abstraction.

• Categories. They are a classification that explains ideas
or processes gathered from data expressing common
patterns in various codes.

• Memos. They are notes describing thoughts, capturing
comparisons and connections from data. They also de-
lineate directions and issues that should be considered.

Figure 3 presents our research analysis processes for the
grounded theory-inspired approach. Data collection and anal-
ysis processes were conducted by one researcher. Other re-
searchers subsequently analyzed the results found and the
written article, requesting clarification and reviews when
necessary. They had complete access to the entire database
and information about the process. The needed adjustments
were done in the review process. As Seaman (1999) pointed
out, “any proposition that the researcher synthesizes must
be clearly and strongly supported by the data”. This way,
we constructed a set of propositions about factors that in-
fluence the adoption of architectural practices based on ev-
idence collected on the studied ecosystems. All factors syn-
thesized were inferred using abductive logic, and categorized
and labeled with their properties Stol et al. (2016).
Regarding the influence from architectural practices on

the health indicators, the process required an additional lit-
erature review to support the findings. Previously, Jansen
(2020) stated the relationship between practices and health
indicators, as well as its effects of one on the other, are
unknown. Currently, determining these relationships and
effects still constitute a considerable scientific challenge.
Hence, looking for a solution, we observed that Stol et al.
(2016) presented that the literature could support the pro-
cess of grounded theory, using concepts and improving the-
oretical sensitivity as additional data sources. In addition,
Charmaz (2006) also suggests using a literature review to
support the work of analysis. So, we consulted concepts,
metrics, and arguments of the health indicators introduced
by Iansiti and Levien (2002) to make explicit and rational
connections between our concepts inferred from data and
the health indicators presented in this earlier study and de-
veloped insights to answer our research questions, allow-
ing us to make claims from our grounded theory-inspired

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Figure 3. Research analysis process

approach. As a result, from the codes, categories, and con-
cepts that emerged during data analysis, and supported by
concepts from literature, we derived ideas and constructed
relationships between architectural practices and health in-
dicators, which enhanced the understanding of reasons for
adoption and influences on the health indicators. In the
same way, we used the literature with concepts introduced
by Bass et al. (2012) to support the analysis of codes,
categories, and concepts to find the factors that influence
the adoption of architectural practices. Table 4 presents
the codes that emerged from the study. The codebook
is available at http://doi.org/10.6084/m9.figshare.23657856.
Table 5 presents the categories emerged from the study.

Table 4. Codes emerged from study
Codes

Documentation Reuse Changes
Sharing Knowledge Novelties Compatibility
Design Decisions Efficacy Obsoleteness
Problems Patterns Marketing
Security Knowledge Meeting
Automated Translate Money

Table 5. Categories emerged from study
Categories
Budgeting
Design-Making
Innovation
Knowledge Management
Quality
Standardization

Figure 4 presents a short example of how the data anal-
ysis in the coding process was conducted. For instance,
the practice specific “Provide an official channel to pub-
lish all changes to the community” was observed in the
KDE and MapServer ecosystems. The practice catalogued
that can fit in all ecosystems had been defined as “(P43)
Publish widely the architectural changes for the commu-
nity”. In addition, we also collected additional information
about the context of these practices, such as ”core changes
in MapServer can affect existing applications” and ”KDE
provides the KDE.News as the official news channel”. Fur-
thermore, from the data analysis process emerged the follow-

ing codes: Documentation, Sharing Knowledge, and Design
Decisions. Besides, the category Knowledge Management
also emerged, jointly with the concept “Everybody must be
aware of changes in the architecture that will impact in their
work”. Based on this concept, our analysis emerged, reason-
ing about what factors can influence the adoption of the prac-
tice. For factors, the reasoning was ”the knowledge of the ar-
chitects should be shared with the community to guide the
work of developers“ represented by the factor Experience,
and ”Everybody must know about changes to adapt their ap-
plications for the new scenarios and avoid break of opera-
tion” represented by Business Goal. For influences on the
healthy indicators, the reasoning was ”Commununications
of critical changes improve the interactions among organi-
zation and third-party that have applications influenced by
these changes“ represented by Trustworthiness, and ”Com-
municate everyone about changes in the architecture avoid
breaks of applications considering lack of information“ rep-
resented by Robustness. Table 6 presents graphic symbols
that are used on the graphic schemes of the examples in this
study. These symbols were defined by authors to improve the
graphic representation.

Table 6. Semantics of shapes applied on the graphic scheme
Symbol Description

Concepts

Category

Codes

Practice

Health Indicator

Influence Factor

Texts (Reasoning)
Connections from Data
Connections from Inferences

5 Findings
This section presents the findings of our study, including
the architectural practices identified (Section 5.1), organized

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Figure 4. Emergence of the influences from underlying concepts

according to factors that have an influence on their adop-
tion (Section 5.2) and the rationale behind their influence on
ecosystem health and its indicators (Section 5.3).

5.1 Architectural Practices
Fifty architectural practices used by the studied open
source ecosystems were identified during our study. Ta-
ble 7 presents all practices captured in our study by
the nethnography-based approach. Following, the Table 8
presents a categorization for all architectural practices with
respect to key area and ecosystem view. In addition, Ta-
ble 9 introduces only a small subset of architectural practices
(P1-P7) identified for each ecosystem, where the ecosystem
that has the practice checked, means that it was found in its
environment by the researchers. For instance, the practice
(P7) Provide a newcomer-specific page or portal guiding
their first steps, including development information has been
adopted by the seven ecosystems. P7, along with other six
practices (P10, P13, P18, P27, P35, P39) were adopted by
all ecosystems. Five practices were used by one ecosystem
only (P46, P47, P48, P46, and P50). Appendix A shows the
complete set of practices and ecosystems where they were
found.

5.2 Factors that influence the adoption of ar-
chitectural practices

During architecture design, there are many influences guid-
ing/forcing the software architecture towards some direc-
tion (Bass et al., 2012). These influences are diverse and de-
pend on the environment in which the architecture will oper-
ate. To understand these factors of adoption for a practice al-
low us to create governance mechanisms to define whether a
practice should be adopted, influencing the final result on the
health of the ecosystem. Some influence factors are related to
requirements, technical environment, and experience of the
architects. For them, software architecture is constrained by a
large variety of sources. Some influences can be implicit and
others explicit, however, it is difficult to capture all proper-

ties required by the architecture. Finally, there are gaps that
can cause conflicts among the goals of the software architec-
ture (Bass et al., 2012).
Regarding this reality in the ecosystem scenario, architects

should also consider demands from third-party and be aware
that external business goals also suffer the impact of changes
in the platform. In addition, they must take application re-
sponse time into account when making necessary corrections
by releasing software versions. As the cost of innovation
and development are shared with the community, business
strategies, and development resources should be considered
together. In our study, we found five relevant factors that we
understand performing influences in our set of fifty practices:
Business Goals, Experience, Requirements, Resources, and
Time-to-market. Table 10 shows each factor with the prac-
tices that are influenced by them.

5.2.1 Business Goals

Business goals refer to strategic goals that the software
ecosystem aims to accomplish. These goals determine posi-
tions to be achieved and drive specific tasks and deadlines to
conduct to these positions (Bass et al., 2012). Business goals
are very important factors to guide all activities in the ecosys-
tem. Effective goals will impact directly on the success or
failure of the whole ecosystem. In order to build a success-
ful architecture, the architect should understand his competi-
tors, software products, and strategies. Moreover, she should
know the key factors in the business environment that affect
the progress of the organization (Bredemeyer et al., 2000).
In the ecosystem, business goals express the desires of in-
ternal and third-party developers. Architects should balance
the goals of third-party that behave as collaborators and at
the same time competitors among themselves. There are dif-
ferent concerns that should be aligned to promote the success
of the ecosystem.
Our research identified eighteen practices that may have

been directly influenced by business goals. For instance:

• A business goal such as “provide the market needs and
keep the fidelity of customers” motivates the practice

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Table 7. Architectural practices found in the netnography-based approach
Id Architectural Practices Id Architectural Practices
P1 Create personal blogs and/or wikis to inform about the de-

velopment and architectural issues
P26 Do online meetings in a timezone adequate for most of the

community
P2 During code review, provide feedback information about

architecture, good practices to code, doing refactoring and
show the best way to solve problem

P27 Provide several online meetings to discuss architectural
problems by IRC, email

P3 Document APIs constantly P28 Create partnerships with third-parties to solve problems of
the core and their interfaces

P4 Provide internal or third-party mentoring programs to train
newcomers

P29 Setting a code of conduct to avoid mistreatment among
members

P5 Provide code recommendations, defining a standard in the
community

P30 Provide a message template for newcomers to use to inter-
act with the community

P6 Keep a register of meetings available to community to
know all decisions of the meeting

P31 The organization board defines some technologies that
should be used by the whole community as tools for
testing, communication, coding review, bugging manager,
and navigation

P7 Provide a newcomer-specific page or portal guiding their
first steps, including development information

P32 The organization board provides hardware and software
resources to be used by the community

P8 Identify and dismiss outdated information on websites P33 Define a financial board to manage the financial resources
P9 Provide generation of (semi-)automated documentation fil-

tered to up-to-date information relevant to newcomers
P34 Provide financial resources to support meetings face-to-

face
P10 Answer questions on the mailing list quickly P35 Provide meetings (sprints) face-to-face to accelerate the

development of critical issues and solve development prob-
lems with interdependent modules

P11 Create a detailed step-by-step tutorial linking information
about common problems and possible solutions

P36 Define minimal quality criteria requirements to add an ap-
plication to the ecosystem (documentation, automatic tests,
dependence restrictions)

P12 Provide updated official documentation about code’s or-
ganizational structure, and how the components, modules,
classes, and packages are related to each other

P37 Define a team to test performance and behavior of the ap-
plication

P13 Support the participation of the ecosystem on aggregators’
sites such as stack overflow, reddit, hacker news, and so
on

P38 Use some tools to compute some quality metrics

P14 Provide a dictionary to newcomers to facilitate their learn-
ing of the technical jargon, acronyms of the community

P39 Use automatic tests to gather problems with the code re-
cently added

P15 Provide video-classes or tutorials about introducing the
ecosystem, installing technologies, configuring the devel-
opment environment, and using the dependencies with
other ecosystems

P40 Provide an automatic process to launch release of applica-
tions

P16 Provide a manifesto explaining requirements of an appli-
cation belonging to the ecosystem

P41 Divide the parts of the software in layers defining restric-
tions for managing dependencies among the layers

P17 Provide video-conference sessions with questions and an-
swers about relevant topics

P42 Discuss with the community about critical changes into ar-
chitecture that will impact in the applications

P18 Provide information about the translation process (how to
participate and tools used)

P43 Publish widely the architectural changes for the commu-
nity

P19 Provide documentation about translation rules that devel-
opers must follow to prepare code for other languages

P44 Build the architecture based in plug-ins to facilitate the
coupling of applications

P20 Keep the backward compatibility for a medium or long
time to allow the community update their software

P45 Provide guidelines with a set of steps to be followed by
developers how to add code to repository

P21 Provide different levels of security access for the parts of
the ecosystems in accordance with the degree of commit-
ment and tasks in the ecosystem

P46 Provide a virtual machine with pre-configured build en-
vironments, web-based IDEs, or a container management
tool

P22 Point newcomers to easy tasks filtered by difficulty, skills
needed, and topics

P47 Inform newcomers about technical background required.
Identify which specific technologies they need to know or
they should learn to achieve their goal of contributing to
the ecosystem

P23 Use tools to publish known cyber security vulnerabilities.
For example the Common Vulnerabilities and Exposures
(CVE)

P48 Tag all tasks in accordance with degree of difficulty (easy,
medium, difficult)

P24 Keep a team to manager the security problems registered P49 Provide a group for gardening to care the global state of
ecosystem

P25 Preference to use the English language written to avoid
misunderstanding

P50 Keep the list of tasks updated informing about who is work-
ing on the solution

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Table 8. Categorization of the practices by views and key areas
View Key Areas Practices

Community Architectural
Knowledge

P1, P2, P3, P4, P5, P6,
P7, P8, P9, P10, P11,
P12, P13, P14, P15, P16,
P17, P18, P19, P45

External
Management P20, P21, P22, P23, P24,

P25, P26, P27, P28, P29,
P30, P46, P47, P48, P50

Business
Choice of
Technology P31

Resources
Management P32, P33, P34

Technical Design P35
Quality

Management P36, P37, P38, P39, P40,
P49

Change
Management P41, P42, P43, P44

(P36) Define minimal quality criteria requirements to
add an application to the ecosystem (documentation, au-
tomated tests, dependence restrictions). Defining qual-
ity rules for applications will provide a good quality ser-
vice to support such business goals.

• A business goal such as “attract and retain developers
and customers in the ecosystem” induces the practice
(P44) Build the architecture based on plug-ins to facil-
itate the coupling of applications. It contributes to pro-
tecting the core from unwanted changes avoiding dam-
aging the code and at the same time allowing the inte-
gration of several external applications easily.

5.2.2 Experience

Experience describes the effect of the knowledge acquired
by the software architects considering their practices. Design
decisions are guided by the acquired background through the
experience of success and/or failure (Bass et al., 2012). Ar-
chitects are already prepared to take decisions considering
generic knowledge such as patterns and guidelines. How-
ever, they also consider past architectural decisions in the
architectural design of other systems. Over time, they create
best practices based on specific projects. So the challenge is
to adapt and use these past decisions for new projects with
generic knowledge (Weinreich and Groher, 2016). Bringing
these challenges to the ecosystem setting, in a plural environ-
ment, many architectural decisions should be taken in con-
junction with the community. We observed that architectural
knowledge comprises the experience of various architects.
The architectural decisions should also consider the impact
on third-party applications and share the knowledge with the
community, ensuring ecosystem surveillance.
We have identified that the experience of architects influ-

enced directly twenty-one practices. For instance:

• The architectural practice (P2) During code review,
provide feedback information about architecture, good
practices of coding, do refactor and show the best way
to solve problems shares the experience of the architects
during code reviews. This practice is very common and

important to prepare newcomers and guarantee archi-
tectural knowledge sharing. Furthermore, architectural
knowledge is important to support and define tools and
environmental issues.

• The practice (P31) The organization board defines some
technologies that should be used by the whole commu-
nity as tools for testing, communication, coding review,
bugging manager, and navigation is also related to ex-
perience. The experience of architects should support
the decision about the best tools to work within the con-
text of the software ecosystem.

5.2.3 Requirements

Requirements are the basis for building the software architec-
ture. In open source ecosystems, requirements are discussed
with the community; virtual or physical meetings are used to
decide what is important to be launched into the next version.
Besides, sharing the cost of innovation, external members
can develop new features apart from the community. These
features can be added to the platform in the future. The soft-
ware architecture must address requirements, and architec-
tural practices are adopted to allow the fulfillment of the re-
quirement.
In our research, eight practices related to this factor were

found. So, the adoption of these practices is encouraged to
contribute to the achievement of goals defined by the require-
ments. For instance:

• (P3) Document APIs constantly is used to reduce the im-
pact of changes for third-party. This is because, to meet
the requirements, some changes to the platform may be
necessary, including into the API. The API should be
documented constantly, allowing updating applications
on top of the platform.

• The practice (P16) Provide a manifesto explaining re-
quirements of an application belonging to the ecosys-
tem defines criteria to applications be engaged into
the ecosystem platform. As a result, all projects of the
ecosystem already start with a set of predefined require-
ments.

• (P49) Provide a group for gardening to care the global
state of ecosystem is a gardening practice adopted by
the KDE ecosystem to provide a team to care for im-
portant bugs, find stale review boards, and ping people
to review them. The idea is to care about the general
state and keep alive the projects. So that, gardening ac-
tivities ensure that many requirements with problems or
stopped activity can be accomplished.

5.2.4 Resources

Resources describe the elements used to accomplish tasks.
These resources encompass software, hardware, people, envi-
ronment, money, and so on (Bass et al., 2012). The architect
also determines some dimensions of the software environ-
ment, including the infrastructure. Choosing the right tools
helps to quickly achieve architectural goals. This choice is
based on a set of aspects such as the understanding of the
domain, business environment, costs, integration with other

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Table 9. A subset of architectural practices
Id Architectural Practices GitLab Jenkins KDE Map-

Server
Node.js Open

edX
Word-
Press

P1 Create personal blogs and/or wikis to inform
about the development and architectural issues

" " " " " "

P2 During code review, provide feedback infor-
mation about architecture, good practices to
code, doing refactoring and show the best way
to solve problem

" " " " " "

P3 Document APIs constantly " " "

P4 Provide internal or third-party mentoring pro-
grams to train newcomers

" " " " "

P5 Provide code recommendations, defining a
standard in the community

" " " " "

P6 Keep a register of meetings available to com-
munity to know all decisions of the meeting

" " " " " "

P7 Provide a newcomer-specific page or portal
guiding their first steps, including develop-
ment information

" " " " " " "

Table 10. Influence Factors with Practices

Influence Factors Practices
Business Goals P4, P7, P13, P14, P16, P17, P18,

P20, P25, P28, P29, P36, P38, P43,
P44, P46, P47, P49

Experience P1, P2, P4, P5, P9, P11, P12, P15,
P17, P19, P20, P22, P27, P31, P35,
P37, P41, P42, P43, P45, P50

Requirements P3, P16, P19, P20, P27, P36, P37,
P49

Resources P2, P4, P6, P7, P13, P15, P17, P21,
P23, P24, P25, P28, P31, P32, P33,
P34, P35, P38

Time-to-market P1, P3, P5, P6, P7, P8, P9, P10, P11,
P14, P20, P22, P24, P26, P27, P46,
P48, P30, P31, P37, P38, P39, P40,
P50

systems, and so on (Jade, 2019). The environment of ecosys-
tems provides a rich set of features regarding the diversity
of members, and at the same time, some resources may be
scarce. For example:

• (P32) The organization board provides hardware and
software resources to be used by the community means
that the infrastructure is provided by the organization.
However, some resources cannot be provided. Due to
the large range of possible configurations for a system,
some configurations are difficult or expensive to be of-
fered and tested.

• The practice (P28) Create partnerships with third-party
to solve problems of the core and their interfaces allows
partners to provide the support needed to work with
some scarce resources. This way, the community con-
tinues developing innovation and aggregating value to
different features.

• Another important practice is (P34) Provide financial
resources to support meetings face-to-face. Face-to-

face meetings promote knowledge sharing and strength
social interactions. In many cases, these events can help
to solve important issues that are hampering or harming
the ecosystem. Therefore, the money of the community
should be applied to the benefit of the community itself,
increasing members’ interaction.

5.2.5 Time-to-market

Time-to-market refers to a continuous period in that the team
should build and deliver the software. This time is expressed
through deadlines to conclude tasks. The time pressure in de-
velopment and delivery can cause technical debt. The lack
of rigor, insufficient tests, and no time for proper design or
careful reflection can accumulate massive amounts of debt
rapidly (Philippe Kruchten and Ozkaya, 2012). On the other
hand, market forces demand cost reductions and release cy-
cles, depending on the business segments. So, reducing time-
to-market can bring competitive advantages. The software
architecture can contribute to reducing the time-to-market,
establishing some strategies such as the use of existing assets
and common architectural frameworks. Also, it can optimize
the integration and mechanisms of generation of the architec-
ture (Garlan and Perry, 1995). For open source ecosystems,
time-to-market depends on the business scenario and commu-
nity goals. The needs of the internal and external community
are important variables to be considered. Platform and third-
party objectives must converge to allow the growth of the
ecosystem. This way, the time-to-market should be defined
in sync with stakeholders’ demands.
We found several practices contributing to reducing time-

to-market:

• The practice (P7) provide a newcomer-specific page
or portal guiding their first steps, including develop-
ment information, contributes to reducing the time-to-
market because this page informs the community rules,
decision-making processes, tutorials, and documenta-
tion of the code and software architecture. This facili-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

tates a faster engagement of a member in the develop-
ment of the software. So, he could evolve and contribute
more quickly to features that will be released in the next
versions. The faster the newcomer knows the architec-
ture, the faster it can make use of existing assets and
common architectural frameworks, contributing to re-
ducing the time-to-market.

• (P20) Keep the backward compatibility for a medium or
long time to allow the community updates their software
provides time to developers get used to a new environ-
ment and change their applications. At the same time,
it allows for launching releases and following market
needs.

5.3 Health Indicators
The idea of ecosystem health and its measurement, as intro-
duced by Iansiti and Levien (2002), requires the use of three
health indicators: Robustness, Productivity, and Niche Cre-
ation. Analyzing fifty practices, our study found concepts
demonstrating the influence of architectural practices on the
health of the seven open source ecosystems. In addition, our
study also identified other types of influences not covered
by the existing three health indicators. The literature in the
ecosystem area has suggested the use of new indicators, some
studies defend not all aspects of health are covered by exist-
ing indicators. Campbell and Ahmed (2011) uses the indica-
tors from Iansiti and Levien (2002), but they also suggested
creating more one indicator, Internal Characteristic, to fully
assess the health. Hyrynsalmi et al. (2018) defended the im-
provement of health indicators, suggesting the use of indica-
tors for specific domains of the ecosystem.
On top of that, some practices together with information

about their contexts suggest actions to keep the “normal func-
tioning” of the ecosystem. For instance, “(P28) Create a part-
nership with third-party to solve problems of the core and
their interfaces” signalizes that the ecosystem should create
partnerships with other organizations to solve problems in
the core platform, create new features, and share the cost with
third-party. This is one of the basic goals of an ecosystem.
Also, “(P23) Use tools to publish known cybersecurity vul-
nerabilities. For example, the Common Vulnerabilities and
Exposures (CVE®)” shows that ecosystem members register
vulnerabilities and their possible solutions to ensure the com-
munity is aware of security issues, contributing to protecting
the ecosystem to do not anything unexpected. The compila-
tion of these data allowed us to suggest another health in-
dicator to represent the healthiness of the ecosystems, fill-
ing this gap. So, we proposed the Trustworthiness indicator
that accounts for the normal operation of the ecosystem. Ta-
ble 11 shows each indicator and the practices that influence
them. Following, we describe the influence of the architec-
tural practice on each health indicator.

5.3.1 Robustness

In the context of software ecosystems, robustness refers to
the capacity of the ecosystem to survive crises and disrup-
tions. In a robust ecosystem, the connection between mem-
bers and technologies remains in front of a collapse. The

Table 11. Health Indicators with Practices

Health Indicators Practices
Robustness P2, P3, P5, P8, P9, P10, P18, P19,

P20, P23, P24, P28, P33, P35, P36,
P37, P38, P42, P43, P44, P49

Productivity P1, P2, P3, P5, P6, P7, P8, P9, P10,
P11, P12, P14, P15, P17, P19, P22,
P25, P26, P27, P28, P30, P34, P35,
P37, P38, P39, P40, P41, P50

Niche Creation P1, P2, P3, P4, P14, P16, P18, P25,
P28, P35

Trustworthiness P1, P2, P3, P4, P5, P6, P7, P9, P10,
P11, P12, P13, P14, P16, P17, P18,
P19, P20, P21, P22, P23, P24, P25,
P26, P27, P28, P29, P31, P32, P33,
P38, P42, P43, P44, P45, P46, P47,
P48, P50

Figure 5. Influences on the Robustness from underlying concepts

ecosystem has the capacity to adapt to new situations with-
out harming its core. In addition, most of its active resources
can be used for this new phase (Iansiti and Levien, 2002).We
observed twenty-one practices influencing this indicator. By
adopting these practices, the ecosystem prevents or mitigates
the effects of problems, reinforcing the robustness. For exam-
ple, the practice “(P44) Build the architecture based in plug-
ins to facilitate the coupling of applications” contributes to
isolating the core from external applications. This way, the
core trend suffers less with the impact of changes in the ap-
plications upon. The core platform is more protected from
breaking and can remain unaffected in crisis.

Figure 5 illustrates an example of how the influence on
the robustness emerged from the underlying concepts. Re-
garding another practice, “(P23) Use tools to publish known
cybersecurity vulnerabilities. For example, the Common Vul-
nerabilities and Exposures (CVE®)”, we realized that pub-
lishing known vulnerabilities allows developers to be aware
of the danger. Also, they can protect their applications and/or
help to fix the vulnerability. Knowing security problems help
to lead and recover in front of security collapses. Another ex-
ample is that “(P38) Use some tools to compute some qual-
ity metrics” contributes to the robustness when existing tools
collect quality metrics to identify problems in advance and
avoid crises.

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

5.3.2 Productivity

Productivity refers to the ability of the ecosystem to trans-
form inputs into outputs efficiently. The productive ecosys-
tem works efficiently, reducing progressively its cost. Be-
sides, it also creates new production techniques, and deliv-
ers them for all members to improve the productivity of the
whole community(Iansiti and Levien, 2002). The impact of
practices on this indicator is clear. Some practices influence
directly the form of how the work is done. This way, our
research can observe and deduce the reasoning of the influ-
ences.

Figure 6. Influences on the Productivity from underlying concepts

For instance, practices such “(P35) Provide meetings
(sprints) face-to-face to accelerate the development of crit-
ical issues and solve development problems with interdepen-
dent modules” and “(P2) During code review, provide feed-
back information about architecture, good practices of cod-
ing, do refactor and show the best way to solve the problems”
intend to reduce the time for exchanging information among
members in the face-to-face meeting. Also, they can train in-
experiencedmembers and keep the focus on the development
of code, instead of losing time trying to learn things alone.
Moreover, practices such as “(P39) Use automated tests to
gather problems with the code recently added” and “(P40)
Provide an automated process to launch releases of applica-
tions” use automation for improving tests and release launch-
ing, reducing the time of these development tasks. They also
avoid human errors. Automated tests contribute to discover-
ing errors early, and automated release launching contributes
to reducing launching problems, ensuring that all files are in-
cluded in the final package.
Figure 6 illustrates how the influence on the productivity

emerged from the underlying concepts.

5.3.3 Niche Creation

This indicator refers to the capacity to create opportunities,
add new functions, and carry out innovation in the ecosys-
tem. The niche creation is represented by the number of new
features and technologies created by the ecosystem. A good
level of niche creation is expressed by new business scenar-
ios and technologies or ideas that aggregate value for the
ecosystem. The diversity creates value, contributing to the in-
novation of the ecosystem (Iansiti and Levien, 2002). From
the practices adopted, several business opportunities can be
generated easier and naturally.

Figure 7. Influences on the Niche Creation from underlying concepts

The practice “(P18) Provide information about the transla-
tion process (how to participate and tools used)” contributes
to the expansion of the ecosystem to new markets. The trans-
lation for other languages can create opportunities for new
applications supporting new needs in other markets. In ad-
dition, the practice “(P28) Create partnerships with third-
party to solve problems of the core and their interfaces” con-
duces third-party to add new features to the ecosystem to sup-
port their interests. These new features will aggregate inno-
vation, and they have the cost-shared with the community.
Figure 7 shows a part of the influence on the niche creation
which emerged from the underlying concepts. Another exam-
ple is that “(P4) Provide internal or third-party mentoring
programs to train newcomers” facilitates the appearance of
new ideas through the reception of new developers.

5.3.4 Trustworthiness

We propose trustworthiness as a novel health indicator to
address the need to express the ordinary functioning of the
ecosystem when its behavior is as expected, without un-
wanted surprises. We characterize the trustworthiness indi-
cator as the likelihood of an ecosystem to work as expected
and doing nothing beyond what is supposed to. This indi-
cator expresses the level of accomplishment for the follow-
ing tasks: (i) facilitating interactions among organizations
and third-party; (ii) increasing the attractiveness for new
users/developers; (iii) sharing the maintenance with ecosys-
tem partners; (iv) sharing cost of innovation; and (v) incor-
porating in the platform features developed by third-party. In
addition, the ecosystem should not have some security issues
such as the presence of faults, catastrophic consequences,
unauthorized disclosure of information, and unauthorized ac-
cess. These characteristics ensure that the ecosystem does
not do anything it should not do. As well as, it should do
a correct service for a given duration time in a reasonable re-
sponse time. Taking all these into account, we believe that
an ecosystem presents an operation as expected, deserving
of trust. Figure 8 shows the features of this new health indi-
cator.
The term “trustworthiness” has been used with different

meanings by some authors. First, Deljoo et al. introduced
a computational trust model where they provided mecha-
nisms for estimating trustworthiness and assessing trust. This
model can support taking decisions to establish future rela-
tionships. Their concept of trustworthiness involves taking
the risk to use the system no matter what, without monitor-
ing or controlling the environment. This conceptmakesmem-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Figure 8. Features of Trustworthiness

bers vulnerable to the actions of other members based on the
expectation that specific actions will be taken (Deljoo et al.,
2018).
Second, the trustworthiness for open source ecosystems

was studied by del Bianco et al. They proposed to define a
notion of trustworthiness for software products and artifacts
in open source systems (OSS). Besides, they identified some
factors that influence this notion. The idea is to support the
choice of OSS products that can provide user needs. This
model identifies strengths andweak points to help to improve
the quality of the OSS products choice (del Bianco et al.,
2009). Next, Becker et al. discussed the terminology for the
term trustworthiness in software systems, presenting its defi-
nition and characteristics (Becker et al., 2006). For them, the
trustworthiness of a system happens when a system operates
as expected, despite disruptions or errors in the environment.
In this study, trustworthiness is composed of other character-
istics such as security, reliability, privacy, safety, and surviv-
ability. This concept is very comprehensive, including sev-
eral features, and is very similar to the robustness.
Lastly, regarding ecosystem health, Franco-Bedoya et al.

introduce trustworthiness as “the ability to establish a trusted
partnership of shared responsibility in building an overall
open source ecosystem” (Franco-Bedoya et al., 2015). In
their model, trustworthiness is a sub-characteristic of the
characteristic of resource health. Related to financial health,
trustworthiness is represented by operational financial mea-
sures. The trusted partnership should create value for end
products.
Based on these concepts, we suggested trustworthiness as

a new health indicator. The definition of software ecosys-
tems was analyzed and considered the trustworthiness of the
whole ecosystem, not only for their products but including
all relationships in the ecosystem scenario. The trustworthi-
ness encompasses the normal operation of the ecosystem. Ap-
plying the definition of Bosch to software ecosystems and
their characteristics, we figured out a normal behavior for
an ecosystem (Bosch, 2009). Figure 9 shows part of the in-
fluence on trustworthiness that emerged from the underlying
concepts.
In our study, during data analysis process with the GT-

inspired, we also investigated how the practices adopted
by the ecosystem influence this novel health indicator. We
found thirty-nine practices that contribute in some way to the

Figure 9. Emergence of the indicator Trustworthiness from underlying con-
cepts

ecosystem working as expected. For example, the practice
“(P7) Provide a newcomer-specific page or portal guiding
their first steps, including development information” helps
to increase the attractiveness for newcomers. This is because
the portal facilitates the first steps for newcomers, prevent-
ing them from abandoning the attempt to become involved in
the community. Another practice “(P12) Provide updated of-
ficial documentation about code’s organizational structure,
and how the components, modules, classes, and packages
are related to each other” makes it easy to share mainte-
nance with third-party due to the documentation that pro-
vides knowledge about the code infrastructure. The practice
“(P28) Create partnerships with third-party to solve prob-
lems of the core and their interfaces” facilitates interactions
among organizations and third-party, as well as sharing the
cost of innovation due to the partners to aggregate valuable
features to the core. In addition, the practice “(P36) Define
minimal quality criteria requirements to add an application
to the ecosystem (documentation, automated tests, depen-
dence restrictions)” provides a set of rules such as automated
tests, documentation and so on to ensure the quality of the
components that will be incorporated into the ecosystem plat-
form.

6 Discussion

Our initial effort was purely exploratory, aiming to know
if and how the architectural practices could influence the
ecosystem health. To answer our research questions, first,
we investigated which practices were used in the design of
open source ecosystems. The netnography-based approach
allowed us to collect several practices in their context of use.
The grounded theory-inspired approach helped us to identify
the motivations for adopting these practices and the influ-
ences of their adoption. The investigation led us to a set of
concepts about reasons for using such practices. The findings
of the study include a number of relevant factors and indi-
cators for understanding the relationship between software
architecture and the health of open source ecosystems. Fig-
ure 10 summarizes our findings.
Our findings reinforce previous statements about the in-

fluence factors found in the literature. (Bass et al., 2012)
described some factors that influence the architecture. How-
ever, we organized these influence factors considering archi-
tectural practices and related characteristics. In addition, with
respect to health indicators, our work also reinforces the in-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

Figure 10. Summary of Findings

dicators introduced by (Iansiti and Levien, 2002). In addi-
tion, this research suggests a new health indicator: Trustwor-
thiness. In our analysis, we highlighted that some practices
contributed to improving and keeping the normal operation
of the ecosystems in accordance with what is expected. So,
we reframed this characteristic as a new health indicator. A
software ecosystem needs to provide trustworthiness for the
community members to achieve a good health state. How-
ever, we observed a thin line between the trustworthiness
concept of (Becker et al., 2006) and our proposal. They also
consider trustworthiness as robustness. For us, they are dif-
ferent concepts. Robustness is the ability of the ecosystem
to survive disruptions, but trustworthiness considers its op-
eration in normal conditions, representing what is expected
from the ecosystem in normal scenarios.
Trustworthiness can also be questioned, considering the

business behaviors of the organization boards. In some cases,
the board defines rules that are not in total agreement with
the whole community. As a result, third-parties cannot trust
totally in the ecosystem, but they continue engaging in the
ecosystem aiming for some profit. For us, if you are engaged
in an ecosystem, you are subordinated to rules determined
by the organization. Although you know that your judgment
can sometimes disagree with them. You know what to ex-
pect from them, and you trust them to do nothing against you.
You believe your application will not be harmed. Despite the
rules, you will still make a profit. Trustworthiness is exactly
that, believing that it plays its role as an ecosystem, without
harming it.
Regarding data analysis, we also observed different influ-

ence factors can affect the same practice. One factor can de-
termine various practices driving the ecosystem to achieve
its goals. At the same time, we realize that a practice impacts
different health indicators. This is because the consequences
of a practice spread its effects throughout the ecosystem.
In our study, not all fifty practices are adopted by all

ecosystems. In fact, none of the ecosystems has adopted the
entire set of practices; however, each practice is carried out
in at least one ecosystem. In addition, we also found some
interesting and unique practices that were outside the scope
of this study. They were found only in one ecosystem, how-
ever, they also could be adopted by others. For example, the
GitLab ecosystem establishes a “Hall of Fame” where for ev-
ery release, team members elect a community contributor as
the MVP (most valuable person) of the release. This member
receives the prestigious golden fork. This practice could in-
crease the attractiveness of new developers. Also, in another

practice, the GitLab provides a log automatic for changes reg-
istering all changes done. This way, everyone can be aware
of the changes and analyze the impact of these changes. In
addition, the Open edX establishes a contract for contributors
about intellectual property rights. This way, it protects itself
of future problems with property rights. Moreover, they have
one practice to provide accessibility guidelines to ensure that
any user interfaces are usable by everyone, regardless of any
physical limitations. In summary, some ecosystems develop
different practices according to their particular needs. How-
ever, our research focused on practices that we perceive to
influence software architecture. These unique practices ob-
served during the phase of netnography were not considered
in our study.
The overall direction of the results showed trends that

could be helpful to learn about how to build a good healthy
state. Knowing the motivations and influences of the prac-
tices on the health will contribute to understanding mecha-
nisms to make a healthy ecosystem. The relevance of our re-
sults using such architectural practices to figure out the health
state encompasses a crucial part of the ecosystem: the soft-
ware architecture. As mentioned previously, the architecture
plays a key role in supporting the entire ecosystem. We are
aware that ecosystem health is constructed based on a large
set of elements; however, our research only focuses on the
architectural component. The software architecture is built
based on a set of factors that determine how the practices
will be performed. In turn, the results show evidence that the
practices adopted affect all products in the ecosystem, and
their management, prosperity, and longevity.
According to Jacobson, practices can be easily dissemi-

nated and used many times to produce some results. They
provide a picture of a specific aspect of software develop-
ment, describing outcomes, and how to achieve them (Jacob-
son et al., 2007). In addition, they can be analyzed individu-
ally to clarify part of the impact from their use. This way, un-
derstanding the context and mechanisms for the adoption of
practices could signalize influences on the health state. This
approach opens up ways to investigate different health sce-
narios and guide choice according to ecosystem strategies.
Our interpretation considers that the architectural practices

used directly impact the health status of the ecosystem. How-
ever, further studies are needed to explain how the practices
can be used to improve the health of the ecosystem. By now,
it was not possible to extract a quantitative value for the level
of influence of each practice, just as we did not know the im-
plications of interactions between practices, because a prac-
tice can also harm another practice instead of helping to im-
prove health. The results of this study create a positive per-
spective to find forms to measure influences and also con-
struct an approach to guide the ecosystem governance.

7 Threats of Validity
There are some threats to the validity of the study. In order
to reduce these threats, we describe briefly some mitigation
strategies for them:

• Context: Findings in this study is applicable only in
the context of open source ecosystems. Many prac-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

tices in commercial ecosystems are different practices
in open source ecosystems. By expanding the study for
all ecosystem types, all practices should be included in
the study.

• Generalization: The fifty practices came from seven
open source ecosystems with different domains and
sizes. Despite mature ecosystems concentrate the major-
ity of practices, we believe that a range of practices is
also used for other ecosystems. Even different ecosys-
tems have common characteristics and, therefore, for
which the findings are relevant.

• Observation: Due to the methodology used, we could
not cover all practices used for the whole community.
The lack of some practice in our collected data does not
mean that this practice is not used by the community. It
can happen in a situation where the researchers could
not find evidence of the adoption of this practice. Be-
sides, all practices collected cannot represent all aspects
of the architecture, as there is no ground truth based on
architectural practices. The choice was done based on
the background of the researchers. Moreover, we cannot
guarantee that community members or even the gover-
nance of the ecosystem are following the practices pub-
lished on their website. We make assumptions that they
really do what they publish on the internet. In addition,
we found some drawbacks during the data collection.
First, we read the web page describing a practice, but
the artifact was not found. For example, Node.js ecosys-
tem presents that they have a standard code, but we
did not find it. On the other hand, the inverse situation
occurred, when the practice is performed, but we did
not find its documentation. For example, some ecosys-
tems do a translation of the system; however, there is
no material to guide a translation. Moreover, a practice
is performed with different levels of details by differ-
ent ecosystems. For example, Node.js is very simple
describing the translation process, but KDE has a com-
prehensive and detailed translation process and uses sev-
eral supporting tools in this process. The translation pro-
cess at Node.js depends on the language group. For ex-
ample, the Portuguese language has a basic description,
but the Spanish language provides a large description.
Another threat was the challenge of identifying discus-
sions about critical changes in software architecture, if
it is not explicitly published. We only found changes
shared with the community. We performed efforts to
mitigate information not found searching data in several
links on the ecosystem website. Following, essentially,
netnography is performed by a single researcher who
engages in an online community, with a participatory
role, mediated by computers to gather research data. In
our study, only a single researcher conducted data col-
lection and analysis. When the nethnographer does not
have a participatory role immersed in the community,
Kozinets (2009) explained that he is compelled to make
assumptions about meanings that he does not fully un-
derstand. This is a weakness of the approach. To miti-
gate misinterpretation of some practices, the nethnogra-
pher visited several pages in the community to clarify
doubts. Also, during the writing process review, some

questions could be solved by the authors. Lastly, the re-
search was focused on identifying evidence of practices
adopted and their influences. It was not the scope of the
study to identify any practice should-have but not-have
in accordance with our experience.

• Data Analysis: The scope of this study was to iden-
tify practices and their influences. We could not iden-
tify the comprehensive reasons for different systems to
adopt a different set of architectural practices. The oc-
currence of each practice on each project was recorded
by data collection. However, we analyzed the influences
of the practice in a general way for all ecosystems with-
out considering a particular influence for each ecosys-
tem. Moreover, we could not measure the level of in-
fluence of the practice on the health of the ecosystems.
In addition, one researcher conducted the data collec-
tion and analysis process. Consequently, some bias can
have been introduced by the researcher originating from
her own ideas about some practice, situation, or ecosys-
tem behavior. Also, the researcher can have some incli-
nation to follow preconceived ideas about the ecosys-
tem area, resulting in discovering the limited scope of
information and/or omitting other important data con-
cerned with architectural practices and the ecosystem
health. In trying to mitigate the ill effects of the bias,
the researcher was extra careful in the processes of data
collection, analysis, and interpretation, reviewing their
conclusions. Also, the conclusions in the written article
were analyzed and reviewed by other researchers. They
had available to them the complete dataset of informa-
tion.

• Time: A netnographic study is performed over a long-
time and prolonged involvement with the community.
Our activities focused on the observation of the prac-
tices for a short time. Due to the short observation pe-
riod, we may not have found or understood some prac-
tices used by the community. To avoid misunderstand-
ings, we searched several web pages to confirm the
adoption of a practice.

8 Conclusion
A healthy ecosystem works for achieving and maintaining
success. Usually, its health state is represented by health indi-
cators. These indicators are influenced by practices adopted
by the ecosystem members, more specifically, architectural
practices used to create and maintain the software architec-
ture of ecosystems. This study aimed at understanding the
software architectural practices universe in the ecosystem
scenarios, the factors that can influence their adoption, and
how these architectural practices influence the open source
ecosystem health.
Our experiences can help other researchers to understand

influences of the architectural practices on the health of open
source ecosystems. In particular, the main contribution of
this work was the identification and discussion of five factors
influencing the adoption of architectural practices, as well as
the knowledge about the influences of four health indicators
on the ecosystem health. We proposed a novel health indica-

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

tor – trustworthiness – to represent a health dimension that
has not been considered in previous studies. The degree of
trustworthiness of the whole ecosystem indicates how much
the ecosystem operates as expected regarding the ordinary
behavior, including all ecosystem views. This can signalize
a good accomplishment of the ecosystem activities.
This work is an initial step towards a health evaluation ap-

proach considering the influence of architectural practices on
the ecosystem health. Future work includes the replication
of this study for proprietary software ecosystems, rather than
open source environments, and will highlight similarities and
differences in results in the scope of that environment. In ad-
dition, we could establish a standard for the most common
practices used in software ecosystems. Besides, we could
clarify the explicit benefits of adopting the best practices.
Further investigation is also needed to determine whether
these findings could be applied to build an approach to mea-
sure ecosystem health. We plan to identify qualitative and
quantitative forms of understanding the weight of the soft-
ware architecture on ecosystem health.

Acknowledgements
This study was partially supported by the Coordenação de Aper-
feiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Grant
001.

References
Amorim, S., McGregor, J., Almeida, E., and Chavez, C.
(2017). Software ecosystems′ architectural health: An-
other view. In Proc. of the 5th ICSE Int. Workshop on
Software Engineering for SoS and 11th Workshop on Dis-
tributed Software Development, Software Ecosystems and
SoS, SESoS/WDES ’17, pages 66–69.

Avelino, G., Constantinou, E., Valente, M. T., and Sere-
brenik, A. (2019). On the abandonment and survival
of open source projects: An empirical investigation. In
Proceedings of the ACM/IEEE International Symposium
on Empirical Software Engineering and Measurement,
ESEM ’19, pages 1–12.

Bass, L., Clements, P. C., and Kazman, R. (2012). Software
Architecture in Practice. Addison-Wesley Professional,
third edition edition.

Becker, S., Hasselbring, W., Paul, A., Boskovic, M., Kozi-
olek, H., Ploski, J., Dhama, A., Lipskoch, H., Rohr, M.,
Winteler, D., Giesecke, S., Meyer, R., Swaminathan, M.,
Happe, J., Muhle, M., and Warns, T. (2006). Trustwor-
thy software systems: A discussion of basic concepts and
terminology. SIGSOFT Softw. Eng. Notes, 31(6):1–18.

Bogart, C., Kästner, C., Herbsleb, J., and Thung, F. (2021).
When and how to make breaking changes: Policies and
practices in 18 open source so ware ecosystems. ACM
Transactions on Software Engineering and Methodology,
30(4).

Bosch, J. (2009). From software product lines to software
ecosystems. In Proceedings of the 13th International Soft-
ware Product Line Conference, SPLC ’09, pages 111–119.

Bosch, J. (2010). Architecture challenges for software
ecosystems. In Proceedings of the Fourth European Con-
ference on Software Architecture, ECSA ’10, pages 93–
95.

Bosch, J. and Bosch-Sijtsema, P. (2010). From integration
to composition: On the impact of software product lines,
global development and ecosystems. The Journal of Sys-
tems and Software, 83:67–76.

Bouwman, H., Carlsson, C., Carlsson, J., Nikou, S., Sell,
A., and Walden, P. (2014). How nokia failed to nail the
smartphone market. In Proceedings of the 25th European
Regional Conference of the International Telecommunica-
tions Society, ITS ’14, pages 1–18.

Bredemeyer, D., Malan, R., and Consulting, B. (2000). The
role of the architect.

Campbell, P. R. J. and Ahmed, F. (2010). A three-
dimensional view of software ecosystems. In Proceedings
of the Fourth European Conference on Software Architec-
ture, ECSA ’10, pages 81–84.

Campbell, P. R. J. and Ahmed, F. (2011). An assessment of
mobile os-centric ecosystems. Journal of Theoretical and
Applied Electronic Commerce Research, 6:50–62.

Charleux, A. and Viseur, R. (2019). Exploring impacts of
managerial decisions and community composition on the
open source projects’ health. In Proceedings of the 2nd
International Workshop on Software Health, SoHeal ’19,
pages 1–8.

Charmaz, K. (2006). Constructing Grounded Theory A Prac-
tical Guide through Qualitative Analysis. SAGE Publica-
tions.

Coleman, G. and O’Connor, R. (2007). Using grounded the-
ory to understand software process improvement: A study
of irish software product companies. Information and Soft-
ware Technology, 49:654–667.

da Silva Amorim, S., Neto, F. S. S., McGregor, J. D.,
deAlmeida, E. S., and von FlachGarcia Chavez, C. (2017).
How has the health of software ecosystems been evalu-
ated? a systematic review. In Proceedings of the 31st
Brazilian Symposium on Software Engineering, SBES ’17.

del Bianco, V., Lavazza, L., Morasca, S., and Taibi, D.
(2009). Quality of open source software: The qualipso
trustworthiness model. In Proceedings of the IFIP Inter-
national Conference on Open Source Systems, OSS ’09,
pages 199–212.

Deljoo, A., van Engers, T., Gommans, L., and de Laat, C.
(2018). The impact of competence and benevolence in a
computational model of trust. In Proceedings of the IFIP
International Conference on Trust Management, IFIPTM
’18, pages 45–57.

Dijkers, J., Sincic, R.,Wasankhasit, N., and Jansen, S. (2018).
Exploring the effect of software ecosystem health on the fi-
nancial performance of the open source companies. InPro-
ceedings of the 1st International Workshop on Software
Health, SoHeal ’18, pages 48–55.

dos Santos, R. P. andWerner, C. (2011). Treating business di-
mension in software ecosystems. In Proceedings of the In-
ternational Conference on Management of Emergent Dig-
ital EcoSystems, MEDES ’11, pages 197–201.

Franco-Bedoya, O., Ameller, D., Costal, D., and Franch, X.

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023

(2015). Measuring the Quality of Open Source Software
Ecosystems Using QuESo. In Proc. of the 10th Int. Confer-
ence on Software Technologies (ICSOFT), pages 39–62.

Garlan, D. and Perry, D. E. (1995). Introduction to the spe-
cial issue on software architecture. IEEE Transaction on
Software Engineering, 21(4):269–274.

Goggins, S., Lumbard, K., and Germonprez, M. (2021).
Open source community health: Analytical metrics and
their corresponding narratives. In Proceedings of the 4th
International Workshop on Software Health in Projects,
Ecosystems and Communities (SoHeal), SoHeal ’21.

Hyrynsalmi, S., Ruohonen, J., and Seppänen, M. (2018).
Healthy until otherwise proven: Some proposals for renew-
ing research of software ecosystem health. In Proceedings
of the 41st InternationalWorkshop on SoftwareHealth (So-
Heal), SoHeal ’18, pages 18–24.

Iansiti, M. and Levien, R. (2002). Keystones and Domi-
nators: Framing Operating and Technology Strategy in a
Business Ecosystem. Harvard Business School, 3(61).

Jacobson, I., Ng, P. W., and Spence, I. (2007). Enough of
processes-lets do practices. Journal of Object Technology,
6(6):41–66.

Jade, V. (2019). Software architecture tools. IASA Global.
Accessed: 2019-05-12.

Jansen, S. (2020). A focus area maturity model for software
ecosystem governance. Information and Software Tech-
nology, 118.

Jansen, S., Cusumano, M., and Brinkkemper, S. (2013). Soft-
ware Ecosystems: Analyzing and Managing Business Net-
works in the Software Industry. Edward Elgar Publishers.

Jansen, S. and Cusumano, M. A. (2013). Defining software
ecosystems: A survey of software platforms and business
network governance. In Jansen, S., Brinkkemper, S., and
Cusumano, M., editors, Software Ecosystems: Analyzing
and Managing Business Networks in the Software Indus-
try, chapter 1, pages 13–28. Edward Elgar Publishing.

Jensen, C. and Scacchi, W. (2004). Data mining for soft-
ware process discovery in open source software develop-
ment communities. In Proceedings of the 1st Interna-
tional Workshop on Mining Software Repositories, MSR
’04, pages 96–100.

Jensen, C. and Scacchi, W. (2005). Experiences in discov-
ering, modeling, and reenacting open source software de-
velopment processes. In Proceedings of the International
Software Process Workshop, SPW ’05, pages 449–462.

Kozinets, R. (2009). Netnography: Doing Ethnographic Re-
search Online. SAGE Publications.

Liao, Z., Yi, M., Wang, Y., Liu, S., Liu, H., Zhang, Y., and
Zhou, Y. (2019). Healthy or not: A way to predict ecosys-
tem health in github. Symmetry, 11(2).

Liu, D. (2017). The art of building platforms. Forbes. Ac-
cessed: 2018-11-16.

Manikas, K. andHansen, K.M. (2013). Software ecosystems
- a systematic literature review. Journal of Systems and
Software, 86:1294–1306.

Mittal, R. (2019). Blackberry ltd. marketing downfall in mo-
bile handset industry. Technical report, University of Roe-
hampton - Eu Business School.

Pelliccione, P. (2014). Open architectures and software evo-
lution: the case of software ecosystems. In Proceedings
of the 23rd Australian Software Engineering Conference,
ASWEC ’14, pages 66–69.

Philippe Kruchten, R. L. N. and Ozkaya, I. (2012). Tech-
nical debt: From metaphor to theory and practice. IEEE
Software, 29:18–21.

Saldaña, J. (2009). The Coding Manual for Qualitative Re-
searchers. SAGE Publications.

Satell, G. (2016). Platforms are eating the world. Forbes.
Accessed: 2018-11-16.

Seaman, C. B. (1999). Qualitative methods in empirical stud-
ies of software engineering. IEEE Transactions on Soft-
ware Engineering, 25(4):557–572.

Sigfridsson, A. and Sheehan, A. (2011). On qualitative
methodologies and dispersed communities: Reflections on
the process of investigating an open source community. In-
formation and Software Technology, 53:981–993.

Silverman, D. (2021). Apple back on top: iphone is the best-
selling smartphone globally in q4 2020. Forbes. Accessed:
2021-03-24.

Stol, K.-J., Ralph, P., and Fitzgerald, B. (2016). Grounded
theory in software engineering research: A critical review
and guidelines. In Proceedings of the 38th International
Conference on Software Engineering, ICSE ’16, pages
120–131.

Weinreich, R. and Groher, I. (2016). The architect’s role
in practice: From decision maker to knowledge manager?
IEEE Software, 33:63–69.

West, J. and Mace, M. (2010). Browsing as the killer app:
Explaining the rapid success of apple’s iphone. Telecom-
munications Policy, 34:270–286.

Wnuk, K., Manikas, K., Runeson, P., Lantz, M., Weijden, O.,
and Munir, H. (2014). Evaluating the Governance Model
of Hardware-Dependent Software Ecosystems – A Case
Study of the Axis Ecosystem. In Proc. of the 4th Interna-
tional Conference on Software Business (ICSOB), pages
212–226.

A Architectural Practices
We identified fifty architectural practices during our study.
Table 12 presents the architectural practices and, for each
ecosystem, the adopted practices.

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023
Ta
bl
e
12
.A

rc
hi
te
ct
ur
al
pr
ac
tic
es

Id
A
rc
hi
te
ct
ur
al
Pr
ac
tic
es

G
itL

ab
Je
nk
in
s

K
D
E

M
ap
Se
rv
er

N
od
e.
js

O
pe
n
ed
X

W
or
dP

re
ss

P1
C
re
at
e
pe
rs
on
al

bl
og
s
an
d/
or

w
ik
is
to

in
fo
rm

ab
ou
tt
he

de
ve
lo
pm

en
ta

nd
ar
ch
ite
ct
ur
al
is
su
es

"
"

"
"

"
"

P2
D
ur
in
g
co
de

re
vi
ew

,
pr
ov
id
e
fe
ed
ba
ck

in
fo
rm

at
io
n
ab
ou
t
ar
ch
ite
ct
ur
e,

go
od

pr
ac
tic
es

to
co
de
,d

oi
ng

re
fa
ct
or
in
g
an
d
sh
ow

th
e
be
st
w
ay

to
so
lv
e

pr
ob
le
m

"
"

"
"

"
"

P3
D
oc
um

en
tA

PI
sc

on
st
an
tly

"
"

"

P4
Pr
ov
id
e
in
te
rn
al
or

th
ird

-p
ar
ty

m
en
to
rin

g
pr
og
ra
m
st
o
tra

in
ne
w
co
m
er
s

"
"

"
"

"

P5
Pr
ov
id
e
co
de

re
co
m
m
en
da
tio

ns
,d
ef
in
in
g
a
st
an
da
rd

in
th
e
co
m
m
un
ity

"
"

"
"

"

P6
K
ee
p
a
re
gi
st
er

of
m
ee
tin

gs
av
ai
la
bl
e
to

co
m
m
un
ity

to
kn
ow

al
ld

ec
is
io
ns

of
th
e
m
ee
tin

g
"

"
"

"
"

"

P7
Pr
ov
id
ea

ne
w
co
m
er
-s
pe
ci
fic

pa
ge

or
po
rta

lg
ui
di
ng

th
ei
rf
irs
ts
te
ps
,i
nc
lu
d-

in
g
de
ve
lo
pm

en
ti
nf
or
m
at
io
n

"
"

"
"

"
"

"

P8
Id
en
tif
y
an
d
di
sm

is
so

ut
da
te
d
in
fo
rm

at
io
n
on

w
eb
si
te
s

"
"

P9
Pr
ov
id
e
ge
ne
ra
tio

n
of

(s
em

i-)
au
to
m
at
ed

do
cu
m
en
ta
tio

n
fil
te
re
d
to

up
-to

-
da
te
in
fo
rm

at
io
n
re
le
va
nt

to
ne
w
co
m
er
s

"
"

"
"

"
"

P1
0

A
ns
w
er

qu
es
tio

ns
on

th
e
m
ai
lin

g
lis
tq

ui
ck
ly

"
"

"
"

"
"

"

P1
1

C
re
at
e
a
de
ta
ile
d
st
ep
-b
y-
st
ep

tu
to
ria

ll
in
ki
ng

in
fo
rm

at
io
n
ab
ou
tc
om

m
on

pr
ob
le
m
sa

nd
po
ss
ib
le
so
lu
tio

ns
"

"
"

"

P1
2

Pr
ov
id
e
up
da
te
d
of
fic

ia
ld

oc
um

en
ta
tio

n
ab
ou
tc
od
e’
so

rg
an
iz
at
io
na
ls
tru

c-
tu
re
,a
nd

ho
w
th
e
co
m
po
ne
nt
s,
m
od
ul
es
,c
la
ss
es
,a
nd

pa
ck
ag
es

ar
e
re
la
te
d

to
ea
ch

ot
he
r

"
"

"
"

"
"

P1
3

Su
pp
or
tt
he

pa
rti
ci
pa
tio

n
of

th
e
ec
os
ys
te
m

on
ag
gr
eg
at
or
s’

si
te
s
su
ch

as
st
ac
k
ov
er
flo

w
,r
ed
di
t,
ha
ck
er

ne
w
s,
an
d
so

on
"

"
"

"
"

"
"

P1
4

Pr
ov
id
e
a
di
ct
io
na
ry

to
ne
w
co
m
er
st
o
fa
ci
lit
at
e
th
ei
rl
ea
rn
in
g
of

th
e
te
ch
ni
-

ca
lj
ar
go
n,
ac
ro
ny
m
so

ft
he

co
m
m
un
ity

"
"

P1
5

Pr
ov
id
e
vi
de
o-
cl
as
se
s
or

tu
to
ria

ls
ab
ou
t
in
tro

du
ci
ng

th
e
ec
os
ys
te
m
,
in
-

st
al
lin

g
te
ch
no
lo
gi
es
,c
on
fig

ur
in
g
th
ed

ev
el
op
m
en
te
nv
iro

nm
en
t,
an
d
us
in
g

th
e
de
pe
nd
en
ci
es

w
ith

ot
he
re

co
sy
st
em

s

"
"

"
"

"
"

P1
6

Pr
ov
id
e
a
m
an
ife

st
o
ex
pl
ai
ni
ng

re
qu
ire

m
en
ts
of

an
ap
pl
ic
at
io
n
be
lo
ng
in
g

to
th
e
ec
os
ys
te
m

"
"

P1
7

Pr
ov
id
e
vi
de
o-
co
nf
er
en
ce

se
ss
io
ns

w
ith

qu
es
tio

ns
an
d
an
sw

er
sa

bo
ut

re
le
-

va
nt

to
pi
cs

"
"

P1
8

Pr
ov
id
e
in
fo
rm

at
io
n
ab
ou
tt
he

tra
ns
la
tio

n
pr
oc
es
s
(h
ow

to
pa
rti
ci
pa
te
an
d

to
ol
su

se
d)

"
"

"
"

"
"

"

P1
9

Pr
ov
id
ed

oc
um

en
ta
tio

n
ab
ou
tt
ra
ns
la
tio

n
ru
le
st
ha
td
ev
el
op
er
sm

us
tf
ol
lo
w

to
pr
ep
ar
e
co
de

fo
ro

th
er

la
ng
ua
ge
s

"
"

"
"

"
"

P2
0

K
ee
p
th
e
ba
ck
w
ar
d
co
m
pa
tib

ili
ty

fo
ra

m
ed
iu
m

or
lo
ng

tim
e
to

al
lo
w
th
e

co
m
m
un
ity

up
da
te
th
ei
rs
of
tw
ar
e

"
"

P2
1

Pr
ov
id
e
di
ffe

re
nt

le
ve
ls
of

se
cu
rit
y
ac
ce
ss

fo
rt
he

pa
rts

of
th
e
ec
os
ys
te
m
s

in
ac
co
rd
an
ce

w
ith

th
e
de
gr
ee

of
co
m
m
itm

en
ta
nd

ta
sk
si
n
th
e
ec
os
ys
te
m

"
"

P2
2

Po
in
tn
ew

co
m
er
st
o
ea
sy

ta
sk
sf
ilt
er
ed

by
di
ffi
cu
lty
,s
ki
lls

ne
ed
ed
,a
nd

to
p-

ic
s

"
"

"
"

"

P2
3

U
se

to
ol
st
o
pu
bl
is
h
kn
ow

n
cy
be
rs
ec
ur
ity

vu
ln
er
ab
ili
tie
s.
Fo

re
xa
m
pl
e
th
e

C
om

m
on

V
ul
ne
ra
bi
lit
ie
sa

nd
Ex

po
su
re
s(
C
V
E)

"
"

"
"

"

P2
4

K
ee
p
a
te
am

to
m
an
ag
er

th
e
se
cu
rit
y
pr
ob
le
m
sr
eg
is
te
re
d

"
"

"
"

"

P2
5

Pr
ef
er
en
ce

to
us
e
th
e
En

gl
is
h
la
ng
ua
ge

w
rit
te
n
to

av
oi
d
m
is
un
de
rs
ta
nd
in
g

"
"

P2
6

D
o
on
lin

e
m
ee
tin

gs
in

a
tim

ez
on
e
ad
eq
ua
te
fo
rm

os
to

ft
he

co
m
m
un
ity

"
"

"

P2
7

Pr
ov
id
e
se
ve
ra
lo

nl
in
e
m
ee
tin

gs
to

di
sc
us
sa

rc
hi
te
ct
ur
al
pr
ob
le
m
sb

y
IR
C
,

em
ai
l

"
"

"
"

"
"

"

P2
8

C
re
at
e
pa
rtn

er
sh
ip
s
w
ith

th
ird

-p
ar
tie
s
to

so
lv
e
pr
ob
le
m
s
of

th
e
co
re

an
d

th
ei
ri
nt
er
fa
ce
s

"
"

"

P2
9

Se
tti
ng

a
co
de

of
co
nd
uc
tt
o
av
oi
d
m
is
tre

at
m
en
ta
m
on
g
m
em

be
rs

"
"

"
"

C
on
tin

ue
d
on

ne
xt
pa
ge

Software Architectural Practices: Influences on the Open Source Ecosystem Health Amorim et al. 2023
Ta
bl
e
12

–
C
on
tin

ue
d
fro

m
pr
ev
io
us

pa
ge

Id
A
rc
hi
te
ct
ur
al
Pr
ac
tic
es

G
itL

ab
Je
nk
in
s

K
D
E

M
ap
Se
rv
er

N
od
e.
js

O
pe
n
ed
X

W
or
dP

re
ss

P3
0

Pr
ov
id
e
a
m
es
sa
ge

te
m
pl
at
e
fo
rn

ew
co
m
er
st
o
us
e
to
in
te
ra
ct
w
ith

th
e
co
m
-

m
un
ity

"
"

"
"

"

P3
1

Th
e
or
ga
ni
za
tio

n
bo
ar
d
de
fin

es
so
m
e
te
ch
no
lo
gi
es

th
at
sh
ou
ld

be
us
ed

by
th
e
w
ho
le
co
m
m
un
ity

as
to
ol
sf
or

te
st
in
g,

co
m
m
un
ic
at
io
n,

co
di
ng

re
vi
ew

,
bu
gg
in
g
m
an
ag
er
,a
nd

na
vi
ga
tio

n

"
"

"
"

"
"

P3
2

Th
e
or
ga
ni
za
tio

n
bo
ar
d
pr
ov
id
e
ha
rd
w
ar
e
an
d
so
ftw

ar
e
re
so
ur
ce
s
to

be
us
ed

by
th
e
co
m
m
un
ity

"
"

P3
3

D
ef
in
e
a
fin

an
ci
al
bo
ar
d
to

m
an
ag
e
th
e
fin

an
ci
al
re
so
ur
ce
s

"
"

"
"

"
"

P3
4

Pr
ov
id
e
fin

an
ci
al
re
so
ur
ce
st
o
su
pp
or
tm

ee
tin

gs
fa
ce
-to

-f
ac
e

"
"

"
"

"
"

P3
5

Pr
ov
id
e
m
ee
tin

gs
(s
pr
in
ts
)
fa
ce
-to

-f
ac
e
to

ac
ce
le
ra
te

th
e
de
ve
lo
pm

en
to

f
cr
iti
ca
li
ss
ue
s
an
d
so
lv
e
de
ve
lo
pm

en
tp

ro
bl
em

s
w
ith

in
te
rd
ep
en
de
nt

m
od
-

ul
es

"
"

"
"

"
"

"

P3
6

D
ef
in
e
m
in
im

al
qu
al
ity

cr
ite
ria

re
qu
ire

m
en
ts
to

ad
d
an

ap
pl
ic
at
io
n
to

th
e

ec
os
ys
te
m

(d
oc
um

en
ta
tio

n,
au
to
m
at
ic
te
st
s,
de
pe
nd
en
ce

re
st
ric

tio
ns
)

"
"

"

P3
7

D
ef
in
e
a
te
am

to
te
st
pe
rf
or
m
an
ce

an
d
be
ha
vi
or

of
th
e
ap
pl
ic
at
io
n

"
"

"

P3
8

U
se

so
m
e
to
ol
st
o
co
m
pu
te
so
m
e
qu
al
ity

m
et
ric

s
"

"
"

P3
9

U
se

au
to
m
at
ic
te
st
st
o
ga
th
er

pr
ob
le
m
sw

ith
th
e
co
de

re
ce
nt
ly

ad
de
d

"
"

"
"

"
"

"

P4
0

Pr
ov
id
e
an

au
to
m
at
ic
pr
oc
es
st
o
la
un
ch

re
le
as
e
of

ap
pl
ic
at
io
ns

"
"

"
"

P4
1

D
iv
id
e
th
e
pa
rts

of
th
e
so
ftw

ar
e
in

la
ye
rs
,d
ef
in
in
g
re
st
ric

tio
ns

fo
rm

an
ag
-

in
g
de
pe
nd
en
ci
es

am
on
g
th
e
la
ye
rs

"
"

P4
2

D
is
cu
ss

w
ith

th
e
co
m
m
un
ity

ab
ou
tc

rit
ic
al

ch
an
ge
s
in
to

ar
ch
ite
ct
ur
e
th
at

w
ill

im
pa
ct
in

th
e
ap
pl
ic
at
io
ns

"
"

"
"

P4
3

Pu
bl
is
h
w
id
el
y
th
e
ar
ch
ite
ct
ur
al
ch
an
ge
sf
or

th
e
co
m
m
un
ity

"
"

"
"

"

P4
4

B
ui
ld

th
e
ar
ch
ite
ct
ur
e
ba
se
d
in

pl
ug
-in

s
to

fa
ci
lit
at
e
th
e
co
up
lin

g
of

ap
pl
i-

ca
tio

ns
"

"
"

"
"

P4
5

Pr
ov
id
e
gu
id
el
in
es

w
ith

a
se
to
fs
te
ps

to
be

fo
llo

w
ed

by
de
ve
lo
pe
rs
ho
w
to

ad
d
co
de

to
re
po
si
to
ry

"
"

P4
6

Pr
ov
id
e
a
vi
rtu

al
m
ac
hi
ne

w
ith

pr
e-
co
nf
ig
ur
ed

bu
ild

en
vi
ro
nm

en
ts
,w

eb
-

ba
se
d
ID

Es
,o
ra

co
nt
ai
ne
rm

an
ag
em

en
tt
oo
l

"

P4
7

In
fo
rm

ne
w
co
m
er
s
ab
ou
tt
ec
hn
ic
al

ba
ck
gr
ou
nd

re
qu
ire

d.
Id
en
tif
y
w
hi
ch

sp
ec
ifi
c
te
ch
no
lo
gi
es

th
ey

ne
ed

to
kn
ow

or
th
ey

sh
ou
ld

le
ar
n
to

ac
hi
ev
e

th
ei
rg

oa
lo

fc
on
tri
bu
tin

g
to

th
e
ec
os
ys
te
m

"

P4
8

Ta
g
al
lt
as
ks

in
ac
co
rd
an
ce

w
ith

de
gr
ee

of
di
ffi
cu
lty

(e
as
y,
m
ed
iu
m
,d

iff
i-

cu
lt)

"

P4
9

Pr
ov
id
e
a
gr
ou
p
fo
rg

ar
de
ni
ng

to
ca
re

th
e
gl
ob
al
st
at
e
of

ec
os
ys
te
m

"

P5
0

K
ee
p
th
e
lis
to

f
ta
sk
s
up
da
te
d,

in
fo
rm

in
g
ab
ou
tw

ho
is

w
or
ki
ng

on
th
e

so
lu
tio

n
"

	Introduction
	Software Ecosystems, Architecture, and Health
	Software Ecosystems
	Software Ecosystem Architecture
	Software Ecosystem Health

	Related Work
	Methodology
	Research Questions
	Research Context
	Data Collection
	Data Analysis

	Findings
	Architectural Practices
	Factors that influence the adoption of architectural practices
	Business Goals
	Experience
	Requirements
	Resources
	Time-to-market

	Health Indicators
	Robustness
	Productivity
	Niche Creation
	Trustworthiness

	Discussion
	Threats of Validity
	Conclusion
	Architectural Practices

