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ABSTRACT 

This paper looks at several historical precedents 
for how computational systems and ideas have 
been visualized, both as a means of access to 
and engagement with a broader audience, and to 
develop a more tangible language to address 
abstraction. Such precedents share a subversive 
ground in using a visual language to provoke 
ways of engaging with complex ideas. The author 
proposes two approaches to visualizing 
algorithmic systems for the emerging context of 
algorithmic ethics in society, looking at 
prototypical algorithms in computer vision and 
machine learning systems, to think through the 
meaning created by algorithmic structure and 
process. The aim is to use visual design to 
provoke different kinds of thinking and criticality 
to address algorithms in their increasingly more 
politicized role today. The two proposed 
approaches are developed from an arts research 
perspective to support critical thinking and arts 
knowledge through creative coding and 
interactive design. 
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1 | INTRODUCTION 

Today computational systems have become 
significantly more abstract, complex, opaque, 
powerful, pervasive, influential, and opportunistic. 
They are no longer simply tools to make things 
faster, or easier, or more efficient. They are 
becoming part of the fabric of our social and 
political lives, autonomously bypassing 
governance and political debate, as the traditional 
forums of decision-making and social change. 
Humans are becoming increasingly incapable of 
comprehending computation in its speed, scale, 
and structure, and consequently, to engage with 
it and make choices about how we want to live 
with it. Visualization can be a method of making 
computation more human, less abstract and 
opaque. We need to graphically show structure, 
animate temporality, diagram scale, and 

metaphorize context. We need to develop visual 
tools that incite new ways to think about 
algorithms as socio-political drivers. There are 
historical precedents for visualizing computation 
that are relevant to our contemporary algorithmic 
era, in the way that they specifically challenge 
perspectives on knowledge and engagement. 
These precedents will be explored, before 
presenting two different approaches.  

2 | COMPUTATION AS TACIT POWER AND 
AESTHETIC ANALOGY 

Algocracy is a concept put forward by A. Aneesh 
in his research into the virtualization of labor 
practices. The encroaching role of algorithms in 
society today presents an opportune moment to 
readdress the notion of algocracy. Aneesh 
defines it as “algocracy - rule of the algorithm, or 
rule of code” (2006), which he presents as a new 
type of power that is created through the way that 
algorithms are embedded in software. This form 
of power does not require monitoring through 
traditional surveillance systems, hierarchies, and 
forms of government, but instead governance 
and surveillance take place through the design of 
the algorithm and the way it tacitly shapes 
behaviors and asserts authority, without public 
awareness. If we consider the exapnding role that 
algorithms play in society, that their design can 
be a form of tacit governance, what opportunities 
are there to develop computational visualization 
tools that invite critical thinking around this shift in 
power by a broader non-technical audience? 

Visualizing computation focuses on process, both 
temporally and spatially, in which data is parsed, 
forked, and on which decisions are executed. It is 
about thinking through and visualizing how the 
computational process works in real time, to expose 
or interpret a cause or pattern or resulting artefact. 
In data visualization, a designer or analyst begins 
with a static data set but does not question how the 
data came to exist, or how the algorithm that parses 
and mathematically restructures the data functions 
or arrives at its decisions. The prominent data artist 
Jer Thorp, has more recently talked about the 
importance of “not look[ing] just at the data, but at 
the entire system that the data is a part of,” in order 
to “more deeply understand (and critique) the data 
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machinery that ubiquitously affects our day-to-day 
lives” (Thorp, 2017). Computational visualization 
seeks to understand how the algorithm executes 
and why it produces the results it does, whether this 
is a conventional sorting algorithm, or a machine 
learning algorithm with significant social and 
political implications. In this way, it is possible to 
access and visualize the processes that underlie 
the computational systems that increasingly drive 
key functions in our society. 

The use of aesthetics and analogy are explored 
as opportunities to bring the history of art to bear 
on computation. Paul Fishwick points out that 
artists have long been inspired by the 
advancements of science, however, the 
acknowledgement has not been reciprocal. When 
science looks to art, it tends to do so in a 
reductive, formal way, focusing solely on classical 
notions of beauty. For example, when referring to 
the elegance of a mathematical solution, “the 
mathematician’s aesthetics involves concepts 
such as invariance, symmetry, parsimony, 
proportion, and harmony,” (Fishwick, 2006, p.9) 
denying the full array of thinking in art. 
Computation has so far failed to take into account 
the evolution and innovations in aesthetics from 
the Enlightenment to the present. Art history’s 
movements and genres, including experiments in 
subversion, multi-perspectivism, reflexivity, 
pluralism, and subjectivity, make clear that 
aesthetics are not just a tool to further facilitate 
the sciences, but capable of bringing insights of 
their own. Science has traditionally enforced 
visual minimalism in the name of abstraction, but 
as Fishwick argues “representation need not 
compromise the goal of abstraction” (Fishwick, 
2006 p.255). He offers an example of how a finite 
state machine can be visualized in 3D using a city 
nightscape as a metaphor in which streetlight 
illuminated walkways and human agents 
represent state changes. Fishwick argues for 
catalyzing art, using analogy to strengthen the 
feeling of immersion, relatability, and envisioning. 

Analogy is a mode that Barbara Maria Stafford, 
likewise, discusses as an opportunity to bind the 
computational new mind with the combinatorial 
old mind. She offers analogy as “a nonalgorithmic 
technique for binding our perceptual system to 
our cognitive system, expressed in terms of 
similarities and antitheses” (Stafford, 1999, 
p.176). Richard Wettel explores such ideas in his 
doctoral dissertation titled Software Systems as 
Cities, in which he uses a metaphor of urbanism 
to “allow the interpretation of new data 
representations by analogy.” (Wettel, 2010, p.iii) 
He developed a tool called CodeCity to think 
through algorithmic structure as analogous to the 
structure of a city, such a metaphoric tactic can 
shift between visualizing an algorithm and 
reverse engineering the metaphor back into code. 

 
Figure 1 | CodeCity by Richard Wettel 

Packages are represented as neighborhoods, 
classes as buildings, and architectural program, 
such as skyscraper, residential house, or parking 
lot, is mapped to width, length, and height of 
buildings, over which communication relations 
are charted. Wettel refers to the inhabitable 
quality of the visual metaphor as being essential 
to the method.  

3 | HISTORICAL PRECEDENTS FOR 
VISUALIZING COMPUTATION AS OBJECTS-
TO-THINK-WITH 

The implementation of turtle graphics into the 
Logo programming language is an entry point to 
thinking about how visualization has fostered 
access, comprehension, and exploration of 
advanced ideas in mathematics, computation, 
and decentralized thinking, for people who do not 
have a training in science. Such ideas are often 
abstract, counter-intuitive, and difficult to 
comprehend, especially in times of increasing 
computational obscurantism. The visual tactic 
behind the turtle graphic, offered an embodied 
approach to dealing with abstraction, supported a 
model of learning through design and exploration 
rather than based off existing knowledge, and 
connected these visual computational learning 
models to social and political changes in the 
world at the time, in the hope of developing 
different ways of thinking. 

Logo was an educational programming language 
co-developed in 1967 by Wally Feurzeig, Seymour 
Papert, and Cynthia Solomon, to empower 
children to engage with computational language. 
Papert wrote about the intentions and legacy of 
Logo in his book Mindstorms: Children, Computers 
and Powerful Ideas. Logo’s most prominent 
feature is known as the turtle. The idea was to 
teach the fundamentals of mathematics by 
learning how to navigate a turtle icon (in fact a 
small green triangle) across the computer screen 
to create shapes, using commands such as 
‘FORWARD 100’ and ‘RIGHT 90’ to move and 
change the direction of the turtle, and ‘PENUP’ and 
‘PENDOWN’ to make the turtle draw a line behind 
it. The idea was to imagine one’s own body moving 
and turning in space to think through the abstract 
concept of shape. For Papert this was another 



CITAR Journal, Volume 11, No. 2 · Special Issue: xCoAx 2019 
 

 11 

means for children to learn “a language for talking 
about shapes and fluxes of shapes, about 
velocities and rates of change, about processes 
and procedures. They are learning to speak 
mathematics and acquiring a new image of 
themselves as mathematicians” (Papert, 1993, 
p.3). Papert sought to overcome the cultural 
unease around engaging with mathematics. He 
saw this disengagement as stemming from lack of 
access, social esteem, and a cultural atmosphere. 

“It is about an end to the culture that makes 
science and technology alien to the vast 
majority of people. Many cultural barriers 
impede children from making scientific 
knowledge their own. (...) Many children who 
grow up in cities are surrounded by the 
artifacts of science but have good reason to 
see them as belonging to “the others” (…) 
Most branches of the most sophisticated 
modern culture of Europe and the United 
States are so deeply “mathophobic” that 
many privileged children are as effectively (if 
more gently) kept from appropriating science 
as their own.” (Papert, 1993, p.4) 

To overcome this, Papert projects an 
empowering vision of how when a child programs 
a computer, they are given access to and 
intimacy with some of the most powerful ideas in 
technology and the deepest ideas in science and 
mathematics. Papert understood that computers 
can support the development of new ways of 
thinking and learning, and should not be seen to 
simply instruct and deliver information, but to 
revitalize education, so that children learn 
through exploration, experimentation, and 
expressing themselves. Influenced by the 
psychologist and child development pioneer, 
Jean Piaget, Papert followed the model of 
childhood learning in which children are “builders 
of their own intellectual structures” (Papert, 1993, 
p.7), which led to the concept of the turtle as “a 
constructed computational object-to-think-with” 
(Papert, 1993, p.11), emanating from his own 
experience of playing with toys gears as a child 
and how the sense of embodiment supported his 
engagement with abstract concepts. 

 
Figure 2 | Drawing shapes by navigating a turtle in Logo 

Harold Abelson and Andrea diSessa advanced 
Papert’s work beyond childhood learning, to 
consider how the practice of turtle graphics could 
support the exploration of advanced geometry at 
the undergraduate level. In their book Turtle 
Geometry, they claim that it is rare for a student 
to have the chance to approach mathematics by 
doing it rather than only learning about it through 
the rote revision of proofs and theorems. In this 
sense, turtle geometry, as the approach became 
known, is about giving students an experiential 
access and agency to advanced mathematical 
concepts “to dissolve the barriers to the 
production of knowledge” (1981, p.xiii). Turtle 
geometry offers an alternative framework for 
learning about mathematics, in contrast to the 
traditional framework of coordinate geometry 
conceived by René Descartes in the 17th century.  

“Descartes’ marriage of algebra and 
geometry is one of the fundamental insights 
in the development of mathematics. 
Nevertheless, these kinds of coordinate 
systems — Cartesian, polar, or what have 
you — are not the only ways to relate 
numbers to geometry. (…) We shall refer to 
the geometry of FORWARD and RIGHT as 
turtle geometry.” (Abelson and DiSessa, 
1981, p.11) 

The affordances of turtle geometry are laid out as: 
intrinsic rather than extrinsic, whereby the turtle 
(and in turn our thinking) does not rely on an 
external reference system such as the traditional 
x and y axes; local rather than global, meaning 
that we calculate geometry based on local 
information such as position and heading, rather 
than in the context of a wider system such as the 
center and edge of an environment; the 
construction of procedures rather than equations, 
where procedures are simple, readily modified, 
and called iteratively, enabling uncomplicated 
mathematical exploration that is not possible in 
traditional algebraic formalism; dynamic rather 
than static; and prioritizing the computer science 
concept of ‘state’ where movements and 
procedures are state-change operators. These 
affordances support an embodied approach to 
dealing with abstraction, by breaking it down into 
simple repeatable behaviors that people can 
relate to through existing knowledge of their own 
bodies in space and motion. The turtle is at the 
heart of a model of learning through exploration 
and practice, over instructional teaching and 
existing knowledge. Abelson and diSessa 
showed how students could explore complex 
ideas including artificial intelligence, the 
simulation of sight and smell, biological systems 
of animal behaviors, game theory, and even 
Einstein’s Theory of General Relativity, all 
through the embodied navigation of a single turtle 
icon and simple procedural instructions. 
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In the 1980s, Mitchel Resnick, a student of Papert 
at MIT, extended the turtle concept into another 
visual programming environment with a more 
overt claim to challenge social thinking. StarLogo, 
was a programming language developed to 
explore how decentralized thinking and intuition 
could be developed through computational 
literacy. In Turtles, Termites, and Traffic Jams, 
Resnick describes his motivation within the 
seeming paradox of complex systems: “How can 
a mind emerge from a collection of mindless 
parts? It seems clear that no one part is ‘in 
charge’ of the mind (or else it too would be a 
mind). But how can a mind function so effectively 
and creatively without anyone (or anything) in 
charge?” (Resnick, 1995, p.xiv). Resnick 
designed StarLogo to provide an environment in 
which to simulate decentralized systems, learn 
about their behaviors, and complexity-from-
simplicity scenarios. Resnick saw this in contrast 
to the centralized models and top-down 
hierarchies that dominated society’s way of 
thinking and learning, and which was just starting 
to change. Papert celebrated StarLogo as 
“liberating students from the confines of the 
centralized mindset” (Papert, 1994, p.x) by 
rethinking the computer as not just a technology 
for speeding things up and getting things done, 
but to aide a different type of thinking. 

In StarLogo, the user visually simulates 
decentralized phenomena, such as ant colonies, 
slime molds, traffic jams, and forest fires, by 
programming a large volume of agents, or turtles, 
with very simple rules of movement. Such 
systems are non-intuitive to the human mind, 
which struggles to keep track of a large number 
of independent actors, which is where the role of 
visual computation becomes important. Where in 
Logo, a user navigates a single turtle, in 
StarLogo, a user deploys thousands of turtles 
simultaneously, that perform as autonomous 
agents, directed by simple rules, to simulate 
emergent phenomena out of a seemingly 
disordered environment. The user creates 
‘microworlds’ of complex systems, through 
programming very simple rules. For Resnick the 
best way to learn about something as 
counterintuitive as a decentralized system, is to 
design one. Resnick also sought to provide 
access visually to other challenging and 
obfuscated ideas within computer science.  

“During the past decade, many ideas have 
influenced the design of computer 
programming languages. But two ideas stand 
out as especially influential: object-oriented 
programming and parallelism. StarLogo 
incorporates aspects of both.” (Resnick, 
1995, p.41)  

Object-oriented programming and parallel 
computing were new concepts being developed 
by computer science at the time, and Resnick’s 
system offered users a way into their unfamiliar 
logic. In StarLogo both the environment and the 
agents have equal agency, as the environment is 
a grid comprised of discrete cells which can 
engage with each other and other objects. This 
transformation of the traditional role of objects 
and people in the environment aims to change 
people’s thinking and interactions about the 
environment. Computationally, StarLogo is 
comprised of an agent system operating on a 
cellular-automata-structured environment, and 
each individual agent in the system and cell in the 
grid has an equal ability to activate and 
communicate with each other.  

 
Figure 3 | A termite simulation in StarLogo 

StarLogo arose out of a social and political 
context in which ideas around decentralization 
were developing, not only in computation, but 
also in society and politics. Resnick situates his 
ideas during the time of the dissolution of the 
USSR, corporations restructuring their business 
into smaller semi-autonomous businesses away 
from top-down hierarchies, and countries 
transitioning to more horizontal free market 
economies rather than centralized state-
controlled economies. In science and computing, 
the Newtonian world view was also being 
displaced by the decentralized view of 
ecosystems. He also points to other key moments 
in history that anticipated the rise of 
decentralization, including the publication of 
Adam Smith’s The Wealth of Nations in 1776 that 
first presented an economic model without the 
need for centralized control, and in 1859, the 
publication of Charles Darwin’s On the Origin of 
Species, brought decentralized thinking to 
biology and natural selection. 

Other visual computational systems likewise offer 
insight into how the way we visualize abstraction 
can afford divergent ways of thinking. Often, we 
think of visualization as the output of a 
computational system, however, Stephen 
Wolfram’s work on cellular automata, suggests 
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that computation can be embodied in visual form. 
In A New Kind of Science, he argues that in order 
to understand complex ideas, it is not necessary 
to use complex mathematical systems, but 
instead simple rules (Wolfram, 2002). From 
simple simulations such as John Conway’s Game 
of Life, and Chris Langton’s Langton’s ant, we 
can understand that algorithms can occupy a 
physical space.  

 
Figure 4 | 2D cellular automaton using rule 150 

What would otherwise be a mathematical 
abstraction, here is a literal representation of 
behavior, where geometry and logic generate the 
computation. The simulations that have been 
developed from more sophisticated versions of 
these visual algorithms have led to the simulation 
of human behavior or the growth of cities. Like 
cellular automata, other algorithms become 
meaningful when understood through their visual 
representation. In the case of Aristid 
Lindenmayer’s L-systems, a formal grammar 
which visually articulates a recursive function 
over geometry, has a revealing effect as the 
shapes that grow out of these generative 
procedures resemble forms in nature 
(Lindenmayer, 1990). Since their formulation, L-
systems have been developed to simulate 
physical processes from bacterial cell growth, to 
tree growth and crystal growth. This algorithm 
has brought a more diverse audience to 
understand multi-scalar computational 
processes, popularizing concepts such as 
fractals. Without this visual computation, it would 
be very difficult to understand the concept of 
recursion, such as with the Koch Curve. Like L-
systems, another type of computational grammar 
are shape grammars. Invented by George Stiny 
and James Gips in the 1970s, shape grammars 
combine shapes and transformation rules to 
create patterns and subdivide space, leading to 
their use as a design tool. Gips writes that “Shape 
grammars are intended to form a basis for purely 
visual computation. The primitives in shape 
grammars are shapes, rather than symbolic” 
(Gips, 1999). Shape grammars are a visual way 
of writing the rules of an algorithm. They capture 
a computational process graphically, of shapes 
being added and subtracted in accordance with 
spatial relation. When writing an algorithm, one is 
designing a shape and its transformation rules. 

Also known as ‘computing with shapes’, a shape 
grammar is a language generator, albeit one that 
works with a visual alphabet. approaches.  

4 | CELLULAR AUTOMATA, SURVEILLANCE, 
AND CREATIVE CODE 

I would like to present two approaches from my 
own research into visualizing computation in the 
current context of the ethics in algorithms 
discourse. The first method presents an approach 
to reverse engineer a social issue, in this case 
surveillance, back through a particular algorithm, 
or core computational concept, in this case a 
cellular automaton. There is a line, conceptually 
and visually, to be drawn between the core 
computational logic of cellular automata, via 
image processing techniques, through computer 
vision algorithms, and into the gaze of a street 
surveillance camera. The approach seeks to 
make this argument visually, through a series of 
simulations. Contextually, this research begins by 
looking at open source algorithms and libraries 
and thinking through the social and political 
implications of them, addressing algorithms, not 
just as cultural artifacts, but at the level of code 
syntax. Connecting to the practice of critical code 
studies, the work uses the OpenCV library, and 
considers its source code as being a cultural text 
with the same potential for humanistic 
interpretation as other cultural texts. 

There is an affinity between cellular automata and 
images through the computational grid system of 
cellular automata and the pixel array structure of 
digital images. A cellular automaton is a system 
of simple rules and states, operating on grids of 
cells, and from such seeming simplicity, complex 
behaviors emerge, leading to further-reaching 
possibilities. State is usually represented by black 
and white colored cells, which are often 
interpreted as alive and dead, whilst a typical rule 
set might be: if a live cell has less than two live 
neighbors, then it dies (interpreted as isolation); if 
a live cell has more than three live neighbors, 
then it dies (interpreted as overcrowding); if a 
dead cell has three live neighbors, then it comes 
alive (interpreted as reproduction); otherwise a 
cell stays the same (interpreted as stasis). From 
such a seemingly simple computational system, 
far-reaching speculations have been developed 
in relation to artificial life (Langton, 1986) and the 
computational universe (Fredkin 1990). 

A Langton’s ant is a version of a cellular automaton 
in which only one cell in the grid changes at a time, 
so it functions similarly to an autonomous agent. 
This agent was applied to a satellite image of a 
location in the Amazon known as the ‘Meeting of 
the Waters’, which is the confluence of two rivers, 
the darker colored water of the Rio Negro and the 
sandy colored water of the Amazon River. Due to 
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each river’s different water density, speed, and 
temperature, their waters do not mix for several 
kilometers and instead run alongside each other 
inside the same river channel, demarcated by their 
different colors. Several hundred Langton’s ants 
were deployed across the structure of the image, 
using its data structure to compute across, 
generatively repatterning it, and transforming the 
landscape and the composition of the river. The 
choice of image works analogously, where one’s 
understanding of the landscape is terraformed by 
the agents. This visualization is presented in two 
formats, one which foregrounds the algorithm’s 
interpretation of the scene, as a simplified four-
state grayscale image that the agents use to 
compute on to determine their state and change 
pathway. Another image foregrounds the human 
view, as the effects of the generative redesign of 
the landscape. The work is presented in this way 
to think through the difference between the 
simplified data and logic that the algorithm 
operates with, and the higher-level image that we 
see, and which might hold cultural or social 
meaning. 

 
Figure 5 | Langton’s ant 

 
Figure 6 | four-state grayscale image that agents compute on 

 
Figure 7 | Full color or human view shows generative 

redesign of landscape 

Continuing this mode of visual-critical argument 
to connect the logic of cellular automata 
computations to our social understanding of 
surveillance, the research engaged with image 
processing techniques, which are an important 
part of a computer vision library of algorithms. 
Images need to be heavily processed, broken 
down and simplified to be interpretable by an 
algorithm. Popular filters such as blur, sharpen, 
and edge detection are used and operate with 
similar logic to a cellular automaton. When 
background subtraction is applied to an image 
from a surveillance camera, the image is reduced 
in complexity to just two states and two rules, if a 
pixel’s RGB value changes between video frames 
it is assigned white, and if it remains the same 
between frames it is assigned black. In this way, 
an algorithm reads motion in a video image, and 
the result is a rather sinister image of the 
surveillance camera’s gaze, tracking people 
walking in urban space. The research works with 
a creative coding approach to create a series of 
visualizations of the algorithm in action, first of all 
isolating motion in the image, and then printing 
only that motion. The work uses the image of a 
chameleon, because of the nature of the animal 
to conceal itself through stillness. By analogy, the 
chameleon reveals itself to the algorithm through 
movement and camouflages itself from the 
algorithm through stillness. 

This arts research seeks to move forward from 
the tradition of data visualization, to experiment 
with ways of visualizing computational process or 
models, to open the black-box of algorithms that 
are used in socially contentious spaces and think 
through their inner workings by means of visual-
critical arguments. From a computer science 
perspective, cellular automata systems are 
understood as expressions of foundational 
computational concepts including state machines 
and formal logic, they are also understood as 
neutral mathematical concepts, however, from an 
arts research perspective, the very foundations of 
computation and code can be questioned and 
contextualized within a social context.  

 
Figure 8 | OpenCV library example of background subtraction 
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Figure 9 | Isolating and visualizing motion or state changes 

 
Figure 10 | Printing motion or state changes 

5 | MACHINE LEARNING, ETHICS, AND 
INTERACTION DESIGN 

A second approach to building visual-critical 
arguments to address the ethics of algorithms 
has also been explored. Machine learning 
algorithms were investigated because of their 
emerging use in ethically sensitive spaces such 
as policing and welfare. The incidents of 
algorithms arriving at racist or sexist 
classifications or being used to determine who 
goes to prison and who receives leniency, have 
received important attention over the last few 
years. The ethical dilemmas that are arising from 
the use of machine learning algorithms include 
the likelihood of them generating mistakes and of 
augmenting biases hidden in data. The 
investigative journalism organization, ProPublica, 
investigated machine bias in the US justice 
system in 2016, pointing to how predictive 
systems can encode racial bias when used in 
criminal sentencing, and it was from there that 
this research began (Angwin, 2016). The 
algorithms being used are proprietary, classic 
black boxes, and are therefore unavailable to 
scrutiny, however when algorithms are tasked 
with making potentially life-altering decisions 
such as recommending a person be jailed, or 
fired from a job, or refused a place in a state-
funded drug rehabilitation program, it becomes a 
significant ethical problem. 

From an interdisciplinary design research 
perspective, a framework to critically study 
algorithms needs to provide access to algorithms 
for observation, to promote literacy, enable 
reflection, and formulate a critical and ethical 

position in the discourse. An interactive 
visualization tool was developed to visualize a 
simple machine learning algorithm, a decision 
tree classifier, to think through some of these 
ideas and pose further questions. Classifiers 
were generated using Python’s scikit-learn library 
and then rebuilt in Unity, a game engine, to drive 
an interactive visualization in real-time. In its 
current state, the application works mainly with 
synthetic data, as a way to temporarily isolate the 
meaning in data, to think about the meaning of 
structure and process in the algorithm instead. 
From a design perspective, a combination of 
tactics from interaction design, generative 
design, and to some extent critical code studies, 
have been employed. A decision tree classifier 
was used because it is one of the simplest types 
of machine learning that is already somewhat 
graphic. 

 
Figure 11 | Software interface for Visualizing Algorithms, an 
application to visualize, simulate, and interact with a simple 

machine learning classifier. 

 
Figure 12 | The algorithm mapped out spatially showing all 
possible pathways. Gravity and spring physics simulate an 

organic aesthetic. 

 
Figure 13 | Visualizations of a decision tree, a simple 

machine learning generated classifier with four prediction 
classes. 
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Figure 14 | Tree structure of the algorithm showing two 

prediction classes and mistakes in classification. 

The design tactics employed begin by mapping 
out the algorithm spatially, to look at its possibility 
space, at all of the various paths through the 
algorithm, and decisions that are made before 
arriving at a prediction. Then data is simulated 
through the algorithm, showing decisions being 
made in real time as the algorithm executes. The 
simulation of time is a tactic taken from some 
computer games, in which time can be scaled to 
see individual decisions being made at a slower, 
human scale of perception, through to a higher, 
emergent scale in which patterns of decisions can 
be seen forming. At this point, the visualization 
can point to mistakes in prediction, where the 
algorithm mis-classifies data. A user can also 
hover over each data point and reverse engineer 
the path it took through the algorithm, perhaps to 
see at which point it made a wrong decision and 
took a wrong path. The system also visualizes 
particular features of the data, through the 
physical proportions between the data points. 
The most popular and least popular pathways 
through the algorithm’s network are also 
visualized. The prototype was built procedurally 
so that any classifier of the same type can be 
loaded and visualized, with the user interface 
supporting its structural self-organization, and 
aiding analysis. 

In developing an interactive design tool such as 
this, the questions that come up include: to what 
extent visualization is an a-linguistic tool to re-
engage with decision-making in prediction 
systems and provoke questions, where we are at 
risk of losing our connection to decision-making? 
Could visual tools be used by key workers in the 
field, who are expected to work with the results of 
these algorithms but so far are precluded for 
understanding their logic? To what extent 
interaction design, generative design, and critical 
code studies combine as an effective method to 
visualize an ethical position in algorithms? What 
does it mean to learn, in machine learning, and is 
the anthropomorphism of AI a productive 
analogy? The tool uses synthetic data, therefore 
artificially removing the social meaning from the 
data temporarily. As the research develops, the 
intention is to explore the concept of bias 

augmentation, which speculates that where there 
is a small bias in a dataset, this can become 
amplified through the iterative algorithmic 
process. Where most people today argue that 
bias is in the data, because the data is a reflection 
of bias in society, there is also speculation that 
the algorithm in its structure and process, can 
play its own role to augment bias. That is 
something to explore further, hence the focus on 
structure and process over data so far.  

6 | CONCLUSION 

This research looks back at historical precedents 
for how computational systems and ideas have 
been visualized as a means of access and 
engagement with a broader audience or to 
develop a more tangible language to address 
abstraction. The examples described, including 
the influential legacy of turtle graphics, leading to 
StarLogo’s visual programming environment, 
which sought to explore decentralized thinking, 
and Wolfram’s in depth study of cellular 
automata, share a drive to provoke new kinds of 
thinking, criticality, and imagining that can also 
offer opportunities to address algorithms in their 
increasingly more politicized role today. Two 
research projects propose methods to address 
contemporary algorithms in a socio-political 
context, ultimately proposing to move toward a 
perspective that positions algorithms as part of a 
political language. In the creative coding 
community, emerging from software studies, we 
are told that code is now a comprehensive 
language for creative and authorial expression. 
Can code also be a language of critique to probe 
its own social and political latencies? 
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